Prediction of Commuter’s Daily Time Allocation
Abstract
This paper presents a model system to predict the time allocation in commuters’ daily activity-travel pattern. The departure time and the arrival time are estimated with Ordered Probit model and Support Vector Regression is introduced for travel time and activity duration prediction. Applied in a real-world time allocation prediction experiment, the model system shows a satisfactory level of prediction accuracy. This study provides useful insights into commuters’ activity-travel time allocation decision by identifying the important influences, and the results are readily applied to a wide range of transportation practice, such as travel information system, by providing reliable forecast for variations in travel demand over time. By introducing the Support Vector Regression, it also makes a methodological contribution in enhancing prediction accuracy of travel time and activity duration prediction.References
Yu, B., Yang, Z.Z., Li S.: Real-Time Partway Deadheading Strategy Based on Transit Service Reliability Assessment, Transportation Research Part A, Vol. 46, No. 8, 2012, pp. 1265–1279
Zong, F., Juan, Z., Jia, H.: Examination of staggered shifts impacts on travel behavior: a case study of Beijing, Transport, 2012, STRA-2011-0129.R1, forthcoming
Ettema, D., Bastin, F., Polak, J., Ashiru, O.: Modelling the joint choice of activity timing and duration, Transportation Research A, Vol. 41, 2007, pp. 827-841
Hamed, M.M., Mannering F.L.: Modeling travelers’ postwork activity involvement: toward a new methodology, Transportation Science, Vol. 27, No. 4, 1993, pp. 381-394
Bowman, J.L., Ben-Akiva, M.E.: Activity-based disaggregate travel demand model system with activity schedules, Transportation Research Part A, Vol. 35, 2000, pp. 1-28
Bhat, C.: Analysis of travel mode and departure time choice for urban shopping trips, Transportation Research B, Vol. 32, 1998, pp. 361-371
Small, K.A.: The scheduling of consumer activities: work trips, American Economic Review, Vol. 72, 1982, pp. 467-479
Small, K.A.: A discrete model for ordered alternatives, Econometrica, Vol. 55, N0. 2, 1987, pp. 409-424
Bhat, C., Steed, J.: A continuous-time model of departure time choice for urban shopping trips, Transportation Research, Vol. 36B, 2002, pp. 207-224
Juan Z., Xianyu J.: Daily Travel Time Analysis with Duration Model, Journal of Transportation System Engineering & Intelligent, Vol. 10, No. 4, 2010, pp. 62-67
Pendyala, R., Bhat, C.R.: An exploration of the relationship between timing and duration of maintenance activities, Transportation, Vol. 31, 2004, pp. 429-456
Habib K.M.N.: Modeling commuting mode choice jointly with work start time and work duration, Transportation Research Part A, Vol. 46, 2012, pp. 33-47
Schwanen, T., Dijst, M.: Travel-time ratios for visits to the workplace: the relationship between commuting time and work duration, Transportation Research Part A, Vol. 36, 2002, pp. 573-592
Kitamura, R., Fujii, S.: Two computational process models of activity-travel behavior. In T. Garling, T. Laitila and K. Westin (eds.) Theoretical Foundations of Travel Choice Modeling, Oxford: Elsevier Science, 1998, pp. 251-279
Guo, J. Y., Bhat, C. R.: Representation and analysis plan and data needs analysis for the activity-travel system, Research Report, Texas department of transportation, 2001
Juan Z., Xianyu J.: Daily Travel Time Analysis with Duration Model, Journal of Transportation System Engineering & Intelligent, Vol. 10, No. 4, 2010, pp. 62-67
Ray P.: Independence of Irrelevant Alternatives, Econometrica, Vol. 41, No. 5, 1973, pp. 987-991
Quddus, M.A., Noland, R.B., Chin, H.C.: An analysis of motorcycle injury and vehicle damage severity using ordered probit models, Journal of Safety Research, Vol. 33, No. 4, 2002, pp. 445-462
Este A., Gringoli F., Salgarelli L.: Support Vector Machines for TCP traffic classification, Computer Networks, Vol. 53, 2009, pp. 2476-2490
Anguita, D., Boni, A., Ridella, S.: Evaluating the Generalization Ability of Support Vector Machines through the Bootstrap, Neural Processing Letters, Vol. 11, 2000, pp. 51-58
Sung, K., Poggio, T.: Example-based learning for view-based human face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 1, 1998, pp. 39-50
Vapnik, V.: The Nature of Statistical Learning Theory, Springer Verlag, New York, 1995
Li, Y.M., Gong S.G., Liddell, H.M.: Support Vector Regression and Classification Based Multi-view Face Detection and Recognition, IEEE International Conference on Automatic Face and Gesture Recognition, 2000, pp. 300-305
Dong, B., Cao, C., Lee, S.E.: Applying Support Vector Machines to Predict Building Energy Consumption in Tropical Region, Energy and Buildings, Vol. 37, No. 5, 2005, pp. 545-553
Yao, B.Z., Yang, C.Y., Yao, J.B., Sun, J.: Tunnel Surrounding Rock Displacement Prediction Using Support Vector Machine, International Journal of Computational Intelligence Systems, Vol. 3, No. 6, 2010, pp. 843-852
Yao, J.B., Yao, B.Z., Li, L., Jiang, Y.L.: Hybrid model for displacement prediction of tunnel surrounding rock, Neural network world, Vol. 22, 2012, pp. 263-275
Yu, B., Yang, Z.Z., Yao, B.Z.: Bus Arrival Time Prediction Using Support Vector Machines, Journal of Intelligent Transportation Systems, Vol. 10, No. 4, 2006, pp. 151-158
Anastasopoulos, P., Islam, M., Perperidou, D., Karlaftis, M.: Hazard-based analysis of travel distance in urban environments: longitudinal data approach, Journal of Urban Planning and Development, Vol. 138, No. 1, 2012, pp. 53-61
Yu, B., William H.K.L., Mei, L.T.: Bus Arrival Time Prediction at Bus Stop with Multiple Routes, Transportation Research Part C, Vol. 19, No. 6, 2011, pp. 1157-1170
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).