A Multi-Level Risk Framework for Driving Safety Assessment Based on Vehicle Trajectory
Abstract
Few existing research studies have explored the re-lationship of road section level, local area level and ve-hicle level risks within the highway traffic safety system, which can be important to the formation of an effective risk event prediction. This paper proposes a framework of multi-level risks described by a set of carefully select-ed or designed indicators. The interrelationship among these latent multi-level risks and their observable indica-tors are explored based on vehicle trajectory data using the structural equation model (SEM). The results show that there exists significant positive correlation between the latent risk constructs that each have adequate con-vergent validity, and it is difficult to completely separate the local traffic level risk from both the road section level risk and vehicle level risk. The local and road level in-dicators are also found to be of more importance when risk prediction time gets earlier based on feature impor-tance scoring of the LightGBM. The proposed conceptual multi-level indicator based latent risk framework gener-ally fits with the observed results and emphasises the im-portance of including multi-level indicators for risk event prediction in the future.
References
World Health Organization. Road Traffic Injuries. 2021. http://www.who.int/mediacentre/factsheets/fs358/en/.
Shunying Z, et al. Review of research on traffic conflict techniques. China Journal of Highway and Transport. 2020;33(2): 15-33.
Wang X, et al. Effect of daily car-following behaviors on urban roadway rear-end crashes and near-crashes: A naturalistic driving study. Accident Analysis and Prevention. 2022;164(November 2021): 106502. doi: 10.1016/j.aap.2021.106502.
Chen S, et al. Risky driving behavior recognition based on vehicle trajectory. International Journal of Environmental Research and Public Health. 2021;18(23). doi: 10.3390/ijerph182312373.
Bastos JT, et al. Naturalistic driving study in Brazil: An analysis of mobile phone use behavior while driving. International Journal of Environmental Research and Public Health. 2020;17(17): 1-14. doi: 10.3390/ijerph17176412.
Mahmud SMS et al. Application of proximal surrogate indicators for safety evaluation: A review of recent developments and research needs. IATSS Research. 2017;41(4): 153-163. doi: 10.1016/j.iatssr.2017.02.001.
Wang C, et al. A review of surrogate safety measures and their applications in connected and automated vehicles safety modeling. Accident Analysis and Prevention. 2021;157(May): 106157. doi: 10.1016/j.aap.2021.106157.
Hayward JC. Near-miss determination through use of a scale of danger. Highway Research Record. 1972;384: 24-34.
Michael PG, Leeming FC, Dwyer WO. Headway on urban streets: Observational data and an intervention to decrease tailgating. Transportation Research Part F: Traffic Psychology and Behaviour. 2000;3(2): 55-64. doi: 10.1016/S1369-8478(00)00015-2.
Allen BL, Shin BT, Cooper PJ. Analysis of traffic conflicts and collisions. Transportation Research Record. 1978;(667): 67-74.
Astarita V, et al. A new microsimulation model for the evaluation of traffic safety performances. Trasporti Europei. 2012;(51): 16.
Van Beinum A, et al. Critical assessment of methodologies for operations and safety evaluations of freeway turbulence. Transportation Research Record. 2016;(2556): 39-48.
Almqvist S, Hyden C, Risser R. Use of speed limiters in cars for increased safety and a better environment. Transportation Research Record. 1991;(1318): 34-39.
Park H, et al. Development of a lane change risk index using vehicle trajectory data. Accident Analysis and Prevention. 2018;110(October 2017): 1-8. doi: 10.1016/j.aap.2017.10.015.
Chen Q, et al. Modeling accident risks in different lane-changing behavioral patterns. Analytic Methods in Accident Research. 2021;30. doi: 10.1016/j.amar.2021.100159.
Jiang R, et al. Determining an improved traffic conflict indicator for highway safety estimation based on vehicle trajectory data. Sustainability. 2021;13(16). doi: 10.3390/su13169278.
Yang D, et al. Fusing crash data and surrogate safety measures for safety assessment: Development of a structural equation model with conditional autoregressive spatial effect and random parameters. Accident Analysis and Prevention. 2021;152. doi: 10.1016/j.aap.2021.105971.
Orsini F, et al. Large-scale road safety evaluation using extreme value theory. IET Intelligent Transport Systems. 2020;14(9): 1004-1012. doi: 10.1049/iet-its.2019.0633.
Yue Z, et al. Detecting unsafe driving patterns using discriminative learning. Proceedings of the 2007 IEEE International Conference on Multimedia and Expo, ICME 2007. 2007: p. 1431-1434. doi: 10.1109/ICME.2007.4284929.
Ning H, et al. A general framework to detect unsafe system states from multisensor data stream. IEEE Transactions on Intelligent Transportation Systems. 2010;11(1): 4-15. doi: 10.1109/TITS.2009.2026446.
Lee D, Yeo H. Real-time rear-end collision-warning system using a multilayer perceptron neural network. IEEE Transactions on Intelligent Transportation Systems. 2016;17(11): 3087-3097. doi: 10.1109/TITS.2016.2537878.
Fu Y, et al. Graded warning for rear-end collision: An artificial intelligence-aided algorithm. IEEE Transactions on Intelligent Transportation Systems. 2020;21(2): 565-579. doi: 10.1109/TITS.2019.2897687.
Yu R, Han L, Zhang H. Trajectory data based freeway high-risk events prediction and its influencing factors analyses. Accident Analysis & Prevention. 2021;154: 106085. doi: 10.1016/J.AAP.2021.106085.
Hu Y, et al. A high-resolution trajectory data driven method for real-time evaluation of traffic safety. Accident Analysis & Prevention. 2021;165. doi: 10.1016/j.aap.2021.106503.
Chen Q, et al. Using vehicular trajectory data to explore risky factors and unobserved heterogeneity during lane-changing. Accident Analysis & Prevention. 2021;151(July 2020). doi: 10.1016/j.aap.2020.105871.
Bollen KA. Structural Equations with Latent Variables. 2014. doi: 10.1002/9781118619179.
Liang M, et al. Learning lane graph representations for motion forecasting. In: Vedaldi A, Bischof H, Brox T, Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12347. Springer, Cham; 2020; p. 541-556. doi: 10.1007/978-3-030-58536-5_32.
Li Y, Chen Y. Driver vision based perception-response time prediction and assistance model on mountain highway curve. International Journal of Environmental Research and Public Health. 2016;14(1): 31. doi: 10.3390/IJERPH14010031.
Kemper A. Complex networks theory. Contributions to Management Science. 2010. p. 135-157. doi: 10.1007/978-3-7908-2367-7_10.
Hu H, et al. Cost-sensitive semi-supervised deep learning to assess driving risk by application of naturalistic vehicle trajectories. Expert Systems with Applications. 2021;178(April): 115041. doi: 10.1016/j.eswa.2021.115041.
Shannon CE. A Mathematical theory of communication. Bell System Technical Journal. 1948;27(3): 379-423. doi: 10.1002/J.1538-7305.1948.TB01338.X.
Javid MA, et al. Structural equation modeling of drivers’ speeding behavior in Lahore: Importance of attitudes, personality traits, behavioral control, and traffic awareness. Iranian Journal of Science and Technology - Transactions of Civil Engineering. 2022;46(2): 1607-1619. doi: 10.1007/S40996-021-00672-1/FIGURES/1.
Hau J, Wen Z, Cheng Z. Structural equation models and their applications (Rev. ed.). Beijing: Educational Science Publishing House; 2021. p. 29-60.
Fornell C, Larcker DF. Evaluating structural equation models with unobservable variables. Journal of Marketing Research. 1981;XVIII(February): 39-50.
Krajewski R, et al. The highD dataset: A drone dataset of naturalistic vehicle trajectories on german highways for validation of highly automated driving systems. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC. 2018;2018-November: 2118-2125. doi: 10.1109/ITSC.2018.8569552.
The highway drone (highD) dataset. RWTH Aachen University; 2018. https://www.highd-dataset.com.
Thakkar JJ. Applications of structural equation modelling with AMOS 21, IBM SPSS. Studies in Systems, Decision and Control. 2020;285: 35-89. doi: 10.1007/978-981-15-3793-6_4/FIGURES/55.
Morgan BJT, McNicol D, Freeman PR. A primer of signal detection theory. The Statistician. 1976;25(3): 231. doi: 10.2307/2987842.
Copyright (c) 2022 Xiaoxia Xiong, Yu He, Xiang Gao, Yeling Zhao
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).