Fully Immersive Virtual Reality in Logistics Modelling and Simulation Education
Abstract
With the increasing development and popularisation of information and communication technology, new challenges are posed to higher education in the modernisation of teaching in order to make education and training of students as effective as possible. It is therefore very important to develop and experiment with appropriate development tools, explore their benefits and effectiveness, and integrate them into existing learning strategies. The emergence of a computer-generated digital environment that can be directly experienced, actions that can determine what is happening in it, growth of technological characteristics, and decline in prices of virtual reality hardware leads to a situation that cannot be ignored. This paper investigated users' perceptions on the potential use of fully immersive virtual reality head-mounted displays in a discrete-event simulation of logistics processes. The dynamic nature of virtual environments requires active participation which causes greater engagement, motivation, and interest aided by interaction and challenges.
References
Robertson GG, Card SK, Mackinlay J. Three views of virtual reality: Nonimmersive virtual reality. Computer. 1993;26(2): 81. DOI: 10.1109/2.192002
Cruz-Neira C, et al. The CAVE: Audio Visual Experience Automatic Virtual Environment. Communications of the ACM. 1992;35(6): 65-72. DOI: 10.1145/129888.129892
Freina L, Ott M. A literature review on immersive virtual reality in education: State of the art and perspectives. Proceedings of the 11th International Scientific Conference eLearning and Software for Education (eLSE), 23-24, April 2015, Bucharest, Romania; 2015. p. 8. DOI: 10.12753/2066-026X-15-020
Kumar V, Gulati S, Deka B, Sarma H. Teaching and Learning Crystal structures through Virtual Reality based systems. Advanced Engineering Informatics. 2021;50: 101362. DOI: 10.1016/j.aei.2021.101362
Duarte ML, Santos LR, Guimarães Júnior JB, Peccin MS. Learning anatomy by virtual reality and augmented reality. A scope review. Morphologie. 2020;104(347): 254-266. DOI: 10.1016/j.morpho.2020.08.004
Bernardo A. Virtual Reality and Simulation in Neurosurgical Training. World Neurosurgery. 2017;106: 1015-1029. DOI: 10.1016/j.wneu.2017.06.140
Arrighi G, Siang See Z, Jones D. Victoria Theatre virtual reality: A digital heritage case study and user experience design. Digital Applications in Archaeology and Cultural Heritage. 2021;21: e00176. DOI: 10.1016/j.daach.2021.e00176
Xu Z, et al. A virtual reality based fire training simulator with smoke hazard assessment capacity. Advances in Engineering Software. 2014;68: 1-8. DOI: 10.1016/j.advengsoft.2013.10.004
Morélot S, Garrigou A, Dedieu J, N'Kaoua B. Virtual reality for fire safety training: Influence of immersion and sense of presence on conceptual and procedural acquisition. Computers & Education. 2021;166: 104145. DOI: 10.1016/j.advengsoft.2013.10.004
Kind S, et al. Haptic Interaction in Virtual Reality Environments for Manual Assembly Validation. Procedia CIRP. 2020;91: 802-807. DOI: 10.1016/j.procir.2020.02.238
Bellalouna F. New Approach for Industrial Training Using Virtual Reality Technology. Procedia CIRP. 2020;93: 262-267. DOI: 10.1016/j.procir.2020.03.008
Kulik JA. Meta-analytic studies of findings on computer-based instruction. In: Baker EL, O'Neil HF Jr. (eds.) Technology assessment in education and training. Lawrence Erlbaum Associates, Inc.; 1994. p. 9-33. DOI: 10.1037/0003-066x.34.4.307
Wenzel S, Jessen U. The integration of 3-D visualization into the simulation-based planning process of logistics systems. Simulation. 2001;77(3-4): 114-127. DOI: 10.1177/003754970107700304
Korošec P, Bole U, Papa G. A multi-objective approach to the application of real-world production scheduling. Expert Systems with Applications. 2013;40(15). DOI: 10.1016/j.eswa.2013.05.035
Mujber TS, Szecsi T, Hashmi MS. Virtual reality applications in manufacturing process simulation. Journal of Materials Processing Technology. 2004;155(1): 1834-1838. DOI: 10.1016/j.jmatprotec.2004.04.401
Akpan IJ, Shanker M. A comparative evaluation of the effectiveness of virtual reality, 3D visualization and 2D visual interactive simulation: An exploratory meta-analysis. Simulation. 2019;95(2): 145-170. DOI: 10.1177/0037549718757039
Sutherland IE. The ultimate display. In: Proceedings of the IFIP Congress; 1965. p. 506-508. DOI: 10.1145/1461551.1461591
Sutherland IE. A head-mounted three dimensional display. In: Proceedings of AFIPS, 9-11 Dec. 1968, San Francisco, California, USA. New York: Association for Computing Machinery; 1968. p. 757-764. DOI: 10.1145/1476589.1476686
Howlett EM. Wide angle color photography method and system. US4406532 (Patent), 1983.
NASA. The Virtual Interface Environment Workstation (VIEW). Available from: https://www.nasa.gov/ames/spinoff/new_continent_of_ideas [Accessed 12th May 2021].
Pantelidis VS. Virtual reality in the classroom. Educational Technology. 1993;33(4): 23-7. DOI: 10.1002/(SICI)1099-0542
Bagheri R. Virtual Reality: The Real Life Consequences. UC Davis Business Law Journal. 2016;17: 17-101. Available from: https://blj.ucdavis.edu/archives/vol-17-no-1/BLJ-17.1-Bagheri.pdf
Kushner D. Virtual reality’s moment. IEEE Spectrum. 2014;51(1): 34-37. DOI: 10.1109/MSPEC.2014.6701429
Profatilov DA, Bykova ON, Olkhovskaya MO. Crowdfunding: Online charity or a modern tool for innovative projects implementation?. Asian Social Science. 2014;11(3): 146-151. DOI: 10.5539/ass.v11n3p146
Kumar BR. Major Acquisitions by Facebook. In: Wealth Creation in the World’s Largest Mergers and Acquisitions. Springer; 2019. p. 321-327. DOI: 10.1007/978-3-030-02363-8_39
Goradia I, Doshi J, Kurup L. A review paper on Oculus Rift & Project Morpheus. International Journal of Current Engineering and Technology. 2014;4(5): 3196-200. DOI: 10.1.1.1070.2246
Dempsey P. The teardown: HTC Vive VR headset. Engineering & Technology. 2016;11(7-8): 80-81. DOI: 10.1049/et.2016.0731
Angelov V, Petkov E, Shipkovenski G, Kalushkov T. Modern virtual reality headsets. 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), 26-28 June 2020, Ankara, Turkey. IEEE; 2020. DOI: 10.1109/HORA49412.2020.9152604
Nakano K, et al. Head-mounted display with increased downward field of view improves presence and sense of self-location. IEEE Transactions on Visualization & Computer Graphics. 2021;27(11): 4204-14. DOI: 10.1109/TVCG.2021.3106513
Fink A. Survey Research Methods. International Encyclopaedia of Education. 3rd ed. 2010. p. 152-160. DOI: 10.1016/B978-0-08-044894-7.00296-7
Baker JD. Online survey software. In: Bocarnea MC, Reynolds RA, Baker JD. (eds.) Online instruments, data collection, and electronic measurements: Organizational advancements. IGI Global; 2013. p. 328-334. DOI: 10.4018/978-1-4666-2172-5
Beaverstock M, et al. Applied simulation: Modeling & analysis using Flexsim. 5th ed. Flexsim Software Products Inc.; 2017.
Akpan IJ, Brooks RJ. Users’ perceptions of the relative costs and benefits of 2D and 3D visual displays in discrete event simulation. Simulation. 2012;88(4): 464-480. DOI: 10.1177/0037549711423734
Copyright (c) 2021 Dario Ogrizović, Ana Perić Hadžić, Mladen Jardas
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).