Spatial Econometric Cross-Border Traffic Analysis for Passenger Cars – Hungarian Experience

  • Tibor Sipos Budapest University of Technology and Economics, Faculty of Transportation Engineering and Vehicle Engineering
  • Zsombor Szabó Budapest University of Technology and Economics, Faculty of Transportation Engineering and Vehicle Engineering
  • Árpád Török Budapest University of Technology and Economics, Faculty of Transportation Engineering and Vehicle Engineering
Keywords: transportation geography, spatial econometrics, separation effect, cross-border traffic

Abstract

The role of cross-border commuting needs is remarkable, given that large cross-border cities tend to have high traffic attractiveness. Thus, agglomeration effects are strongly prevalent in populous settlements close to the border. This is due to the fact that both Hungary and the neighboring countries are burdened by spatial inequalities; therefore, the traffic at the individual border crossing points is unbalanced. Our aim is to show the extent to which the introduction of certain public transport modes contributes to the reduction of cross-border passenger car traffic. In order to do this, we have to set up a spatial econometric model that can simultaneously handle the parallel public transport infrastructure, the cross-border attractiveness of border cities, and the impact of spatial inequalities. The results of the research shed light on how the introduction of each means of transport contributes to increasing the competitiveness of border regions. This will demonstrate the effectiveness of policy tools that can improve the competitiveness of a given macroregion.

References

Szabó Z, Sipos T, Török Á. Spatial Econometric Analysis of the Hungarian Border Crossings. MATEC Web of Conferences. 2017;134: 00057. DOI: 10.1051/matecconf/201713400057 [Accessed 11th July 2018].

Szabó Z, Török Á. Tranzitforgalmak Magyarországon: Egy térökonometriai elemzés. In: Horváth B, Horváth G, Gaál B. (eds.) Proceedings of the 8th Conference on Transport Sciences, 22 - 23 March 2018, Győr, Hungary. 2018. p. 201-212. Hungarian.

Maghrour Zefreh M, Török Á, Mészáros F. Average Vehicles Length in Two-lane Urban Roads: A Case Study in Budapest. Periodica Polytechnica Transportation Engineering. 2017;45(4): 218–222. DOI: 10.3311/PPtr.10744 [Accessed 22nd Feb 2019].

Meyer MD, Miller EJ. Urban Transportation Planning. 2nd ed. New York, NY: McGraw-Hill; 2000.

Opasanon S, Kitthamkesorn S. Border crossing design in light of the ASEAN Economic Community: Simulation based approach. Transport Policy. 2016;48: 1–12. DOI: 10.1016/j.tranpol.2016.02.009 [Accessed 11th July 2018].

Bradbury SL. The impact of security on travelers across the Canada–US border. Journal of Transport Geography. 2013;26: 139–46. DOI: 10.1016/j.jtrangeo.2012.08.009 [Accessed 11th July 2018].

Maoh HF, Khan SA, Anderson WP. Truck movement across the Canada–US border: The effects of 9/11 and other factors. Journal of Transport Geography. 2016;53: 12–21. DOI: 10.1016/j.jtrangeo.2016.04.002 [Accessed 11th July 2018].

Burt M. Tighter Border Security and Its Effect on Canadian Exports. Canadian Public Policy / Analyse de Politiques. 2009;35(2): 149–169.

Anderson WP, Maoh HF, Burke CM. Passenger car flows across the Canada–US border: The effect of 9/11. Transport Policy. 2014;35: 50–56. DOI: 10.1016/j.tranpol.2014.05.005 [Accessed 27th Nov 2018].

Burke CM. A comparative analysis of cross border travel influences at the port level: Pacific Highway/Douglas, B.C. — Blaine, WA and Windsor, ON — Detroit, MI. Research in Transportation Business & Management. 2015;16: 95–101. DOI: 10.1016/j.rtbm.2015.07.001 [Accessed 11th July 2018].

A. Abd M, Al Rubeaai SF, Salimpour S, Azab A. Evolutionary game theoretical approach for equilibrium of cross-border traffic. Transportmetrica B: Transport Dynamics. 2019;7(1): 1611–1626. DOI: 10.1080/21680566.2019.1670116 [Accessed 18th Jul 2020].

Sener IN, Lorenzini KM, Aldrete RM. A synthesis on cross-border travel: Focus on El Paso, Texas, retail sales, and pedestrian travel. Research in Transportation Business & Management. 2015;16: 102–111. DOI: 10.1016/j.rtbm.2015.05.002 [Accessed 11th July 2018].

Niebuhr A. The Impact of EU Enlargement on European Border Regions. Hamburg Institute of International Economics. HWWA Discussion Paper No. 330, 2005.

Tagai G, Pénzes J, Molnár E. Methods of the analysis of integration effect on border areas – The case of Hungary. Eurolimes - Journal of the Institute for Euroregional Studies. 2008;6: 150–160.

Condeço-Melhorado A, Christidis P. Road Accessibility in Border Regions: A Joint Approach. Networks and Spatial Economics 2018;18(2): 363–383. DOI: 10.1007/s11067-017-9362-1 [Accessed 25th Mar 2019].

Moran PAP. Some Theorems on Time Series: II The Significance of the Serial Correlation Coefficient. Biometrika. 1948;35(3/4): 255–260. DOI: 10.2307/2332344 [Accessed 11th July 2018].

Park J, Kwon C, Son M. Economic implications of the Canada–U.S. border bridges: Applying a binational local economic model for international freight movements. Research in Transportation Business & Management. 2014;11: 123–133. DOI: 10.1016/j.rtbm.2014.06.003 [Accessed 11th July 2018].

Ord K. Estimation Methods for Models of Spatial Interaction. Journal of the American Statistical Association. 1975;70(349): 120–126. DOI: 10.2307/2285387 [Accessed 11th July 2018].

LeSage JP, Fischer MM. Spatial econometric methods for modeling origin destination flows. WU Vienna University of Economic and Business, Vienna. 2008. Available from: http://epub.wu.ac.at/3957/ [Accessed 29th Jan 2019].

LeSage JP, Peace RK (eds.) Spatial and Spatiotemporal Econometrics. New York, NY: JAI Press; 2004. DOI: 10.1016/S0731-9053(04)18013-4 [Accessed 29th Jan 2019].

LeSage JP, Polasek W. Incorporating Transportation Network Structure in Spatial Econometric Models of Commodity Flows. Institute for Advanced Studies (IHS), Wien, Austria. Report number: 188, 2006. Available from: http://hdl.handle.net/10419/72305 [Accessed 29th Jan 2019].

Arliansyah J, Taruna A, Rhaptyalyani, Kurnia AY. Needs Analysis of the Bridge Infrastructures Crossing over the Musi River of Palembang. Procedia Engineering. 2015;125: 438–444. DOI: 10.1016/j.proeng.2015.11.115 [Accessed 11th July 2018].

Gumz F, Török Á. Investigation of Cordon Pricing in Budakeszi. Periodica Polytechnica Transportation Engineering. 2015;43(2): 92–97. DOI: 10.3311/PPtr.7579 [Accessed 25th Feb 2019].

Anselin L. Spatial Econometrics: Methods and Models. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1988.

Varga A. Térökonometria. Statisztikai szemle. 2002;80(4): 354–370. Hungarian.

Sarmiento-Barbieri I. An Introduction to Spatial Econometrics in R. In: Ninth Annual Midwest Graduate Student Summit on Applied Economics, Regional, and Urban Studies (AERUS), 23-24 April 2016, Urbana-Champaign IL. 2016. Available from: http://www.econ.uiuc.edu/~lab/workshop/Spatial_in_R.html [Accessed 11th July 2018].

Szabó Z, Török Á. Spatial Econometrics – Usage in Transportation Sciences: A Review Article. Periodica Polytechnica Transportation Engineering. 2019;48(2): 143–149. DOI: 10.3311/PPtr.12047 [Accessed 30th May 2019].

Anselin L, Bera AK, Florax R, Yoon MJ. Simple diagnostic tests for spatial dependence. Regional Science and Urban Economics. 1996;26: 77–104. DOI: 10.1016/0166-0462(95)02111-6 [Accessed 10th Feb 2019].

Bivand RS. Spatial Dependence: Weighting Schemes, Statistics and Models. Bergen, Norway: Norges Handelshøyskole; 2017.

Bivand RS, Hauke J, Kossowski T. Computing the Jacobian in Gaussian spatial autoregressive models: An illustrated comparison of available methods. Geographical Analysis. 2013;45(2): 150–179.

Bivand RS, Piras G. Comparing Implementations of Estimation Methods for Spatial Econometrics. Journal of Statistical Software. 2015;63(18): 1–36.

R Core Team. A language and environment for statistical computing. Wien, Austria: R Foundation for Statistical Computing; 2017.

Szabó Z, Török Á. Magyarország határátkelőinek térökonometriai elemzése [Evaluating the Hungarian Border Crossings from Spatial Econometric Point of View]. Közlekedéstudományi Szemle. 2018;68(4): 46–60. DOI: 10.24228/KTSZ.2018.4.4 [Accessed 13th Sep 2018]. Hungarian.

One Planet Mérnökiroda Kft. Az országos közutak 2015. évre vonatkozó keresztmetszeti forgalma. Budapest, Hungary: Magyar Közút Nonprofit Zrt.; 2016. Available from: https://internet.kozut.hu/kozerdeku-adatok/orszagos-kozuti-adatbank/forgalomszamlalas/ [Accessed 10th Dec 2020]. Hungarian.

Slovenská správa ciest. Celoštátne Sčítanie Dopravy v Roku 2015. Bratislava, Slovakia: Slovenská správa ciest; 2016. Available from: http://www.ssc.sk/sk/cinnosti/rozvoj-cestnej-siete/dopravne-inzinierstvo/celostatne-scitanie-dopravy-v-roku-2015.ssc [Accessed 8th Nov 2018]. Slovakian.

Hungartan Central Statistical Office. Detailed Gazetteer of Hungary. Budapest, Hungary: Hungartan Central Statistical Office; 2018. Available from: https://www.ksh.hu/apps/hntr.main [Accessed 8th Nov 2018].

Danis J, Dolinayova A, Cerna L, Zitricky V. Impact of the Economic Situation in the Slovak Republic on Performances of Railway Transport. Periodica Polytechnica Transportation Engineering. 2018;47(2): 118–123. DOI: 10.3311/PPtr.11185 [Accessed 29th May 2020].

Lakatos A, Mándoki P. Sustainability Analysis of Competition in Public Transport Systems: A Comparative Case Study in Hungary and Finland. Periodica Polytechnica Civil Engineering. 2020;64(2): 545–556. DOI: 10.3311/PPci.14824 [Accessed 2nd June 2020].

Pupavac D, Maršanić R, Krpan L. Elasticity of Demand in Urban Traffic Case Study: City of Rijeka. Periodica Polytechnica Transportation Engineering. 2019;48(2): 173–179. DOI: 10.3311/PPtr.11750 [Accessed 29th May 2020].

Saif MA, Zefreh MM, Torok A. Public Transport Accessibility: A Literature Review. Periodica Polytechnica Transportation Engineering. 2019;47(1): 36–43. DOI: 10.3311/PPtr.12072 [Accessed 6th Mar 2019].

Lakatos A, Mándoki P. Analytical, Logit Model-based Examination of the Hungarian Regional Parallel Public Transport System. Promet – Traffic&Transportation. 2020;32(3): 361–369. Available from: https://traffic.fpz.hr/index.php/PROMTT/article/view/3307 [Accessed: 18th Jun 2020].

Stępniak M, Rosik P. The Role of Transport and Population Components in Change in Accessibility: The Influence of the Distance Decay Parameter. Networks and Spatial Economics. 2018;18(2): 291–312. DOI: 10.1007/s11067-017-9376-8 [Accessed 25th Mar 2019].

Hagget P, (ed.) Geography. A Global Synthesis. Harlow, UK: Pearson Education Limited; 2001.

Limão N, Venables AJ. Infrastructure, Geographical Disadvantage, Transport Costs, and Trade. The World Bank Economic Review. 2001;15(3): 451–479.

Chita E, Drimili E, Gareiou Z, Milioti C, Vranna A, Poulopoulos S, Zervas E. Impact of Economic Crisis on Passenger Transportation – Case of Travelling to the Greek Mainland from Crete. Promet – Traffic&Transportation. 2020;32(3): 347–360. DOI: 10.7307/ptt.v32i3.3255 [Accessed 18th June 2020].

Auerbach F. Das Gesetz der Bevölkerungskonzentration. Petermanns Geographische Mitteilungen. 1913;59: 74–76. German.

Maddala GS. Introduction to Econometrics. 3rd ed. Chichester, UK: John Wiley&Sons Ltd; 2001.

Ušpalytė-Vitkūnienė R, Šarkienė E, Žilionienė D. Multi-criteria Analysis of Indicators of the Public Transport Infrastructure. Promet – Traffic&Transportation. 2020;32(1): 119–126. DOI: 10.7307/ptt.v32i1.3175 [Accessed 18th June 2020].

Popović VD, Gladović P, Miličić M, Stanković M. Methodology of Selecting Optimal Fare System for Public Transport of Passengers. Promet – Traffic&Transportation. 2018;30(5): 539–547. DOI: 10.7307/ptt.v30i5.2538 [Accessed 18th June 2020].

Published
2021-03-31
How to Cite
1.
Sipos T, Szabó Z, Török Árpád. Spatial Econometric Cross-Border Traffic Analysis for Passenger Cars – Hungarian Experience. Promet [Internet]. 2021Mar.31 [cited 2024Apr.20];33(2):233-46. Available from: https://traffic.fpz.hr/index.php/PROMTT/article/view/3641
Section
Articles