Hierarchical Passenger Hub Location Problem in a Megaregion Area Considering Service Availability
Abstract
The rapid growth of the intercity travel demand has resulted in enormous pressure on the passenger transportation network in a megaregion area. Optimally locating hubs and allocating demands to hubs influence the effectiveness of a passenger transportation network. This study develops a hierarchical passenger hub location model considering the service availability of hierarchical hubs. A mixed integer linear programming formulation was developed to minimize the total cost of hub operation and transportation for multiple travel demands and determine the proportion of passengers that access hubs at each level. This model was implemented for the Wuhan metropolitan area in four different scenarios to illustrate the applicability of the model. Then, a sensitivity analysis was performed to assess the impact of changing key parameters on the model results. The results are compared to those of traditional models, and the findings demonstrate the importance of considering hub choice behavior in demand allocation.
References
Wang J, Huang J, Jing Y. Competition between high-speed trains and air travel in China: From a spatial to spatiotemporal perspective. Transportation Research Part A: Policy and Practice. 2020;133: 62-78. DOI: 10.1016/j.tra.2019.12.030
Li H, Wang K, Yu K, et al. Are conventional train passengers underserved after entry of high-speed rail?-evidence from Chinese intercity markets. Transport Policy. 2020;95: 1-9. DOI: 10.1016/j.tranpol.2020.05.017
D’Alfonso T, Jiang C, Bracaglia V. Would competition between air transport and high-speed rail benefit environment and social welfare?. Transportation Research Part B: Methodological. 2015;74: 118-137. DOI: 10.1016/j.trb.2015.01.007
Pašagić Škrinjar J, Rogić K, Stanković R. Location of Urban Logistic Terminals as Hub Location Problem. Promet – Traffic&Transportation. 2012;24(5): 433-440. DOI: 10.7307/ptt.v24i5.1179
Kim J-H, Soh S. Designing Hub-and-Spoke School Bus Transportation Network: A Case Study of Wonkwang University. Promet – Traffic&Transportation. 2012;24(5): 389-394. DOI: 10.7307/ptt.v24i5.1174
Šarac D, Kopić M, Mostarac K, Kujačić M, Jovanović B. Application of Set Covering Location Problem for Organizing the Public Postal Network. Promet – Traffic&Transportation. 2016;28(4): 403-413. DOI: 10.7307/ptt.v28i4.1962
O‘Kelly ME. The Location of Interacting Hub Facilities. Transportation Science. 1986;20(2): 92-106. DOI: 10.1287/trsc.20.2.92
O‘Kelly ME. A Quadratic Integer Program for the Location of Interacting Hub Facilities. European Journal of Operational Research. 1987;32(3): 393-404. DOI: 10.1016/S0377-2217(87)80007-3
Campbell JF. Hub Location and the p–hub Median Problem. Operations Research. 1996;44(6): 923-935. DOI: 10.1287/opre.44.6.923
Campbell JF. Integer Programming Formulations of Discrete Hub Location Problem. European Journal of Operational Research. 1994;72(2): 387-405. DOI: 10.1016/0377-2217(94)90318-2
Costa MG, Captivo ME, Clímaco J. Capacitated Single Allocation Hub Location Problem—A Bi-criteria Approach. Computers & Operations Research. 2008;35(11): 3671-3695. DOI: 10.1016/j.cor.2007.04.005
Farahani RZ, Hekmatfar M, Arabani AB, Nikbakhsh E. Hub Location Problems: A Review of Models, Classification, Solution Techniques, and Applications. Computers Industrial Engineering. 2013;64(4): 1096-1109. DOI: 10.1016/j.cie.2013.01.012
Flynn J, Ratick S. A Multiobjective Hierarchical Covering Model for the Essential Air Services Program. Transportation Science. 1988;22(2): 139-147. DOI: 10.1287/trsc.22.2.139
Current JR. The Design of a Hierarchical Transportation Network with Transshipment Facilities. Transportation Science. 1988;22(4): 270-277. DOI: 10.1287/trsc.22.4.270
O‘Kelly ME, Lao Y. Mode Choice in a Hub-and-Spoke Network: A Zero–One Linear Programming Approach. Geographical Analysis. 1991;23(4): 283-297. DOI: 10.1111/j.1538-4632.1991.tb00240.x
Arnold P, Peeters D, Thomas I. Modelling a Rail/Road Intermodal Transportation System. Transportation Research Part E: Logistics and Transportation Review. 2004;40(3): 255-270. DOI: 10.1016/j.tre.2003.08.005
Yu J, Liu Y, Chang GL, Ma WJ, Yang XG. Cluster-Based Hierarchical Model for Urban Transit Hub Location Planning: Formulation, Solution, and Case Study. Transportation Research Record. 2009;2112(1): 8-16. DOI: 10.3141/2112-02
Narula SC. Hierarchical Location-Allocation Problems: A Classification Scheme. European Journal of Operational Research. 1984;15(1): 93-99. DOI: 10.1016/0377-2217(84)90052-3
Karimi M, Eydi AR, Korani E. Modeling of the Capacitated Single Allocation Hub Location Problem with a Hierarchical Approach. International Journal of Engineering. 2014;27(4): 573-586. DOI: 10.5829/idosi.ije.2014.27.04a.08
Li TT, Song R, He SW, Bi MK, Yin WC, Zhang YQ. Multiperiod Hierarchical Location Problem of Transit Hub in Urban Agglomeration Area. Mathematical Problems in Engineering. 2017. DOI: 10.1155/2017/7189060
Torkestani SS, Seyedhosseini SM, Makui A, Shahanaghi K. The Reliable Design of a Hierarchical Multi-modes Transportation Hub Location Problems (HMMTHLP) under Dynamic Network Disruption (DND). Computers Industrial Engineering. 2018;122: 39-86. DOI: 10.1016/j.cie.2018.05.027
Debrezion G, Pels E, Rietveld P. Modelling the Joint Access Mode and Railway Station Choice. Transportation Research Part E: Logistics and Transportation Review. 2009;45(1): 270-283. DOI: 10.1016/j.tre.2008.07.001
Wang S, Qu X. Station Choice for Australian Commuter Rail Lines: Equilibrium and Optimal Fare Design. European Journal of Operational Research. 2017;258(1): 144-154. DOI: 10.1016/j.ejor.2016.08.040
Aros–Vera F, Marianov V, Mitchell JE. P-hub Approach for the Optimal Park-and-Ride Facility Location Problem. European Journal of Operational Research. 2013;226(2): 277-285. DOI: 10.1016/j.ejor.2012.11.006
Lofberg J. YALMIP: A Toolbox for Modeling and optimization in MATLAB. In: Proceedings of 2004 IEEE International Conference on Robotics and Automation. New Orleans, LA; 2004. p. 284-289.
Huang HJ, Xia T, Tian Q, Liu TL, Wang C, Li D. Transportation Issues in Developing China's Urban Agglomerations. Transport Policy. 2020;85: A1-A22. DOI: 10.1016/j.tranpol.2019.09.007
Copyright (c) 2021 Huang Yan, Xiaoning Zhang, Xiaolei Wang
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).