Improved Ant Colony Optimization for Seafood Product Delivery Routing Problem
Abstract
This paper deals with a real-life vehicle delivery routing problem, which is a seafood product delivery routing problem. Considering the features of the seafood product delivery routing problem, this paper formulated this problem as a multi-depot open vehicle routing problem. Since the multi-depot open vehicle routing problem is a very complex problem, a method is used to reduce the complexity of the problem by changing the multi-depot open vehicle routing problem into an open vehicle routing problem with a dummy central depot in this paper. Then, ant colony optimization is used to solve the problem. To improve the performance of the algorithm, crossover operation and some adaptive strategies are used. Finally, the computational results for the benchmark problems of the multi-depot vehicle routing problem indicate that the proposed ant colony optimization is an effective method to solve the multi-depot vehicle routing problem. Furthermore, the computation results of the seafood product delivery problem from Dalian, China also suggest that the proposed ant colony optimization is feasible to solve the seafood product delivery routing problem.References
Jaffry, S., Pickering, H., Ghulam, Y., Whitmarsh, D., Wattage, P.: (2004); Consumer choices for quality and sustainability labelled seafood products in the UK. Food Policy 29(3):215–228
Guillotreau, P., Peridy, N.: (2000); Trade barriers and European imports of seafood products: a quantitative assessment. Marine Policy, 24(5):431-437
Salari, M., Toth, P., Tramontani, A.: (2010); An ILP improvement procedure for the Open Vehicle Routing Problem. Computers & Operations Research, 37(12):2106-2120.
Brandao, J.: (2004); A tabu search algorithm for the open vehicle routing problem. European Journal of Operational Research, 157(3):552-564
Renaud, J., Laporte, G., Boctor, F.F.: (1996); A Tabu Search Heuristic for the Multi-Depot Vehicle Routing Problem. Computers & Operations Research, 23(3):229-235
Yu, B., Yang, Z.Z., Xie, J.X.: (2011); A parallel improved ant colony optimization for multi-depot vehicle routing problem. Journal of the Operational Research Society, 62:183-188
Chen, G., Govindan, K., and Yang, Z.Z.: (2013); Managing truck arrivals with time windows to alleviate gate congestion at container terminals, International Journal of Production Economics, 141(1):179-188
Chen, G., Yang, Z.Z.: (2010); Optimizing Time Windows for Managing Arrivals of Export Container in Chinese Container Terminals, Maritime Economics & Logistics, 12(1):111-126
Yao, B.Z., Hu, P., Lu, X.H., Gao, J.J. Zhang, M.H.: (2013); Transit network design based on travel time reliability. Transportation Research Part C, DOI:10.1016/j.trc.2013.12.005(in press).
Yao B.Z., Hu, P., Zhang, M.H., Wang, S.: (2013); Artificial Bee Colony Algorithm with Scanning Strategy for Periodic Vehicle Routing Problem. SIMULATION: Transactions of the Society for Modeling and Simulation International. 89(6):762-770
Yao, B.Z., Yang, C.Y., Yao, J.B., Sun, J.: (2010); Tunnel Surrounding Rock Displacement Prediction Using Support Vector Machine. International Journal of Computational Intelligence Systems, 3(6): 843-852
Yu, B., Yang, Z.Z.: (2011); An ant colony optimization model: The period vehicle routing problem with time windows. Transportation Research Part E, 47(2):166-181
Yu, B., Lam, W.H.K., Lam, T.M.: (2011); Bus Arrival Time Prediction at Bus Stop with Multiple Routes. Transportation Research Part C, 19(6):1157-1170
Yu, B., Yang, Z.Z., LI, S.: (2012); Real-Time Partway Deadheading Strategy Based on Transit Service Reliability Assessment. Transportation Research Part A, 46(8):1265-1279
Yue, M., Zhang, Y.S., Tang, F.Y.: (2013); Path following control of a two-wheeled surveillance vehicle based on sliding mode technology. Transaction of the Institute of Measurement and Control, 35(2): 212-218
Repoussisa, P.P., Tarantilisa, C.D., Bräysyb, O., Ioannoua, G.: (2010); A hybrid evolution strategy for the open vehicle routing problem. Computers & Operations Research, 37(3):443-455
Mirabi, M., Fatemi Ghomib, S.M.T., Jolaic, F.: (2010); Efficient stochastic hybrid heuristics for the multi-depot vehicle routing problem. Robotics and Computer-Integrated Manufacturing, 26(6):564-569
Ho, W., Ho, G.T.S., Ji, P., Lau, H.C.W.: (2008); A hybrid genetic algorithm for the multi-depot vehicle routing problem. Engineering Applications of Artificial Intelligence, 21(4):548-557
Dorigo, M., Maniezzo, V., Colorni, A.: (1996); The Ant System: Optimization by a Colony of Cooperating Agents, IEEE Transactions on Systems, Mans, and Cybernetics 1 (26), 29-41
Gambardella, L., Taillard, E., Dorigo, M.: (1997); Ant Colonies for the QAP, Technical Report 97-4, IDSIA, Lugano, Switzerland
Colorni, A., Dorigo, M., Maniezzo, V., Trubian, M.: (1994): Ant System for Job-Shop Scheduling, Jorbel -Belgian Journal of Operations Research Statistics and Computer Science 34 (1), 39–53
Schoonderwoerd, R., Holland, O., Bruten, J., Rothkrantz, L.: (1997); Ant-Based Load Balancing in Telecommunications Networks, Adaptive Behavior 5 (2), 169-207
Yu, B., Yang, Z.Z., Yao, B.Z.: (2009); An Improved Ant Colony Optimization for Vehicle Routing Problem. European Journal of Operational Research, 196(1):171-176
Clarke, G., Wright, J.W.: (1964); Scheduling of Vehicles from a Central Depot to a Number of Delivery Points. Operations research, 12(4):568-581
Croes, G.A.: 1958, A method for solving traveling salesman problems. Operations Research, 6: 791–812.
Bullnheimer, B., Hartl, R.F., Strauss, C.: (1997); Applying the Ant System to the Vehicle Routing Problem, in: Second Metaheuristics International Conference, MIC’97, Sophia-Antipolis, France.
Bullnheimer, B., Hartl, R.F., Strauss, C.: (1999); An Improved Ant System Algorithm for the Vehicle Routing Problem. Annals of Operations Research, 89, 319–28
Bell, J.E., McMullen, P.R.: (2004); Ant Colony Optimization Techniques for the Vehicle Routing Problem. Advanced Engineering Informatics 1;8, 41-48
Chen, C.H., Ting, C.J.: (2006); An Improved Ant Colony System Algorithm For The Vehicle Routing Problem. Journal of the Chinese Institute of Industrial Engineers, 23(2):115-126
Stützle, T. and Hoos, H.H.: (2000); MAX–MIN ant system, Future Generation Computer Systems, 16(8): 889-914
Christofides, N. and Eilon, S.: (1969); An algorithm for the vehicle dispatching problem. Journal of the Operational Research Society, 20: 309–318
Gillett, B.E., Johnson, J.G.: (1976); Multi-terminal vehicle-dispatch algorithm. Omega, 4(6):711-718
Chao, M.I., Golden, B.L. and Wasil, E.A.: (1993). A new heuristic for the multi-depot vehicle routing problem that improves upon best known solutions. American Journal of Mathematical and Management Sciences, 13(3-4):371-406
Cordeau, J.F., Gendreau, M. and Laporte, G.: (1997). A tabu search heuristic for periodic and multi-depot vehicle routing problems. Networks, 30: 105–119
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).