The Colombian Strategic Freight Transport Model Based on Product Analysis
Abstract
Freight transport modelling at interregional scale is relevant for planning issues. However, freight modelling processes are complex because it is not easy to define the relevant variables in the analysis, and to obtain the required information on freight movements through the network. These facts raise the need to adapt the modelling framework to each context.This paper proposes a strategic national freight transport modelling framework developed as a variant of the traditional four-step modelling process with additional steps to estimate traffic flows from freight flows and to consider empty trips. The country of Colombia is used as the case study to implement and calibrate the proposed model. The data, data sources, and modelling methodologies used for each step are explained. In addition, data limitations and measures taken to complement the available data are discussed. From the implementation, the authors identify a set of advantages derived from the modelling approaches considered and suggestions for improvement.
References
Cambridge Systematics Inc. Quick Response Freight Manual. Final Report of the Federal Highway Administration. Cambridge Systematics, Inc; 1996.
Holguín-Veras J, Jaller M, Destro L, Ban X, Lawson C, Levinson H. Freight Generation, Freight Trip Generation, and the Perils of Using Constant Trip Rates. Transportation Research Record. 2011;2224:68-81.
Holguín-Veras J, Jaller M, Sánchez-Díaz I, Wojtowicz J, Campbell S, Levinson H, et al. NCHRP Report 739 / NCFRP Report 19: Freight Trip Generation and Land Use. Washington D.C.: Transportation Research Board of the National Academies; 2012. NCHRP Report 739/NCFRP Report 19.
Holguín-Veras J, Thorson E. Trip Length Distributions in Commodity-Based and Trip-Based Freight Demand Modelling: Investigation of Relationships. Transportation Research Record. 2000;1707:37-48.
Holguín-Veras J, Jaller M. Comprehensive Freight Demand Data Collection Framework for Large Urban Areas. In: González-Feliu J, Semet F, Routhier JL, editors. Sustainable Urban Logistics: Concepts, Methods and Information Systems. Berlin: Springer-Verlag; 2014.
Holguín-Veras J, Walton CM. Implementation of Priority Systems for Containers at Marine Intermodal Terminals. Transportation Research Record. 1997;1602:57-64.
Zamparini L, Reggiani A. Freight transport and the value of travel time savings: A meta analysis of empirical studies. Transport Reviews 2007;27:621-36.
U.S. Census Bureau. Vehicle Inventory and Use Survey. 2004. Contract No.: EC02TV-US.
Holguín-Veras J, Thorson E. Modelling Commercial Vehicle Empty Trips with a First Order Trip Chain Model. Transportation Research Part B. 2003;37(2):129-48.
Yang C, Regan A, Son Y. Another View of Freight Forecasting Modelling Trends. ASCE Journal of Civil Engineering. 2010;14:237-42.
Yang C, Son Y, Regan A. State of the Art of Freight Forecasting Modelling: Lessons Learned and the Road Ahead. Transportation. 2010;37:1011-30.
Ben-Akiva M, De Jong G. The Aggregate-Disaggregate-Aggregate (ADA) Freight Model System. Recent Developments. Ben-Akiva M. HMaEVdV, editor; 2008. 117-34 p.
Oficina de Planeación del Ministerio de Transporte, Cal y Mayor y Asociados S.C. Plan Estratégico de Transporte. Ministerio de Transporte; 2001.
Unión Temporal Modelación del Transporte - UTMT. Investigación para Desarrollar y Poner en Funcionamiento los Modelos de Demanda y de Oferta de Transporte que Permitan Proponer Opciones en Materia de Infraestructura para Aumentar la Competitividad de los Productos Colombianos. Bogotá, Colombia; 2009.
Holguín-Veras J, González-Calderón C, Sánchez-Díaz I, Jaller M, Campbell S. Vehicle-Trip Estimation Models. In: Lorant Tavasszy and Gerard de Jong, editor. Freight Transport Modelling. UK: Elsevier; 2013.
Holguín-Veras J, Jaller M, González-Calderón C, Sánchez-Díaz I, Campbell S. Freight Generation and Trip Generation Models. In: Lorant Tavasszy and Gerard de Jong, editor. Freight Transport Modelling. London UK, Waltham MA, USA: Elsevier; 2013.
Southworth F. Freight Transportation Planning: Models and Methods. Transportation Systems Planning: Method and Applications Part 1: Boca Raton FL: CRC Press LC; 2003.
Jong G, Gunn H, Walker W. National and International Freight Transport Models: Overview and Ideas for Future Development. Transport Reviews. 2004;23(1).
Holguin-Veras J, Sánchez-Díaz I, Lawson C, Jaller M, Campbell S, Levinson HS, et al. Transferability of Freight Trip Generation Models. Transport Research Record. 2013;2379:1-8.
Lawson C, Holguín-Veras J, Sánchez-Díaz I, Jaller M, Campbell S, Powers E. Estimated Generation of Freight Trips Based on Land Use. Transportation Research Record. 2012;2269:65-72.
Najaf P, Famili S. Application of an Intelligent Fuzzy Regression Algorithm in Road Freight Transportation Modelling. Promet-Traffic&Transportation. 2013;25(4):311-22.
Ortúzar JD, Willumsen LG. Modelling Transport. 4th ed. Chichester: John Wiley and Sons; 2011.
Raothanachonkun P, Sano K, Wisetjindawat W. Estimating Truck Trip Origin-Destination with Commodity-Based and Empty Trip Models. Transportation Research Record. 2007;2008:43-50.
Holguín-Veras J, Thorson E, Zorrilla JC. Commercial Vehicle Empty Trip Models with Variable Zero Order Empty Trip Probabilities. Networks and Spatial Economics. 2010;10:241-59.
Holguín-Veras J, Thorson E. Practical implications of Modelling Commercial Vehicle Empty Trips. Transportation Research Record. 2003;1833:87-94.
Holguín-Veras J, Patil G. Integrated Origin-Destination Synthesis Model for Freight with Commodity-Based and Empty Trip Models. Transportation Research Record. 2007;2008:60-6.
Noortman HJ, van Es J. Traffic Model. Manuscript for the Dutch Freight Transport Model; 1978.
Miwa T, Okada Y, Morikawa T. Applying a Structured Dispersion Parameter to Multiclass Stochastic User Equilibrium Assignment Model Transportation Research Record: Journal of the Transportation Research Board. 2010;2196:142-9.
Márquez L, Cantillo V. Evaluating strategic freight transport corridors including external costs. Transportation Planning and Technology. 2013;36(6):529-46.
Marenco L, Cantillo V. A framework to evaluate particulate matter emissions in bulk material ports: case study of Colombian coal terminals. Maritime Policy & Management. Forthcoming 2014. doi:10.1080/03088839.2013.877171
Bureau of Public Roads. Traffic Assignment Manual. Washington, D.C.: Urban Planning Division USDoC; 1964.
Cascetta E. Transportation System Engineering: Models and Applications. 2 ed. Dordrecht: Springer; 2009.
Sheffi J. Urban Transportation Network. Englewood Cliffs, N.J.: Prentice Hall; 1985.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).