Investigation of Bicycle Travel Time Estimation Using Bluetooth Sensors for Low Sampling Rates
Abstract
Filtering the data for bicycle travel time using Bluetooth sensors is crucial to the estimation of link travel times on a corridor. The current paper describes an adaptive filtering algorithm for estimating bicycle travel times using Bluetooth data, with consideration of low sampling rates. The data for bicycle travel time using Bluetooth sensors has two characteristics. First, the bicycle flow contains stable and unstable conditions. Second, the collected data have low sampling rates (less than 1%). To avoid erroneous inference, filters are introduced to “purify” multiple time series. The valid data are identified within a dynamically varying validity window with the use of a robust data-filtering procedure. The size of the validity window varies based on the number of preceding sampling intervals without a Bluetooth record. Applications of the proposed algorithm to the dataset from Genshan East Road and Moganshan Road in Hangzhou demonstrate its ability to track typical variations in bicycle travel time efficiently, while suppressing high frequency noise signals.
References
Ahmed H, EL-Darieby M, Abdulhai B, & Morgan Y. Bluetooth and Wi-Fi-Based Mesh Network Platform for Traffic Monitoring. Transportation Research Board 87th Annual Meeting. Transportation Research Board, Washington, D.C., 2008.
Haghani A, Hamedi M, Sadabadi, KF, Yound S, & Tarnoff PJ. Freeway Travel Time Ground Truth Data Collection Using Bluetooth Sensors. Transportation Research Board 89th Annual Meeting. Transportation Research Board, Washington, D.C., 2010.
Sharifi E, Hamedi M, & Haghani A. Vehicle Detection Rate for Bluetooth Travel Time Sensors: A Case Study in Maryland and Delaware. Transportation Research Board 89th Annual Meeting. Transportation Research Board, Washington, D.C., 2010.
Traffic Congestion and Reliability, FHWA (Federal Highway Administration), U.S. Department of Transportation, Sept. 2005.
Urban Traffic Report, China Transportation Institute. Sept. 2010.
Shan X. A Research on Urban Bicycle Transportation Rational Ridership and Road Resource Allocation (Doctoral dissertation). Southeast University, China, 2007.
What Is Traffic Message Channel?
http://www.tmcforum.com. Accessed July 2009.
Brennan TM, Day CM, Wasson JS, Sturdevant JR, & Bullock DM. Assessing Signal Timing Plans for Winter Conditions. ITE Learned Journal of Transportation,Washington,DC,1(1), 2011, p. 59-76.
Brennan TM, Ernst JM, Day CM, Bullock DM, Krogmeier JV, & Martchouk M. Influence of Vertical Sensor Placement on Data Collection Efficiency From Bluetooth MAC Address Collection Devices. Journal of Transportation Engineering, 136(12), 2011, p. 1104–1109.
Bullock D, Haseman R, Wasson J, & Spitler R. Anonymous Bluetooth Probes for Measuring Airport Security Screening Passage Time: The Indianapolis Pilot Deployment. Transportation Research Board 89th Annual Meeting. CD-ROM. Transportation Research Board, Washington D.C, 2010.
Wasson JS, Sturdevant JR, & Bullock DM. Real-Time Travel Time Estimates Using Media Access Control Address Matching. Institute of Transportation Engineers Journal, 78(6), 2008, p.20–23.
Malinovskiy Y, Wu Y, Wang Y, & Lee U. Field Experiments on Bluetooth-based Travel Time Data Collection. Transportation Research Board 87th Annual Meeting. CD-ROM. Transportation Research Board, Washington, D.C., 2010.
Mei Z, Wang D, Chen J. Investigation with Bluetooth Sensors of Bicycle Travel Time Estimation on a Short Corridor. International Journal of Distributed Sensor Networks, 2012, 2012.
Dion F, & Rakha H. Estimating Dynamic Roadway Travel Times Using Automatic Vehicle Identification Data for Low Sampling Rates. Transportation Research Part B, 40(9), 2006, p.745–766.
Mei Z, & Tian B. Real-Time Travel Time Estimation: Filtering Raw Data in an Automatic Vehicle Identification Setting. In Proceedings of the First International Conference on Transportation Engineering, Chengdu, China, 2007, p.34-39.
Kothuri SM, Tufte KA, Fayed E, & Bertini RL. Toward Understanding and Reducing Errors in Real-Time Estimation of Travel Times. Transportation Research Record: Journal of the Transportation Research Board, 2049, 2008, p. 21-28.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).