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EVALUATION OF DETERMINISTIC AND STOCHASTIC 
COMPONENTS OF TRAFFIC COUNTS 

SUMMARY 

Traffic counts or statistical evidence of the traffic process 
are often a characteristic of time-series data. In this paper fun­
damental problem of estimating deterministic and stochastic 
components of a traffic process are considered, in the context of 
"generalised traffic modelling". Different methods for identifi­
cation and/or elimination of the trend and seasonal compo­
nents are applied for concrete traffic counts. Further investiga­
tions and applications of ARIMA models, Hilbert space formu­
lations and state-space representations are suggested. 

1. INTRODUCTION 

According to the generalised traffic model intro­
duced in [1 ), [2), we must identify substantial traffic 
quantities which can be measured or observed in 
space and time reference frame (space-time specifica­
tion). The frequency and accuracy with which we rec­
ord the chosen quantities give the "resolution level" 
which can range from annual or monthly statistical 
data to near real-time observations. From traffic ob­
servations {x1, x.o ... x,J we wish to estimate the under­
lying process {x1} in order to gain information con­
cerning its deterministic and stochastic properties. 

Different traffic flows (of vehicles, passengers, 
packets, cells, etc.) in traffic system can be generally 
described by quantity, time and space dimensions. 

Most real traffic counts can be treated as a time se­
ries, which meaning a set of observations X£, each one 
being recorded at specific time t. Observations are 
usually made at fixed time intervals, but can also be re­
corded continuously over a time interval. To allow the 
possibly stohastic nature of traffic process it is reason­
able to suppose that each traffic observationx1 is a re­
alised value of certain random variable X 1. Observed 
data or traffic counts can be considered as a part of re­
aliastion of a stohastic process {X1 , t E T}. 

Application of advanced statistical modelling in 
the estimation of an origin-destination (OD) trip ma­
trix from traffic counts has been considered by several 
researches [3]. In these studies the probabilistic prop-
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erties of the observed data are considered in depth 
and used in the estimation of an OD matrix. A broad 
review of statistical estimation procedures for OD ma­
trix, including traditional entropy-maximising estima­
tors, Bayesian estimation etc., are discussed in refer­
ence [4). 

This paper starts with generalised traffic modelling 
approach considered fundamental problem of estima­
ting deterministic and stohastic components of time­
series data (traffic counts). In this context we evaluate 
different methods for estimation and/or elimination 
of the trend and seasonal components from traffic 
data. Although the advanced statistical components 
and methods are used, the defined problem has to be 
treated as a version of a typical traffic engineering 
task. With satisfactory mathematical model based on 
generalised traffic description, it becomes possible to 
estimate parameters and use the fitted model to en­
hance the understanding of a traffic process. Once a 
satisfactory model has been developed (and sup­
ported by program), it maybe used in a variety of ways 
in traffic analysis, control, prediction, design, etc. 

Stationary processes play a crucial role in the 
mathematical analysis of time series [5). Many ob­
served time series are nonstationary, but, frequently 
such data sets can be "transformed" into a series or 
parts which can be reasonably modelled as realisa­
tions of the same stationary process. From the obser­
vations of a stationary time series {X1} we can estimate 
the autocovariance function y (0 ) of the underlying 
process {X1} as a sample autocovariance function. 
The sample autocovariance (and autocorrelation fun­
ctions) can be computed for any data set {x1, x2, ... x,z}, 
and the are not restricted to realisations of a station­
ary process. 

2. DISCRIBING TRAFFIC PROCESS AS 
A STOCHASTIC PROCESS 

The concept of stochastic process and applied sto­
chastic system modelling are the essential part of 
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mathematical courses at an undergraduate and gradu­
ate level for engineers and managers. In the context of 
generalised traffic modelling, we need to define pre­
cisely what is meant by a stochastic process and its re­
alisations. Considerations are focused to special 
classes of processes which are particularly useful for 
modelling many of the traffic counts as a time series 
data. 

Definition I~ A stochastic process is a family of random 
variables {X, , t ET}, defined on probability space (Q, 
~.P,). 

If the time parameter T is a countable set, the pro­
cess is called a discrete-time stochastic process; and if 
T is a continuum, the process is called a continuous 
time stochastic process. In time series analysis the pa­
rameter (or index) setT is a set of time points, very of­
ten: {1, 2, ... n}, {0, ±1, ±2, ... n} or [0, a). 

Each observation x1 is a realised value of a certain 
random variable X, . The time series {x, , t E Ts} is then 
a realisation of the family of random variables {X, , t E 

Ts}. 
According to the definition of a random variable 

we can conclude that for each fixed t E T, x1 is in fact a 
function Xt(0 ) on set Q. On the other side, for each 
fixed w E Q, X 0 ( w) is a function on T. 

Definition 2. Realisations of a stohastic process or 
sample paths of the process {X1 ,t E Ts} are the func­
tions {X0 (w), w E Q} on T. 

Stationary processes play a control role in the 
mathematical analysis of time series, where autoco­
variance function is a primary tool. 

Definition 3. If {X1 ,t E T} is a process such that 
Var(X1) <a for each t E T, then the autocovariance 
function gx( 00) of {X1} is defined by: 

y x (r,s) = Cov(XnXs )= 
= E[(Xr - EXr )(Xs-EXs )]r,s ET 

Definition 4. The time series {X1, t E Z} with index set Z 
= {0, ±1, ±2, ... } is said to be stationary if: 

(i) E IX,I2 < a for all t E Z, 

(ii) EX, = m for all t E Z, 

(iii) yx(r,s) = Yx (r+t, s+t) for all r, s, t E Z. 

Stationary defined in Definition 4 is frequently 
treated as a stationary in the wide sense, weak station­
ary. {X1,t E Z} is stationary Yx(r,s) = Yx(r- s, 0) for all r,s 
E Z. It is therefore reasonable to redefine the autoco­
variance function of a stationary process as the func­
tion of just one variable: 

yx(h) = yx(h, 0) = Cov (X,+h, X,) for all t, h E Z. 

The function Yx(o) will be referred to as the autoco­
variance function of {X1} and Yx(h) as its value at 
"lag"h. The autocorrelation function of {X1} is defined 
analogously as the function whose value at log h is: 
px(h) =rx(h)/yx(o) = Corr (X1+h• X 1) for all t, h EZ. 
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DefinitionS. The time series {X1 ,t E Z} is said to be 
strictly stationary if the joint distributions of (X1 , .•• 

Xk)' and (Xt+h, ... Xk+h) ' are the same for all positive 
integers k and for all fJ, ... , tk, h E Z. 

From the observations {.xbx2 , ... x11 } of a stationary 
time series {X1} we often want to estimate the autoco­
variance function y(0 ) of the underlying process {X1} 

in order to gain information about its dependence 
structure. The sample autocovariance function of an 
observed series are frequently used [5], [6]. 

The sample autocovariance and autocorrelation 
function can be computed for any data set {XJ, . .. x11 } 

and are not restricted to realisations of a stationary 
process. 

Important role in the modelling of time-series data 
have the family of "Autoregressive Moving Average" 
processes (ARMA processes). For any autocovari­
ance function y(0 ) such that limh-+a y(h )=o , and for 
any integer k>O, it is possible to find ARMA process 
with autocovariance function Yx(o) such that 
Yx(h) =y(h), h =0, 1, ... k. The linear structure of ARMA 
processes lead to simple and useful best linear predic­
tions of a stationary process using observations taken 
at or before time n to forecast the subsequent behav­
iour of {X1}. 

A generalisation of the class ARMA processes are 
"Autoregressive-Integrated Moving Average" pro­
cesses (ARIMA processes). ARIMA models incorpo­
rate a wide range of non-stationary series, i.e. pro­
cesses which, after differencing finitely many times, 
reduce to ARMA processes. Once the data have been 
suitably transformed, the problem becomes one of 
finding a satisfactory ARMA (p,q) model for {X1}. 

3. METHODS FOR ESTIMATING AND 
ELIMINATING THE TREND AND 
SEASONAL COMPONENTS FROM 
TIME-SERIES DATA 

We consider the usable methods for estimation 
and elimination of deterministic components from ob­
served traffic counts as a time-series data showed in 
Table l. Deviations from stationarity are suggested by 
the graph of the series itself or by the sample autocor­
relation function. It is clear from the graph that time­
series has strong seasonal components of period 12 
(months). 

Two basic methods for elimination of trend and 
seasonal components are: 
1 "classical decomposition" of the series into a trend 

component, a seasonal component, and a random 
residual component; 

2 apply difference operators repeatedly to the data 
{x1}. We want to estimate and extract deterministic 
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components, i.e. "trend component" m1 and "sea­
sonal component" s1 , in the hope that the residual 
component Y1 will turn out to be a stationary ran­
dom process. 
After the preliminary inspection of the concrete 

time-series graph (Figure 1) we adopt the method for 
eliminating both the trend and the seasonal 
components in the general decomposition model: 

X,=m,+s,+ Y, 
where: 
- m 1 is a trend component, 

Table 1 - Traffic counts with monthly "resolution 
level" 

1992 1993 1994 1995 1996 

I 8980 7745 8157 7705 7828 

II 8100 6980 7301 7456 6890 

Ill 8920 8031 8118 7768 7786 

IV 9129 8419 7865 7918 8125 

V 10005 8710 9382 8630 9109 

VI 10802 9505 9548 8940 9428 

VII 10904 10115 10088 10071 10480 

VIII 10750 9817 9615 9172 9823 

IX 9705 8738 8279 8030 9102 

X 9928 9122 8430 8481 9065 

XI 9154 8705 8156 7870 8628 

XII 8922 8675 8029 8641 9232 
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- s, is a seasonal component with known period d, 
- Y, is a residual random component. 

Three different methods for estimating and re­
moving the trend and seasonal components from ob­
served data {x1, ... x6o}, will be applied and evaluated. 
They are: 
1 The Small Trend Method; 
2 Moving Average Estimation; 
3 Differencing at Lag d. 

3.1. The Small 'frend Method 

For this method it will be convient to index the data 
by year and month. We will denote by: Xj,Jo j=l, ... ,S; 
k=l, ... ,l2 the number of traffic services in ~h month 
of the/11 year. 

Since the trend is small in observed data, it is not 
unreasonable to suppose that the trend term is con­
stant: mj for the year fh. Seasonal component is clearly 

12 
12 and we note the period d is 12. Since L s k = 0 we 

k=1 

have natural unbiased estimate: 
1 12 

m.1 = 12 :Lx1,k 
k=l 

while for sk> k = 1, ... , 12 we have the estimates: 
1 5 

s k = 5 I ( x J,k -m 1) 
j = l 

The estimated residual component or error term 
for month k of the j'h year is: 

Yj,k = x j ,k -m j ,k -s j ,k , j = 1, ... ,5 
k=1, .... ,12. 
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Figure 1 -Monthly traffic data 
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The procedure of analysing and predicting traffic 
counts data by introducing decomposition methods 
can be systematised in several steps: 
1 Plot the traffic counts data. 
2 Find estimates for seasonal component .§ 1 , 

t=l, ... ,I2 for the classical decomposition model: 

X 1 =m1 +s 1 +Y1 
12 

where s1 = s1+ J2J L s 1 = 0, and Ey1 = 0. 
I= L 

3 Plot the deseasonalised data, X 1 - .§ 1, t=1, .. . ,60. 
4 Fit a parabola by least squares to the deseasonal­

ised data and use it as estimate m1 of m1• 

5 Plot the residuals Y1 =X1-m1-s1 , t=l, ... 60. 
6 Compute the sample autocorrelation function of 

the residualsp(h), h=0, ... 20. 
7 Use fitted model to predict X 1 , t > 60. 

By applying the presented method we find out de­
trended observ~tions Xj,k - m; and deseasonalised 
observations: Y;,k = x J,k -m i-s k. Monthly traffic 
data after substracting the trend are illustrated in Fig­
ure 2, and detrended and deseasonalised data are il­
lustrated in Figure 3. 

3.2. Moving Average Estimation Method 

Moving Average Estimation Method (M2) can be 
preferable to previously described method since it 
does not rely on the assumption that m 1 is nearly con­
stant over each cycle. 
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This method for eliminating both trend and sea­
sonal components, will be illustrated in general and 
implemented to traffic observations {XJ, ... x11 }. The 
first step is to estimate the trend by applying a "mov­
ing average filter" specially chosen to eliminate the 
seasonal component and to dampen the noise. If the 
period d of seasonal component is even, say d=2q, 
then we use: 

(xx) 

r/l1 = ( 0,5x1_q +Xt- q+l +. . .+Xt+q--1 +0,5 Xt+q ) 1 d 

q < t~n-q 

where q is a non-negative integer. 
For the cases when period d IS mcreasing, say 

d=2q+ 1, then we use the simple moving average: 
q 

nlt =(2q+lt
1 L Xt+j• 

j=- q 

q+l ~ t ~ n-q 

The task of second step is to estimate the seasonal 
component. In this step, for each k = 1, ... , d; we com­
pute the average wk of the deviations: 

{ (xk+Jd -mk+Jd): q <k+ j d ~n-q} 
These average deviations do not necessarily sum to 

zero. 
We estimate the seasonal component Sk as: 

A - 1 
sk =Wk -d L wi k=l, ... ,d 

i=l 

Ji ~ 
11 ~ 

\ 
~ ~ 

If ~ ~ ~ I~ * ' 
~ ~ 1¥ 

1¥ ~ f IV ¥ 
, 

\ f \ 
'¥ : '¥ 

I 

36 48 60 

t (Month) 

Figure 2- Monthly traffic data after subtracting the trend 
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Figure 3 - The de-trended and de-seasonalised data 

The deseasonalised data is then defined to be the 
original series with the estimated seasonal component 
removed: 

t=l, ... ,n. 

Finally we re-estimate the trend from {d1} by: 

- applying a moving average filter for non-seasonal 
data, 

- fitting a polynomal to the series {dJ. 

Some of the developed parameter estimation pro­
gram allows the options of fitting a linear or square 
trend m,. The estimated noise terms are then: 

Y{ =x1 -m, -s, t=1, ... ,n. 

The results of applying Methods Ml and M2 to the 
traffic counts are quite similar. In this case the piece­
wise constant and moving average estimates of m 1 are 
reasonably close. 

3.3. Differencing at Lag d 

The methods of differencing can be adapted to 
deal with seasonal component of period d by introduc­
ing the lag-d difference operator vd defined by: 

Vd =X1 -X,_d =(1-Bd)x, 

where B is the backward shift operator. 
Applying the operator Vd to the general model 

X 1 =m1 +s1 +Y1 

where {S1} has period d, we obtain 

VdXt =m1 -m,_d +Y1 -Y1_d 

which gives a decomposition of the difference Vd X 1 
into a trend component: 

(mt-mt-d ) 
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and a noise term: 

(Y;- Y,-d) 
If we apply the operator V to V12x1 and plot the re­

sulting diferencess V V12x1, t = 14, 15, ... 60, we obtain 
the resulting graph with no apparent trend or seasonal 
component. 

4. APPLICATIONS OF fiLBERT SPACE 
FORMULATIONS AND STATE-SPACE 
REPRESENTATIONS 

There are several great advantages to be gained 
from a Hilbert space formulation in a time series (or 
traffic counts) analysis. Some of these advantages are 
derived from our familiarity with two-of orthogonal 
projections in these spaces. These concepts appropri­
ately extend to infinite-dimensional Hilbert space, 
have a significant contribution to the study of random 
variables with finite second moments, and especially 
in the prediction of stationary processes. In many 
cases, intuition gained from geometric understanding 
can be a valuable guide in the construction of models 
or algorithms. 

Recent contributions with state-space representa­
tions and Kalman recursions have a strong impact on 
time series and related areas, especially for control of 
systems in relation tu fundamental concept of observ­
ability and controllability [8], [9]. The efficiency of a 
state-space representation lies in the simple structure 
of state equations which describe evolution of the 
stateX1 of the system at timet (a vxl vector) in terms of 
a known sequence of vxv matrices F1,F:o ... and a se­
quence of random vectors Xb Vb V2 , .... Equation: 

Y, = G1 X 1 + ~ t = 1,2, .. . 
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where: 
t = 1,2, .. . 

describes a sequence of observations, Y1 , which are 
obtained by applying linear transformations to X1 and 
adding a random noise vector, u-{, t = 1, 2, .... 

As indicated in reference [5], it is possible to for­
mulate a great variety of time-series and other models 
in state-space form. If the sequence {XJ, Vb V.2. ... } is 
independent, then {X1} has the Markov property, i.e. 
the distribution of Xt+l givenX1, ... XJ is the same as 
the distribution of Xt+I given X1 . Several recent con­
tributions show how state-space models provide a uni­
fying framework for a variety of statistical analyses 
and forecasting, but traffic analyses were not included 
in those investigations. 

5. CONCLUSION 

Fundamental problem of evaluating deterministic 
and stochastic components of traffic processes is in­
vestigated in several papers and doctoral dissertati­
ons. This paper has focused on evaluation of traffic 
counts which have characteristics of time-series data 
Three basic methods for identification and elimina­
tion of trend and seasonal components are applied for 
concrete traffic counts. Further investigations and de­
velopment of generalised methodology for traffic ana­
lysis and synthesis are recommended. 

SAZETAK 

EV ALUACI]A DETERMINISTICKIH I STOHASTI­
CKIH KOMPONENTI IZ VREMENSKOG NIZA PRO­
METNIH PODATAKA 

Kvantitativni prometni podaci ili stohasticke evidencije 
prometnog procesa cesto su dane u obliku vremenskog niza 
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podataka. U radu je razmotren fundamentalni problem 
procjene deterministickih i stohastickih komponenti promet­
nogprocesa u kontekstu "poopcenogprometnog modeliranja". 
RazliCite metode za identifikaciju i/ili eliminaciju trenda i se­
zonske komponente primijenjene su na konkretnim prometnim 
podacima. Sugerirana su daljna istraiivanja i aplikacija 
ARIMA mode/a, formulacija u Hilbertovu prostoru te "state -
space" prikazi. 
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