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AIRPORT SYSTEM CONTROL IN CONDITIONS OF
DISCRETE RANDOM PROCESSES OF TRAFFIC FLOW

SUMMARY

The article presents a svstem approach to air traffic opera-
tion and control. A mathematical model of the system has been
developed, for the case when the input/output functions are dis-
crete random processes. A solution for a special example of in-
put functions has been calculated and analysed.

1. INTRODUCTION

Air traffic system is a very complex dynamic sys-
tem. In creating a theoretical mathematical model, we
would have to take into account an extremely large
number of variables and their interrelationships.
However, with methods of logical and methodological
decomposition, a traffic system may be divided into a
finite set of simpler subsystems, which are then stud-
ied and analysed separately [4].

In this article we are interested in the airport sub-
system within the framework of the air traffic system.
We are going to deal with it as a system of aircraft, pas-
senger, cargo, luggage and postal operations. All the
necessary activities are carried out by airports, which
are organised as business companies ([3], [4], [9]). Air-
ports have become complex technological and organ-
isational structures, which follow the laws of dynamic
systems, and for this reason we have to adopt a scien-
tific approach to managing them.

2. ATHEORETICAL MODEL OF THE
AIRPORT SYSTEM CONTROL

The components of air traffic (airports, airlines
and passengers) are functionally connected via air-
ports. These connections appear in pairs: airport-airli-
nes, airport-passengers and airlines-passengers. Tech-
nological-production processes in all traffic systems
including airport systems are specific in that the pro-
duction and consumption of traffic services are simul-
taneous. One special characteristic of traffic systems is

that pairs of elements within the systems occur to-
gether: technological operations - services and traffic
flow - users.

The operational technological-production level of
an airport system consists of three subsystems which
are typical of all production systems: the subsystem of
demand, which is shown as the flow of passengers, lug-
gage and cargo, the subsystem of production, which is
shown as a technological process, and the subsystem
of stock - facilities which is shown as infrastructure,
terminals and technical resources.

A mathematical model of control for this system
will be structured around the theoretical model of
control of linear stationary systems. For this model the
regulation circuit is given in Fig. 1 ([6], [7]).

demand airport capacity =
passenger,
cargo, luggage

services

Figure 1 - Regulation circuit of airport system

In developing the model we will restrict ourselves
to dynamic linear system where the input is a random
process with known statistical properties. The system
provides the output which is, due to the condition of
linearity, also a random process. These processes
could be continuous or discrete. The model and its
solving for continuous processes is obtained in [4] and
[7]- So we will set up the mathematical model for dis-
crete stochastic processes.

The optimisation model of dynamic system regula-
tion is determined by the system and by the optimality
criterion. The system as regulation circuit generally
consists of a regulator, the object of regulation, feed-
back, input and output information [5] (See Fig. 2).

We will restrict ourselves to dynamic linear dis-
crete system where the input is a random process with
known statistical properties.
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Figure 2 - A regulation circuit

Let us denote:
Z — activated facilities (resources) at given mo-
ment,
u — the amount of services performed (produc-
tion) at a given moment,
d — the demand for services at a given moment,
T - time elapsed between the moment the data
are received and the carrying out of a service,
Q — crierion function, complete costs,
K, — constant coefficient, dependent on activated
resources, derived empirically,
K, — constant coefficient, dependent on performed
services and derived empirically.
In the situation of discrete functions it is: Z=Z(k),
u=1lk), d=d(k) for k €{0,1,2,...}.

The system will be modelled with equations ([4],

[5D:

Z)-Zk - D=yp[k)-dK)], vy eR" (1)

wWk)=u(k-T), TeN (2)

)=-3, ) Z(k—«) (3)
x=0

ok)=K 7 E{(Z200)} + K, E{(u?*(k-1))} min (4)

G(k) is the regulation function which, with opti-
mum regulation, needs to be defined in such a way
that the demand for minimum total costs will be met.
We are looking for a system control with minimum op-
eration costs Q(k). The total costs (4), whose mini-
mum we are looking for, is expressed with mathemati-
cal expectation (mean value) of the square of random
variables Z(k) and u(k). Here Kz and K, are constant
factors which give greater or smaller weight to individ-
ual costs. Both factors have been determined empiri-
cally and are known.

Equations (1)-(4) form a stationary stochastic lin-
ear model of control where the minimum of criteria
function is calculated on the basis of Wiener’s filter.
This means that we will obtain the searched-for solu-
tion using Wiener-Hopf equation for these cases.

Indicating z-transforms:

2z =2(2), Lik)}=W2),

Z{d(k)y=d(2), Liudk)y=u(z)
and applied to equations (1)-(3):

Z(z)=%(wz)—d(z)), y R (5)
D=z u(2) (6)
u(2)=—X2)Z(2) @)

The searched-for optimum control operator G(z)
is obtained from optimal cascade compensation op-
erator Wopy(2) with the formula:

Wopt(2)

1= Wop (DG () (®)

GOPI(Z) =

Cascade compensation operator Wop(2) is obtain-
ed as a solution to Wiener-Hopf equation for discrete
functions.

Finally, the obtained functions are transformed
into time zone with inverse z-transform [4].

3. AN EXAMPLE

Let us take an example for discrete dynamic system
with situation in which the function of demand has the
autocorrelation in the form:

Rdd(k)=.§2a|k|, E>0, O<ax<l 9)

From Wiener-Hopf equation the following is ob-
tained ([4], [5], [6]):

A | o
Wopt(z)=;(—§71)[c,(z-a)-c2a7' I(z-1)] (10

where
2
YKz z;
ety (11)
K, (1-a)(1-z)
2
K7z
C,= Y Kzz) (12)
Ku(l_a)(l—'azl)
2 2
Y Kz+2K, y“ Ky
¥= X v +252 (13)
x—\/x2—4
z)= ) <1 (14)

o
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From (5), (7), (8) and (10) it is obvious that:
a) the facilities involved comply with function (facili-
ties that were operating):

_— (ﬂ U, l) z-d(2) -
a oy +z—zl i (15)
where
U, =Cy-Cpa’*! and,
Uy =C(z1-a)-C2a"*(z,-1) (16)
b) the services performed comply with function
d(z)
u(z)=[C1(z—a)—C2 aT+l(z—1)]-—Z (17)
Z-Z)]

With inverse z- transform we obtain these func-
tions in the time area:

Zoptk)=Z7 (20N =

=U, D(k-T)+U, ¥, zf D(k-T-x)-Dlk)
k=1

and

(18)

Uopt U =Z 2l =U,dU)+U, ¥ zf d(k—) = (19)

=l
=UydUWU,| zyd(k-1 )28 d(k-2)+23 d(k-3)+..]

where D(k) is the total demand in a given time interval
with changeable upper boundary:

k
D) =2 (D(2)=Z"" (;Z—l-d(z)) =Y d(k—«) (20)
i =1

= y(dU+d(k—1)+.. +d(1)+d(0))

4. DISCUSSION

These data and results include parameters 7', a and
A, which have influence on values of functions and on
the results of control. Those parameters are involved
in the constants Uy, U, Cy, C; and z;, which are de-
fined by (11), (12), (13) and (14).
I. According to constants U and U there are three

possibilities:
1. (U,=0)A(U,=0)

In this case the system is degenerated completely.
From (18) and (19) it is

Z opt (k) =—DXk)

uopt(k)=0

The production of services equals zero which
means the system doesn’t work. The needs for capaci-
ties are only registered and equal the common de-
mand in the given time interval. The system of equa-
tions (U 1 :0) /\(U 2 =O) is possible only for a=1, but
in (9) there is condition 0<a<1, which means this
situation is not possible.

2. (U,=0)A(U, %0)
In this case there is a very unpleasant situation be-
cause the optimal solution is

k
Uopt ) =Us T zf d(k—)
k=1

k
Zoptk)=U3 ¥ 2§ D(k—A—x)-Dlk)
=1

The supply of airport services satisfies only the de-
mand from the past and never that from the present. It
is the same with capacities. A situation like this is not
optimal because there would be permanent delays in
the system operation. From the equation

Ul =C1—C2aT+l ={)

we get
l-az|

] s
Oga(l—z 1 )
loga

l-az
Because O0<a<1 it is: log L->0and loga <0, so
a(l—zl)

T <0. From the definition of delay (2) it is clear that
T > 0. The condition (U, = 0) A (U 2 ¢()) is impossible,
too.
3. (U, #0)A(U,=0)

In this case the optimal solution is
uopt(k)=U1 d(k)
Z opt 0)=Uy D(k-T )~ Dik)

The production of services satisfies only the pres-
ent demand. It is possible to use the capacities with de-
lay T only for the present demand. Also this control is
not optimal because it doesn’t satisfy all the needs of
the system in whole time period of its operation.

From U, =C(z;-a)-Cya” 1 (z;-1)=0it s

(a—zl )(l—a zl)

a(l—zl )2

loga

log

T=

Because of the value of parameters a and z; we
would get 7<0. The condition (U 1 ¢O)A(U2 =0) is
impossible, too.

The system will be controlled optimally, when the
constants U; and U, are not equal zero. This condition
is true for O<a<1.

II. According to parameters K, and K7 there are two
possibilities:

1. Ky>Kz,

2. K, =Kz,
Because (13) and (14) expression

§ 2 d(k—«)= zd(k-1 )z} d(k-1)+z] d(k-1)+..
=il
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is convergent faster for K, >K than for K, <K .
That means the production of services depends on the
demand in the given moment more than on the past
demand. This is why we will cover the demand with ex-
tra capacities.

In the second case (K7 <K,,) the storing and acti-
vating of extra capacities is very expensive and we have
to cover the demand with present capacities i.e. pres-
ent production of services.

5. CONCLUSION

A theoretical mathematical model of system con-
trol can be used also in a traffic system and in all their
subsystems. Input-output signals are either continu-
ous or discrete functions. For air traffic operation
many conditions have to be fulfilled. During the con-
trol process a great deal of information must be proc-
essed, which can only be done if transparent and prop-
erly developed information system is available. Dur-
ing the operation of the airport an enormous amount
of data is used. The solutions i.e. optimal control func-
tions depend on many numerical parameters. All data
and numerical analyses can only be processed into in-
formation for control if high quality and sophisticated
software and powerful hardware are available.

POVZETEK

UPRAVLJANJE SISTEMA ZRACNE LUKE PRI
DISKRETNIH SLUCAJNIH PROCESIH
PROMETNEGA TOKA

V ¢lanku je predstavljen sistemski pristop k upravljanju le-
talis¢a. Kreiran je matematicni model sistema za primer, ko so
vhodnol/izhodne funkcije diskretni slucajni procesi. Izracuna
na in analizirana je resitev za poseben primer vhodnih funkcij.
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