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AIRPORT SYSTEM CONTROL IN CONDITIONS OF 
DISCRETE RANDOM PROCESSES OF TRAFFIC FLOW 

SUMMARY 

The article presents a system approach to air traffic opera­
tion and control. A mathematical model of the system has been 
developed, for the case when the input/output functions are dis­
crete random processes. A solution for a special example of in­
put functions has been calculated and analysed. 

1. INTRODUCTION 

Air traffic system is a very complex dynamic sys­
tem. In creating a theoretical mathematical model, we 
would have to take into account an extremely large 
number of variables and their interrelationships. 
However, with methods of logical and methodological 
decomposition, a traffic system may be divided into a 
finite set of simpler subsystems, which are then stud­
ied and analysed separately [4] . 

In this article we are interested in the airport sub­
system within the framework of the air traffic system. 
We are going to deal with it as a system of aircraft, pas­
senger, cargo, luggage and postal operations. All the 
necessary activities are carried out by airports, which 
are organised as business companies ([3], [4], [9]). Air­
ports have become complex technological and organ­
isational structures, which follow the laws of dynamic 
systems, and for this reason we have to adopt a scien­
tific approach to managing them. 

2. A THEORETICAL MODEL OF THE 
AIRPORT SYSTEM CONTROL 

The components of air traffic (airports, airlines 
and passengers) are functionally connected via air­
ports. These connections appear in pairs: airport-airli­
nes, airport-passengers and airlines-passengers. Tech­
nological-production processes in all traffic systems 
including airport systems are specific in that the pro­
duction and consumption of traffic services are simul­
taneous. One special characteristic of traffic systems is 
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that pairs of elements within the systems occur to­
gether: technological operations - services and traffic 
flow - users. 

The operational technological-production level of 
an airport system consists of three subsystems which 
are typical of all production systems: the subsystem of 
demand, which is shown as the flow of passengers, lug­
gage and cargo, the subsystem of production, which is 
shown as a technological process, and the subsystem 
of stock - facilities which is shown as infrastructure, 
terminals and technical resources. 

A mathematical model of control for this system 
will be structured around the theoretical model of 
control of linear stationary systems. For this model the 
regulation circuit is given in Fig. 1 ([6], [7]). 

demand 
passenger, 
cargo, luggage 

Figure 1 - Regulation circuit of airport system 

In developing the model we will restrict ourselves 
to dynamic linear system where the input is a random 
process with known statistical properties. The system 
provides the output which is, due to the condition of 
linearity, also a random process. These processes 
could be continuous or discrete. The model and its 
solving for continuous processes is obtained in [ 4] and 
[7]. So we will set up the mathematical model for dis­
crete stochastic processes. 

The optimisation model of dynamic system regula­
tion is determined by the system and by the optimality 
criterion. The system as regulation circuit generally 
consists of a regulator, the object of regulation, feed­
back, input and output information [5] (See Fig. 2). 

We will restrict ourselves to dynamic linear dis­
crete system where the input is a random process with 
known statistical properties. 
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Disturbance 

d(k) 

Reference Actuating Manipulated Controlled 
Input signal r Controller -1 Variable r Controlled l Output 

p ,(k) y p ,(k) -Z(k) 
1 Regulator 1 

v(k) 
· 1 System/Plant 1 

Z(k) 

Feedback Path 

Figure 2 -A regulation circuit 

Let us denote: 
Z- activated facilities (resources) at given mo­

ment, 
u- the amount of services performed (produc­

tion) at a given moment, 
d- the demand for services at a given moment, 
T- time elapsed between the moment the data 

are received and the carrying out of a service, 
Q - crierion function, complete costs, 

Kz - constant coefficient, dependent on activated 
resources, derived empirically, 

~- constant coefficient, dependent on performed 
services and derived empirically. 

In the situation of discrete functions it is: Z =Z(k ), 
u=u{k), d=d(k)for k E { 0,1,2, ... }. 

The system will be modelled with equations ([4), 
[5]): 
Z(k)-Z(k-1)=y{v(k)-d(k)], 1/J E R+ (1) 

v(k)=u(k-T), TEN (2) 
CXJ 

u(t)=- L G(K)Z(k- K) (3) 
K=O 

{Xk)=Kz E{ (z2 (k))} +Ku E{ (u 2 (k-1))} min (4) 

G(k) is the regulation function which, with opti­
mum regulation, needs to be defined in such a way 
that the demand for minimum total costs will be met. 
We are looking for a system control with minimum op­
eration costs Q(k). The total costs (4), whose mini­
mum we are looking for, is expressed with mathemati­
cal expectation (mean value) of the square of random 
variables Z(k) and u(k). Here Kz and Ku are constant 
factors which give greater or smaller weight to individ­
ual costs. Both factors have been determined empiri­
cally and are known. 

Equations (1 )-( 4) form a stationary stochastic lin­
ear model of control where the minimum of criteria 
function is calculated on the basis of Wiener's filter. 
This means that we will obtain the searched-for solu­
tion using Wiener-Hopf equation for these cases. 

Indicating z-transforms: 
Z{Z(k)}=Z(z), Z{v(k)}=v(z), 
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Z {d(k)}=d(z), Z {u(k)}=u(z) 

and applied to equations (1 )-(3): 

Z(z)= ;_: ( v(z)-d(z)) , 1/J E R+ 

v(z)=z- T u(z) 

u(z) =- G(z)Z(z) 

(5) 

(6) 

(7) 
The searched-for optimum control operator G(z) 

is obtained from optimal cascade compensation op­
erator Wopt(z) with the formula: 

Wopt(z) 
Gopt(z)=1-Wopt(z)Gf(z) (8) 

Cascade compensation operator Wopt(z) is obtain­
ed as a solution to Wiener-Hopf equation for discrete 
functions. 

Finally, the obtained functions are transformed 
into time zone with inverse z-transform [4]. 

3. AN EXAMPLE 

Let us take an example for discrete dynamic system 
with situation in which the function of demand has the 
autocorrelation in the form: 

Rdd(k)=!; 2 alkl, /;>0, O<a<1 (9) 

From Wiener-Hopf equation the following is ob­
tained ([4), [5], [6]): 

z-1 [ ( )- T+l( )] Wopt(z) ( ) C1 z-a C2a z-1 
z z-z 1 

(10) 

where 
2 

cl 
1/J Kz zl 

(11) 
Ku (1-a)(1-zl) 

2 

c2 
1/J Kz zl 

(12) 
Ku(1-a)(1-azl) 
2 1/Jz Kz 1/J Kz+2Ku 

+2>2 (13) X 
Ku Ku 

x-~x 2 -4 
<1 (14) Z] = 

2 
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From (5), (7), (8) and (10) it is obvious that: 
a) the facilities involved comply with function (facili­

ties that were operating): 

(
u1 U 2 ) z·d(z) 

Z(z)=ljJ - +---1 --
zT z- z1 z - 1 

where 

U1 = Ct- C2aT+L and, 

U2 = Cl (z1-a)-C2aT +l(z l - 1) 

b) the services performed comply with function 

u(z)=[ C1 (z-a}-C2aT+l(z-1)} d(z) 
z-z 1 

(15) 

(16) 

(17) 

With inverse z- transform we obtain these func­
tions in the time area: 

Z opt(k) = z-l {Z(z)} = 

00 

=U1D(k- T)+u2 L zf D(k-T - K}-lXk) (18) 
K=l 

and 
00 

Llopt(k) = Z - 1{u(z)}= Uld(k)+U2 L zf d(k- K) = (19) 
K= l 

= Ut d(k)+U2[ ZJ d(k - 1)+zf d(k- 2)+z[ d(k- 3)+ .. . ] 

whereD(k) is the total demand in a given time interval 
with changeable upper boundary: 

JXk) = Z - 1{JXz)}= Z - 1 ( ~1 ·d(z)) = ~d(k-K) (20) 
z K=l 

= lfJ( d(k)+d(k-1 )+ ... +d(1)+d(O)) 

4. DISCUSSION 

These data and results include parameters T, a and 
A, which have influence on values of functions and on 
the results of control. Those parameters are involved 
in the constants U1, Uz, c, Cz and Z J> which are de­
fined by ( 11 ), (12), (13) and ( 14). 
I. According to constants U1 and U2 there are three 

possibilities: 

l. (U1 = 0) A(U2 = 0) 

In this case the system is degenerated completely. 
From ( 18) and ( 19) it is 

Z opt(k_) =-fXk) 
Uopt(k) = 0 
The production of services equals zero which 

means the system doesn't work. The needs for capaci­
ties are only registered and equal the common de­
mand in the given time interval. The system of equa­
tions (u1 =0)A(U2 =0) is possible only for a=1, but 
in (9) there is condition O<a <1, which means this 
situation is not possible. 
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2. (U1 =0)A(U2 #0) 

In this case there is a very unpleasant situation be­
cause the optimal solution is 

k 

u0 pt(k) = U2 L zfd(k-K) 
K=l 

k 

Zopt(k)=U2 L zf D(k-A.-K}-lXk) 
K=l 

The supply of airport services satisfies only the de­
mand from the past and never that from the present. It 
is the same with capacities. A situation like this is not 
optimal because there would be permanent delays in 
the system operation. From the equation 

Ut = Ct - C2aT+l = 0 

we ge t 
1-az1 

log----,--~ 

a(1-zl) 
T = ---'-----"'--':_ 

log a 

1-az1 
Because O<a < 1 it is: log ( ) > 0 and loga < 0, so 

a 1-z1 

T < 0. From the definition of delay (2) it is clear that 
T > 0. The condition (u1 =0)A(U2 #O)is impossible, 

too. 

3. (u1 #0) A(U2 =0) 

In this case the optimal solution is 

Uopt(k)= U1 d(k) 

Z opt(k)=Ul D(k-T)-JXk) 

The production of services satisfies only the pres­
ent demand. It is possible to use the capacities with de­
lay T only for the present demand. Also this control is 
not optimal because it doesn't satisfy all the needs of 
the system in whole time period of its o~eration. 

From U2 =Ct(zl-a~C2aT+l(zt-1J=Oit is 
(a-zl)(1-azl) 

log 2 
a(1-z1) 

T = ------'--------':._:__-
loga 

Because of the value of parameters a and z1 we 
would get T<O. The condition (u1 #0) A(U2 =0) is 
impossible, too. 

The system will be controlled optimally, when the 
constants U1 and Uz are not equal zero. This condition 
is true for O<a<l. 

II. According to parameters Ku and Kz there are two 
possibilities: 

l. Ku > Kz, 
2. Ku <Kz. 

Because (13) and (14) expression 
00 

L zf d(k-K)= zld(k- 1)+zf d(k-1)+z[ d(k-1)+ ... 
K=l 
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is convergent faster for Ku >Kz than for Ku <Kz. 
That means the production of services depends on the 
demand in the given moment more than on the past 
demand. lbis is why we will cover the demand with ex­
tra capacities. 

In the second case (Kz <Ku) the storing and acti­
vating of extra capacities is very expensive and we have 
to cover the demand with present capacities i.e. pres­
ent production of services. 

5. CONCLUSION 

A theoretical mathematical model of system con­
trol can be used also in a traffic system and in all their 
subsystems. Input-output signals are either continu­
ous or discrete functions. For air traffic operation 
many conditions have to be fulfilled. During the con­
trol process a great deal of information must be proc­
essed, which can only be done if transparent and prop­
erly developed information system is available. Dur­
ing the operation of the airport an enormous amount 
of data is used. The solutions i.e. optimal control func­
tions depend on many numerical parameters. All data 
and numerical analyses can only be processed into in­
formation for control if high quality and sophisticated 
software and powerful hardware are available. 
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POVZETEK 

UPRAVL.JANJE SISTEMA ZRACNE LUKE PRI 
DISKRETNIH SLUCAJNIH PROCESIH 
PROMETNEGA TOKA 

V clanku je predstavljen sistemski pristop k upravljanju le­
taliJca. Kreiran je matematicni model sistema za primer, koso 
vhodno/izhodne ftmkcije diskretni slucajni procesi. Izracuna 
na in analizirana je re.Sitev za pose ben primer vhodnih funkcij. 
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