
V. Lipovac, V. Batos, A. Sertic: Testing Application (End-to-End) Performance of Networks With EFT Traffic

VLATKO LIPOVAC, Ph.D.
E-mail: vlatko.lipovac@unidu.hr
VEDRAN BATOS, Ph.D.
E-mail: vedran.batos@unidu.hr
University of Dubrovnik
Dpt. of Electrical Engineering and Computing
Branitelja Dubrovnika 29, HR-20000 Dubrovnik,
Republic of Croatia
ANTUN SERTIC, Ph.D.
E-mail: antun.sertic@fpz.hr
University of Zagreb,
Faculty of Transport and Traffic Sciences
Vukeliceva 4, HR-10000 Zagreb, Republic of Croatia

Information and Communication Technology
Preliminary Communication

Accepted: May 14, 2008
Approved: Dec. 22, 2008

TESTING APPLICATION (END-TO-END)
PERFORMANCE OF NETWORKS WITH EFT TRAFFIC

ABSTRACT

This paper studies how end-to-end application peifor
mance (of Electronic Financial Transaction traffic, in particu
lar) depends on the actual protocol stacks, operating systems
and network transmission rates. With this respect, the respec
tive simulation tests of peiformance of TCP and UDP proto
cols running on various operating systems, ranging from Win
dows, Sun Solmis, to Linux have been implemented, and the
differences in peiformance addressed focusing on throughput
and response time.

KEYWORDS

end-to-end application peiformance, quality-of-service, EFT
traffic

1. INTRODUCTION

1.1 Managing end-to-end application-level
performance of multiservice networks

Network services increase in number, sophistica
tion and real time dependency, Figurel.

Therefore, the enterprise-computing environment
has become a fantastically complex entity. Because,. of
the instability of growing networks, network managers
are mostly in "survival mode", as their main concern is
configuring the network and keeping it from going
down by taking care of all kinds of network, system,
application, and security components. Therefore, net
working staff mostly think in terms of individual rout
ers, switches, and LAN segments. The challenge is to
configure, benchmark, and integrate all these compo
nents without getting distracted from their original
mission of supporting and enhancing core business

Promet- Traffic&Transportation, Vol. 21, 2009, No. 1, 23-31

processes. However, network managers should also be
thinking of how these pieces fit together to deliver in
creased productivity. Simply put, there are too many
variables for IT departments to rely exclusively on ele
ment-centric tools, so that the number of devices, ap
plications, protocols, operating systems, and technolo
gies has forced IT managers to spend so much time
looking at the trees that they cannot possibly see the
forest. In addition, applications that run in today's
complex network environments often encompass nu
merous elements across the network, whose cumula
tive impact can be quite severe. Without the ability to
measure end-to-end service performance, this kind of
degradation never shows up on an alarm console. In
this sense, it is necessary to have the forest -level moni
toring application that will enable IT departments to
view the network as their customers see it. So, in con
trast to today's still dominant element-centric ap
proach to managing a network, observing end-to-end
performance of the network, and how that affects the
end user, is actually what IT staff should be concerned

Distributed Database
Image Transfer

Internet Connection
Groupware

Video Conferencing
Multimedia Playback

VoiceNideo Applications
Engineering Designs

Broadcast Video
Presentations

Other Multimedia
Other •

I

•
- -•

0% 1 0% 20% 30% 40%
Percentage of users responding that a specific

application is very important

Figure 1 - Variety of network services

50%

23

V. Lipovac, V. Batos, A. Sertic: Testing Application (End-to-End) Performance of Networks With EFf Traffic

with, as business managers care about how quickly a
database query is answered, or what is the responsive
ness of the applications they use daily. Moreover, net
work performance that impacts application perfor
mance goes further, to impact overall business perfor
mance, so that network problems can have severe neg
ative impact on overall business performance and re
sults.

1.2 Quality of service and application
performance

Quality-of-service (QoS) is a very popular and
overloaded term having as many interpretations as in
terpreters. It is very often looked at from different
perspectives by the networking and application-devel
opment communities. In networking, the term "QoS"
refers to the ability to provide different treatment to
different classes of traffic. The primary goal is to in
crease the overall utility of the network by granting
priority to higher-value or more performance-sensi
tive flows. With this respect, QoS is a term which qual
ifies the performance of the entire network, and it is
thus of vital importance that all elements of the net
work function at the satisfactory level. Specifically,
ITU-T recommendations define QoS as "the collec
tive effect of service performance, which determines
the degree of satisfaction of a user of the service".

Introduction of multiservice networks demands
more intelligent control over network usage and more
efficient application development practices that en
able achieving QoS goals. As applications over the
network increase, so does the need to diagnose perfor
mance at the application level, and network designers
need to implement a proper QoS technique, knowing
the differences between the techniques and bow they
affect traffic patterns in terms of guaranteed band
width, delay and reliability.

However, though, from the communications point
of view, classifications of QoS solutions are mostly
based on the physical, MAC and network layers per
formance, what finally matters, is the application-la
yer-based performance, meaning that actually, im
proving network performance is not the ultimate goal
of its own, as end-user performance of the network ap
plication is to be in focus.

However, what is finally the application quality -
just the response~time to "enter"?

The term "application quality" is too vague to be
deterministically defined. The reason is that the fac
tors that influence quality are very "fuzzy". Network
QoS allows for the definition of quality metrics based
on variety of parameters, but such QoS models are en
gineered using network-centric quality parameters
(available bandwidth, delay, jitter etc.). Application
developers and users, on the other hand, require qual-

24

ity models that are geared to their needs, and that are
expressed by different performance characteristics
such as response time, availability, throughput, pre
dictability, and consistent perceptual quality. These
are metrics that define what is called application qual
ity. Such factors include user's expectations and expe
rience, the task of the application, and whether the ap
plication delivers the expected levels of performance.
Furthermore, other factors, like charging for the use
of the network resources or the service, also influence
the application quality.

In this paper, we focus on the transaction-intensive
network application traffic profiles, such as the ones
associated with Electronic Financial Transactions
(EFT), in particular, where proper network perfor
mance is a mission critical to the state-of-the-art Inte
grated Transaction Management (ITM) solutions.

2. TESTING APPLICATION
PERFORMANCE

2.1 Test methodologies

Regardless as to whether the focus is on studying
topologies, traffic characteristics or interactions with
other protocols, the methods of studying telecommu
nication networks can be categorized into three main
types: mathematical modelling, real-life measure
ments, and simulation (and/or emulation).

Mathematical modelling of the problem provides
exact results, but the number and the complexity of ap
plication performance calculations grow drastically as
the network complexity increases. It provides deeper
understanding of fundamental rules of the studied
phenomenon for networks with a relatively small num
ber of input data, but the downside of this method is
that it can lead to oversimplifying the model.

Simulation and emulation of networks is a widely
used testing method today, but the methodology and
testing approaches have not yet been fully defined,
even though some literature offers certain frame
works that allow us to come to usable results. The
main disadvantage of the simulation and emulation
method is that both may ignore or omit real life occur
rences. However, their main advantage comes from
processing large amounts of data and testing the net
work reactions to different input parameters. For ex
ample, protocol simulation often ignores details about
the implementation of the protocol on the operational
system or the information content of the packets,
while it focuses mostly on the algorithms and traffic
quality parameters. Simulation has proven to be a
powerful tool for checking the results of mathematical
modelling and its significant advantage over real life
measurements lies in the possibility to test the state of

Promet- Traffic&Transportation, Vol. 21, 2009, No. 1, 23-31

V. Lipovac, V. Batos, A. Sertic: Testing Application (End-to-End) Performance of Networks With EFT Traffic

the network at any network point. The disadvantage of
this method is that it does not take into consideration
all the effects in the test environment, which results in
a narrow application field of certain tools and variable
reliability of the results. Consequently, the results of
the simulation method have to be used as good refer
ence for conducting final conclusions, in combination
with modelling and measurement results.

Finally, measuring real parameters of network
QoS enables detailed analysis, as well as further un
derstanding of what is complying to regulations or not.
Using specialized hardware or software, engineers
gather relevant data about the state of some part of
the network.

With this respect, at last, we point out that when
dealing with network performance, one should exploit
the synergy among analytical models, program simula
tions, and experimental testing, as a methodical
framework on top of which practical engineering ap
proach can be built.

2.2 Experimental system

The software application used was Agilent Appli
cation Analyzer to explore the basic application per
formance issues by driving the TCP and UDP protocol
stacks and measuring the round-trip response time of
three typical network transactions. We identified the
difference among the performances of these protocol
stacks throughout various operating systems and
Ethernet network transmission rates of 10 and 100
Mbps. (While higher Ethernet speeds (Gbps) are still
not widely available on desktop, another reason for
not considering them in this paper was that differ
ences between protocol performances might be more
visible if not hidden by waste available bandwidth,

though, on the other hand, the choice of operating sys
tem becomes more pronounced with faster networks,
whose bandwidth cannot be exhausted by a single con
nection, as it is the case in 10 Mbps networks.)

Application Analyzer generates network traffic
between pairs of agents and observes the performance
of the traffic whose patterns were tailored to match
the traffic of the real applications of interest- the typi
cal EFf ones.

The remote agent programs were created and op
erated from the console, named Simulation Center,
Figure 2.

Creating a test consisted in deciding which of the
available software-based distributed active agents
(and on which computers) to use as an endpoint pair,
Figure 3. A set of pre-built application scripts pro
vided standard performance benchmarks and emu
lated common end-user applications whose activation
comprised specifying the network addresses and the
network protocol to use between them, as well as the
type of application (data traffic tests that include: loss,
delay, throughput, jitter, out-of-order, QoS (UDP,
TCP, RTP, VoiP), ICMP etc.) to emulate between the
endpoints, in order to measure the performance of
network, applications and services from "anywhere to
anywhere" (over almost any transport mechanism:
LAN, ATM, Frame Relay, wireless), for each user and
in real-time. Though Application Analyzer supports
tests with multiple concurrent connections between
various endpoints, we limited our testing to just one
connection between endpoints at a time.

Application Analyzer agents were installed on sev
eral operating systems1, supporting various network
protocols, as well as TCP and UDP transport proto
cols. On Windows platforms, Application Analyzer is
sues calls to the WinSock application programming

Headquarters Simulation
Center

Branch Office

Web Agent

Permanent Agent

Permanent Agent

Figure 2- Test scenario

Promet- Traffic&Transportation, Vol. 21, 2009, No. 1, 23-31 25

V. Lipovac, V. Batos, A. Sertic: Testing Application (End-to-End) Performance of Networks With EFT Traffic

Permanent
Agent

Simulation
Center

~
Permanent

Agent

Figure 3 - Performance tests are set up at the console
and run between a pair of agents

interface (API) at the appropriate level, while on
other platforms, it issues Sockets calls. Our EFT-like
application programs were issuing their WinSock and
Sockets calls as blocking calls. With this respect, we
noticed 20% to 50% degradation of the performance
when using non-blocking calls on the code paths under
test.

Our goal was to identify to what extent the perfor
mance was affected by protocol differences. We based
most of our benchmarking ofTCP and UDP on a sin
gle operating system with built-in TCP/IP protocol
stack: the XP version of Microsoft Windows, but later
on we extended some of our investigations to include
the achieved performance levels of other available
platforms1. With this respect, we used two matched
computers on a single LAN segment thus not taking
into account multi-hop network topologies and how
routers treat TCP and UDP.

We used three benchmark application scripts in
our testing. With the scripts called "EFT-SHORT"
and "EFT-LONG", we simulated repeated credit
-check transactions: an endpoint sends a small record
and gets the acknowledgment so that latency and turn
around time produced a major effect on the perfor
mance (mainly response time) when these scripts were
run, while buffer size was of minor effect. The "FILE
TRANSF-LONG" script simulated a file transfer, by
sending a large block of data and getting the acknowl
edgment in return. This caused multiple full buffers to
propagate forward on the network, so the stack buffer
ing and windowing produced a greater effect on the
performance (mainly throughput) than the latency
and turnaround time. The basic characteristics of
these transactions were:

- EFT-SHORT (credit-check, short connections)
transaction was sending 100 bytes from the first
endpoint to the second one that replied with a sin
gle-byte acknowledgment. A connection between

26

the endpoints was brought up and torn down
within each repeated transaction; the connection
time was measured as part of each transaction.

- EFT-LONG (credit-check, long connection)
transaction, too, was sending 100 bytes and one
byte was received as reply. A single connection
was brought up, followed by multiple transac
tions, before tearing the connection down. Com
paring the EFT-LONG to EFT-SHORT reveals
the effect of establishing and closing down the
connections.
FILETRANSF-LONG (file-send, long connec
tion) transaction consisted of sending a large num
ber of bytes and receiving a single-byte acknowl
edgement. As with EFT-LONG, connections span
many transactions and so connection time was of
minor relative impact on the performance.

2.3 Implementation of connection-less (UDP)
datagram transmission

As a connection-oriented protocol, TCP provides
reliable delivery of data at the cost of executing
time-consuming initialization and termination proce
dures, while a connection-less or datagram protocol,
such as UDP, provides just a best-effort delivery ser
vice, where the network tries to deliver application
data to the recipient, but if there are problems along
the way, the data can be lost, even though the applica
tion is not even notified of the loss. However, in spite
of providing unreliable transport, UDP is frequently
used by network applications as it does not incur addi
tional overhead associated with connection establish
ment and teardown. Therefore, if connectionless
transport protocol (such as UDP) was to be used, our
application-level test programs had to incorporate a
subset of the TCP functionality for proper and reliable
exchange of data:

The common window scheme was used as the flow
control mechanism: the sender transmitted a prede
fined amount of data and then started waiting some
time (retransmission time-out period) for the ack
nowledgment from the other party. If this did not hap
pen within the preset time-out, the sender retrans
mitted the window of unacknowledged data.

The recipient sent the acknowledgment each time
it received a complete window of data.

In case of detecting datagram loss, the recipient
sent a negative acknowledgment indicating the sender
to retransmit what failed to be received.

2.4 Maximizing throughput

When throughput is to be maximized, we need to
take into account four parameters: file size, send

Promet- Traffic&Transportation, Vol. 21, 2009, No. 1, 23-31

V. Lipovac, V. Batos, A. Sertic: Testing Application (End-to-End) Performance of Networks With EFT Traffic

buffer size, window size, and maximum transmission
unit (MTU). In our benchmark tests between TCP
and UDP, we chose such values of these parameters
that would maximize the throughput.

File size determines how much user data is to be
sent from one program to another. It needs to be large
enough to allow accurate measurement of the net
work, as too small file size yields unrealistically low
measure of the network throughput.

Send buffer size is the number of bytes of user
data provided on each TCP Send call. It is well
-known that lP protocol supports fragmentation and
reassembly of datagrams exceeding the packet size.
If the TCP/IP network protocol stack can reassemble
datagram fragments faster than the application soft
ware can issue API Send calls, tests can run faster if
we configure the send buffer size as large as possible.
On most operating systems, a Send call involves
crossing from user space to kernel space; so the
fewer API crossings, the better. Once the data make
this crossing, they can be sent from the kernel very
efficiently. On the other hand, a large number of
datagram fragments may increase network conges
tion and, therefore, the probability that one of them
may be dropped. ·u that occurs, the entire datagram
must be retransmitted, causing degradation of the
performance.

It is well known that, for Ethernet, the MTU is nor
mally already set at 1,500 bytes, meaning that it is the
total data that can be sent on the link, which includes
user data and protocol headers (20 bytes for TCP and
20 bytes for lP), so that the amount of user data that
can be sent is thus 1,460 bytes, as a single sent block of
32 Kbytes will result in 25 MTUs.

TCP avoids lP datagram fragmentation whenever
possible, by breaking data into MTU-sized pieces.
Since TCP ensures the delivery of every lP datagram
it sends, if one datagram is lost it only requires the
retransmission of that datagram. On the other hand,
UDP does not avoid IP datagram fragmentation and,
whatever size buffer it gets, UDP will pass on the
datagram, and then lP fragments it and sends out.
So, in this respect, if a 32 Kbyte send data block is is
sued to TCP, it is broken up by TCP into MTU-sized
pieces. If a single MTU is lost, only that MTU needs
to be retransmitted. If a 32 Kbyte send data block is
issued to UDP, the whole block is passed directly to
lP, which breaks it into MTU-sized pieces. If any
MTU is lost, the whole datagram is considered lost
and the entire 32 Kbyte data block needs to be re
transmitted.

Window Size is the amount of user data that can be
sent (and the TCP stack must wait) before the ac
knowledgment is required. A common default for this
parameter is 8,760 bytes.

Promet- Traffic&Transportation, Vol. 21, 2009, No. 1, 23-31

3. TEST RESULTS

3.1 Benchmarking TCP and UDP throughput

The script named FILETRANSF-LONG was used
to compare the throughput values achieved with UDP
and TCP. Each test used a send file size of 1,460,000
bytes and a send buffer size of 32,767 bytes for TCP,
and 8,863 bytes for UDP. We set TCP window size at
8,760 bytes, and the UDP window size at 17,726. With
the transmission rate of 100 Mbps, we could set the
send file size to 32,543 and the window size to 130,172.
The MTU size was left at the maximum of 1,500 for all
the tests.

For achieving the best performance, the TCP send
buffer size should be as large as possible. Conducting
UDP throughput tests requires that the send buffer
size is optimized for the actual network. We found the
send buffer size of 32,543 bytes to be the best fit for
100 Mbps Ethernet. This did cause JP fragmentation,
but not to the extent that it resulted in lost packets and
thus degrade the performance. The test results show
the difference between UDP and TCP performance,
Figure 4. As it can be seen, TCP outperforms the
highly optimized UDP (of significantly improved per
formance), by approximately 2 Mbps.

59.000000 64.000000 69.000000

Figure 4- Throughput (in Mbps); FILETRANSF-LONG;
UDP and TCP; 100 Mbps

3.2 Throughput breakdown by operating
systems

Up until now we have been comparing TCP and
UDP performances built in a single operating system.
However, we extended our testing of the stack perfor
mance onto other available operating systems (with
their shipped stack default parameters). First, we
tested throughput, using the FILETRANSF-LONG
script, keeping the same operating system for both
end point agent pairs (except for the Linux tests where
we used a Windows computer as the first endpoint).
We ran the same set of tests on both Ethernet hierar
chy levels.

27

V. Lipovac, V. Batos, A. Sertic: Testing Application (End-to-End) Performance of Networks With EfT Traffic

During each test, 1,460,000 bytes were sent 100
times and each such transfer was timed.

The results are presented in Figures 5 and 6.

Linux

Windows

8.1 8.4 8.7 9 9.3

Figure 5- Throughput (in Mbps);
FILETRANSF-LONG; 10 Mbps

9.6

0.0000 20.0000 40.0000 60.0000 80.0000

Figure 6- Throughput (in Mbps);
FILETRANSF-LONG; 100 Mbps

Obviously, the results achieved for 10 Mbps, Fig
ure 5, reflect certain degree of differentiation among
stack performances, with the lowest performance re
corded using the Windows platform. However, as it
can be seen from Figure 6, the throughput perfor
mance did not scale directly with increasing the trans
mission rate up to 100 Mbps, as the stacks could not
take full advantage of the higher bandwidth available.

3.3 Optimizing throughput parameters

We noticed a measurable increase in performance
when the file size was increased from 100,000 bytes to
1,460,000 bytes, Figure 7. However, the performance
rise for file sizes over 1,460,000 bytes was negligible.

Our intention was to load the TCP with as much
data as possible. Therefore, we set up 32Kbyte for the
send buffer size in our tests (though some stacks allow
even 64Kbyte). To improve throughput, the TCP stack
should send full frames; accordingly, in our tests, mul
tiples of 1,460 bytes were sent. We used a file size of
1,460,000 bytes (with FILETRANSF-LONG), so each
sent frame was completely full.

28

(b) 1 OOk send
size

(a) 1460k
send size

45 50 55 60

Figure 7- Throughput (in Mbps);
FILETRANSF-LONG: 100 Mbps

65

To investigate the effect of partially loaded frames,
we ran two tests; the first one with the send buffer size
of 1,460 bytes (full frame), and the second one with
1,461 bytes. As it can be seen from Figure 8, the per
formance between the two target endpoint Windows
computers, dropped by over 1 Mbps on 10 Mbps
Ethemet link.

(b) 1461
bytes

(a)1460···········
bytes

8.0000 8.5000 9.0000 9.5000 10.0000

Figure 8- Throughput (in Mbps); FILETRANSF-LONG;
send buffer 1,460 and 1,461 bytes; 10 Mbps

To increase the performance, it is important that
network managers understand the network behaviour
and know how to optimize network parameters. So,
for achieving higher throughput, the number of ac
knowledgments should be kept low, and, conse
quently, the window size can be raised close to 64
Kbyte (under condition that all computers can handle
it). However, with our hardware, enlarging the win
dow size did not noticeably impact the performance,
after we had adjusted other affecting parameters.
However, with different network configurations, such
e. g. with multiple simultaneous file transfers, the win
dow size is expected to have a greater effect.

3.4 Benchmarking TCP and UDP response
time

The response time for both TCP and UDP was
tested between a selected pair of computers, con
nected with 100 Mbps Ethernet. As it can be seen from

Promet- Traffic&Transportation, Vol. 21, 2009, No. 1, 23-31

V. Lipovac, V. Batos, A. Sertic: Testing Application (End-to-End) Performance of Networks With EFT Traffic

Figure 9 and Figure 10, the (connection-oriented)
TCP clearly exhibited longer response time, specifi
cally for EFT-SHORT type of transactions (where the
connection was opened and closed for each short
transaction) with respect to EFT-LONG type of trans
actions, and regardless of the actual network type. Ob
viously, the connection setup overhead caused longer
response time for short-lasting transactions. The re
sponse time could be improved by using long-lasting
transactions.

As expected, the response time for UDP was al
most equal when using either EFT-SHORT or
EFT-LONG scripts, since no connection setup over
head was incurred.

EFT-LONG,
TCP

0.000424

0.000000 0.001000 0.002000 0.003000 0.004000

Figure 9- Response time (in seconds per transaction);
EFT-SHORT and EFT-LONG; TCP; 100 Mbps

EFT-LONG,
UDP

EFT-SHORT,
UDP

0.000000

0.000548

0.000598

0.002000 0.004000

Figure 10 - Response time (in seconds per
transaction); EFT-SHORT and EFT-LONG;

UDP; 100 Mbps

Testing with EFT-LONG script did not include
connection setup overhead, so the benchmarking be
tween TCP and UDP was based just on transmitted
data alone. As it is zoomed in Figure 11, better re
sponse time was achieved by using TCP's reliable
transport algorithm that outperformed the (also reli
able) transport algorithm we implemented for UDP.
So, when the impact of connection setup and
teardown overhead was removed, this test shows that
TCP provides an efficient mechanism for achieving
excellent response time.

The above results were in accordance with our ex
pectations, as if a selected application was repeatedly
sending the same traffic pattern, the earlier described
reliable datagram transmission algorithms could be
accordingly tuned, so that UDP had solid ground to

Promet- Traffic& Transportation, Vol. 21, 2009, No. 1, 23-31

100 Mbps, •••••• IJIII!Ill!ll!llll!!l!ll
UDP -~~~

100 Mbps, 111011!! .. ~~~~~:24~J
TCP

0.000000 0.000300 0.000600

Figure 11 - Response time (in seconds per
transaction); EFT-LONG; UDP and TCP; 100 Mbps

outperform TCP. However, as soon as the traffic flow
pattern on UDP became more diversified, it became
hard to outperform the reliable transport mechanism
implemented by TCP. Therefore, we could have justi
fiably anticipated that TCP performed as well as UDP,
or better, in many of such tests of ours.

Furthermore, as TCP provides reliable transport,
while UDP allows for low-overhead "stateless" trans
actions, consequently, the latter performs best with
applications that use short transactions. On the other
hand, for long-running transactions, TCP is confirmed
to be more efficient and able to overcome its inherent
connection overhead.

3.5 Response time breakdown by operating
systems

The next set of our tests was designed to identify
differences in response time among the stacks, where
response time is the average time it takes a transaction
to be completed. We used the EFT-SHORT script
(short transactions which include the connection
setup and teardown) in the same configuration as with
the preceding throughput tests.

As can be seen from Figures 12 and 13, among all
the three targeted operating systems, Windows were
found to have the longest response time. To deter-

Linux ~--•••••"lllrvy.lllfli~lljM.tliiW.I

Solaris •••••illlll•lillllfll n.fll111l3.llillli14il~·twl

Windows 1--•••••••IIUI.JIIii!;S;Ifii;iiii'~~c:;J

0.000000 0.004000

Figure 12 - Response time (in seconds per
transaction); EFT-SHORT; 10 Mbps

29

V. Lipovac, V. Batos, A. Sertic: Testing Application (End-to-End) Performance of Networks With EFT Traffic

Windows

0.000000 0.001000 0.002000 0.003000 0.004000

Figure 13 - Response time (in seconds per
transaction); EFT-SHORT; 100 Mbps

mine the cause, we closely analyzed the Windows plat
form, first by running 10 concurrent pairs of EFT
-SHORT scripts, expecting to get faster average re
sponse, because of the Windows ability to handle mul
tiple tasks. However, the obtained results were the
same as with the single pair of agents. Next, we ana
lyzed the line trace of Windows, using the EFT
-SHORT script. The line trace showed that the con
nection setup processing for Windows was consis
tently faster in this case, as it took between 2 and 3 mil
liseconds. To validate this observation, we ran the
EFT-LONG script between three PC operating sys
tems. As we already mentioned, the EFT-LONG
script establishes a connection once and then sends
and receives in the same manner as EFT-SHORT.
Consequently, running the test with EFT-LONG en
abled benchmarking the data transfers without taking
into account the connection overhead. As it can be
seen in Figure 14, EFT-LONG performance actually
improved on Windows. However, the connection

Windows

30

0.0000000 0.0002000 0.0004000 0.0006000

Figure 14- Response time (in seconds per
transaction); EFT-LONG; 100 Mbps

setup was slower on Windows than on the other two
PC operating systems.

4. CONCLUSION

It has been demonstrated that TCP provides high
level of performance and should be the protocol of
choice with regard to UDP, for most applications. The
TCP performance is acceptable whenever the time for
connection setup and teardown is not relatively signif
icant, such as with file transfers. If an application
needs to avoid connection overhead, UDP can pro
vide performance gain, but can also be valuable for
specialized applications that need a reliable transport
algorithm, optimized for a specific type of data. Other
wise, the performance of TCP and UDP is almost
identical when connection setup/teardown is factored
out, regardless of LAN transmission rate. It was con
firmed that TCP provides very good performance and
is the first choice for any application, because of its
built-in reliable transport.

When using lOMbps Ethernet, almost any operat
ing system protocol stack was capable of using all the
bandwidth with just one connection, but with
100Mbps Ethernet links, the performance difference
between stacks could be clearly seen and the choice of
operating system becomes more important. This dif
ference will become even more pronounced with
faster networks (Gbps).

We have two uncertainties regarding the above ob
servation. First, as we tested with faster PCs, we expe
rienced a significant improvement in performance on
100Mbps Ethernet, as with Windows, the throughput
could reach over 80Mbps. However, when the connec
tion setup/teardown was not negligible, Windows ex
hibited the longest response times. This observation
remained even when the connection setup/teardown
could be ignored.

Therefore, much remains to be further explored in
this area, as we have just "scratched the surface" in
gaining understanding of how these protocol perfor
mances behave in real situations, involving not just a
single connection, but a number of concurrent con
nections, as well as intermediate network devices,
such as routers and switches, that also influence aggre
gate throughput and response time.

Promet- Traffic&Transportation, Vol. 21, 2009, No. 1, 23-31

V. Lipovac, V. Batos, A. Sertic: Testing Application (End-to-End) Performance of Networks With EFT Traffic

Dr. se. VIATKO LIPOVAC
E-mail: vlatko.lipovac@unidu.hr
Dr. se. VEDRAN BATOS
E-mail: vedran.batos@unidu.hr
Sveuciliste u Dubrovniku
Odjel za elektrotebniku i racunarstvo
Branitelja Dubrovnika 29,
20000 Dubrovnik, Republika Hrvatska
Dr. se. ANTUN SERTIC
E-mail: antun.sertic@fpz.hr
Sveuciliste u Zagrebu, Fakultet prometnib znanosti
Vukeliceva 4, 10000 Zagreb, Republika Hrvatska

SAZETAK

ISPITW ANJE APLIKACIJSKIH PERFORMANSI
MREZA S EFT PROMETOM

U ovome radu istraiujemo kako krajnje performanse (po
sebno vezano uz promet elektronickih financijskih transakcija
- EFT) ovise o koriStenom stogu protokola, operacijskom sus
tavu i brzini prijenosa mreiom. S obzirom na navedeno, prove
deni su odgovarajuti simulacijski testovi performansi TCP i
UDP protokola, instaliranih na razlicitim operacijskim susta
vima, pocevsi od sustava Windows, Sun Safaris, do sustava
Lima, i uocene su razlike u pe!formansama, fokusirajuCi se na
propusnost i vrijeme odziva.

Promet- Traffic&Transportation, Vol. 21, 2009, No. 1, 23-31

KUUCNE RIJECI

aplikacijske (krajnje) pelformanse, kvaliteta usluge, EFT pro
met

REFERENCES

1. Operating systems tested: Windows, Linux and Sun So
laris.

LITERATURE

[1] Corner, D. E., "Intemetworkingwith TCPIIP, Volume 1;
Principles, Protocols, and Architecture (Fifth Edition),
Prentice Hall, NJ, 2005

[2] Tannenbaum A. S., "Computer Networks (Fourth Editi
on), Prentice Hall PTR, NJ, 2002

[3] Agilent Technologies, Application Analyzer Command
Line Interface Guide, Colorado Springs, 2002

[4] Quinn, B. and D. Shute. Windows Sockets Network Pro
gramming. Addison-Wesley, Reading, MA, 1995

[5] Stevens, W. R. TCPIIP Illustrated, Volume 1. Addison
-Wesley, Reading, MA, 1994

31

