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AN APPROXIMATE MODEL FOR FLEET SIZING 
AND REDISTRIBUTION 

SUMMARY 

To allocate a fleet of vehicles to a given number of locations 
and to redistribute free vehicles are important control prob
lems. In this paper we use the results for multi-location inven
tory models to develop an approximate solution for the com
bined fleet sizing and redistribution problem. For a defined re
ward structure we investigate: 
a) some properties of the optimal redistribution and allocation 

decision respectively; 
b) the concavity of the expected one-period reward; 
c) the advantages gained from co-operation of locations over 

independent locations. 
Since a model with discrete time is used, the proposed solu

tion is an approximation. The two-location model is investi
gated in more detail. 

1. INTRODUCTION 

Consider a transportation company that maintains 
a fleet of vehicles which are distributed among a given 
number N of locations. Let the infinite planning hori
zon be divided into periods. During each period the 
vehicles have to meet a random transportation de
mand. The demand in a given location can be served 
by vehicles located in the terminal or by vehicles trans
ferred from other terminals. At the end of a period the 
unserved demand is lost. Furthermore, we assume for 
location i the following cost structure: 

a profit g; per served demand urut, 
- a penalty p; per unserved demand unit, 
- transfer cost C;i per vehicle transferred to location 

j :t: i, 
- operating and maintenance costs h; per vehicle lo

cated to i. 
The decision problem is to find such a number of 

vehicles for each terminal and a rule for vehicle trans
fer which maximise the expected discounted reward 
over the planning horizon, i.e. we are looking for the 
optimal fleet size as well as for an optimal redistribu
tion policy. 
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The search for optimal fleet allocation decisions 
(AD) and redistribution decisions (RD) is an impor
tant problem in the control of transportation systems. 
In the past, attempts have been made to solve this 
problem using mathematical progran1ming. For in
stance, [DUHA97] uses ideas from the queuing theory 
and mathematical inventory theory to investigate a 
special structured centre-terminal system with nodi
rect flow of transportation equipment between termi
nals. In this paper we propose an approximate solu
tion for the formulated fleet sizing and redistribution 
problem by the use of results from inventory theory 
and from Markovian decision theory. For this reason 
we model the above described situation as a special 
multi-location inventory model with contingents and 
redistribution as it is introduced and investigated in 
[KOCH90]. In the next section we will give the formal 
description of the problem. The static or one-period 
model is investigated in Section 3. We will see that the 
solution of the static model is a solution for the dy
namic model as well. In Section 4 we consider the 
two-location case in detail. Finally, in Section 5 we 
make some comments on further research of the prob
lem. 

2. THE MULTI-LOCATION MODEL 

The multi-location system comprises N intercon
nected locations, N ~ 2. Let the planning horizon be 
divided into periods t ET= {1,2, ... }.During period 
t E T a transportation demand occurs in accordance 
with a non-negative random vector~= (§1 , fu, ... , §N) 
where random variable §; describes the demand in lo
cation i, i = 1(1 )N. We denote the distribution func
tion and the density for the random vector ~' by F( ) 
and f( ) respectively. Let E(~) = Jl = (Jl I> J.12 •• JlN) exist 
with O<Jl;<oofor i= 1(1) N. The demand is assumed to 
be stationary and independent over time, and later in 
Section 4 across locations as well. The transportation 
equipment (vehicles, containers, ... ) are located at the 
locations to meet this arriving transportation demand. 
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The demand is measured in transportation units, for 
instance cubic metres or quintals. Let n; denote the 
number of transportation equipment, let us say vehi
cles, allocated to location i, i=1(1)N. We assume (cp. 
[DUHA97] that all vehicles are identical in the sense 
that they can serve at the same moment exactly one 
demand unit. Furthermore, let taverage and tperiod denote 
the average number of time units to serve a demand 
unit or the number of time units of a period respec
tively. The travel time from location i to location j is 
assumed to be insignificant with respect to the size of a 
period, i, j=1(1)N. Finally we assume that at the be
ginning of a period all n; vehicles are available at loca
tion i, i=1(1)N. Thus we can compute the transporta
tion capacity available at location i during a period as 
a;= n; X tperiod/ taverage, i= 1(1 )N. To simplify further in
vestigations we replace the integer variable n; by the 
non-negative real variable a;, i=1(1)N. For the given 
transportation capacity a; we can approximate the cor
responding number of transportation equipment 
through 

n; = r a; X taverage I tperiod l, (2.1) 

where l X l denotes the smallest integer greater Or 
equal x. If a; ~ 0 denotes the transportation capacity 
which is scheduled for location i, i = 1(1 )N, then A = a1 

+ a2 •.• + aN denotes the total capacity of the system, 
and the non-negative vector a = (a~> a2, •. , aN) describes 
the allocation of transportation capacity A to theN lo
cations. Throughout the paper we will call such a vec
tor a an allocation decision (AD). At the end of ape
riod, after demand is observed, it is possible to redis
tribute the not used transportation capacity by a redis
tribution decision (RD). Let y = a - s denote the vec
tor of net capacities if demand realisation s is ob
served, i.e. y represents the vector of pre
redistribution capacity levels. The RD b = (b;i)i.j=LN is 
a transfer plan, i.e. bii denotes the amount of transpor
tation capacity transferred from location i to location 
j. It is obvious that for the given y the set of admissible 
transfer plan B(y) is defined as 

B(y)={ b=(b ii ):b ii~O, ~ b,i=(y)+,i,j=l..N}, 

where (xr =max(O, x) 
Transfer occurs immediately by cost C;i for one unit 

of transportation capacity transferred from location i 
to location j. After realisation of the RD the unsatis
fied demand is lost. In accordance with Section l we 
assume the following gain and cost structure: 

(a) Each demand unit served by a capacity unit of loca
tion i brings a profit g;, i=l(1 )N. 

(b) Each demand unit in location i, which remains un
served after the realisation of the RD, causes a 
penalty p;, i=l(1)N. 
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(c) Each capacity unit, which is transferred from loca
tion i to location j, causes transfer costs C;i, 
i,j=1(1)N. 

(d) For each transportation capacity unit allocated to 
location i we have costs k;, i= 1(1 )N. 
It remains to clarify the relation between costs h; 

and k; for the given i. For this we use the equation 
n;h; = a;k ; or 

or 

k;=n;/a;h; (2.2) 
From equ. (2.1) we have 

ni -1< al X taverage I tpcriod :<0; ni 

t average I t period :<O; n i I a i < t average I t period + l I a i · 
If we put these inequalities into equ. (2.2.) we get 

O~ki -hixtaveragc /tpcriod<h; /a,· 
It means that for sufficiently great capacity values a; 
the cost parameter k; can be approximated by 

h ; X t average / t period · 
Thus we put 

k; = h; X tavcragc / tperiod fori = l(1)N. (2.3) 
According to the cost and profit parameters we as

sume that the following condition holds: 

O=c,,:<O;k,,g.,p.,cii<ro, i,j=l..N,i7j. (2.4) 
Rewards in period t will be discounted by the fac

tor a•·l, 0 :<0; a :<0; l. For 0 <a < l the problem is to find 
an optimal control policy, i.e. a sequence of AD's and 
RD's that maximises the expected discounted reward 
over an infinite planning horizon. If a = 0 we have the 
one-period or the static problem. For a = 1 we use the 
average criterion, where we have to find a policy that 
maximises the expected average reward over an infi
nite horizon. 

Remark 2.1: 

In fact, the modelling of the initial problem as an 
inventory model leads to an approximate solution of 
the fleet sizing and redistribution problem. This is the 
consequence of the following restrictive assumptions 
that are made more or less visible in the description of 
the model: 
(1) The demand is continuous. 

This assumption may be ofless influence on the so
lution if the size of a demand unit is small relative to 
the order of the optimal capacity. 
(2) The transportation capacities are theoretical avail

able capacities. 
From a;= n; X tperiod/ taverage it follows that we assign 

an average capacity to any given number of vehicles. 
Furthermore, that capacity can serve the correspond
ing demand only in the case when the demand realisa
tion is concentrated to the beginning of a period. At 
the end we underestimate the optimal solution. The 
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estimation error will be less if taverage is approximately 
equal to tperiod· 
(3) The RD is realised immediately. 

If the travel times between locations are small rela
tive to tperiod then this assumption is not restrictive. 
( 4) The once allocated capacity is available again and 

again at the beginning of a period. 
It means that in practice all vehicles will return to 

their locations up to the beginning of the next period. 
In the following section we investigate the static 

problem. 

3. THE STATIC PROBLEM 

In this section we investigate the one-period 
multi-terminal model with redistribution. The investi
gation is based on results that are received in 
[KOCH82] and [KOCH90]. We use the notions of the 
previous section to specify the one-period gain func
tion. For that purpose we define function G(a,s,b) 
which represents the total gain for AD a, demand re
alisation s, and RD b. From the description of the 
model we get 

N 

G(a, s, b)=L: -k ; a, +g(a, s, b) , (3.1) 
i= l 

where g(a, s, b) denotes the profit minus penalties and 
transfer costs in the multi-location model for AD a, 
demand realisations, and RD b. Then 
G(a, s)= max G(a, s, b) , (3.2) 

be B(a.s) 
represents the total gain for a and s under optimal 
transhipments. Finally, function 
G(a)= f G(a, s) f(s) ds , (3.3) 
denotJs:>fhe maximal expected gain for AD a and the 
corresponding optimal RD. Function G( ) represents 
the one-period gain function. The problem is to define 
an optimal AD, i.e. an 
a· ~o=(O,O, ... ,o): G(a")=maxG(a) , (3.4) 

t~~O 

However, we have no analytical tractable expres
sions for function G( ). The real reason is connected 
with the RD. To compute for the given pair (a, s) func
tion G(a, s), defined in (3.2), we need to solve a linear 
transportation problem with excess and shortage. For 
such problems closed form solutions do not exist. 

The first step to overcome these difficulties is to 
get structural properties of the optimal RD. For the 
given a and s the N locations will be divided into two 
disjoint sets I+= { i = l..N: a; > s; } -the set oflocations 
with positive net capacity after realisation of the de
mand, and I-= { i = l..N: a; < S; } - the set of locations 
with corresponding negative net capacity. The loca
tions in set I+ as well as in set I- cause costs. To de
crease these costs we organise a transfer of not used 
capacity from locations in set I+ to locations in set I-. 
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To avoid non-economic capacity transfers we intro
duce some additional conditions on the cost and profit 
parameters. We distinguish two cases. 
Case 1: Transfer from I+ into r should be efficient, i.e. 
a transfer should decrease the total costs. For this we 
assume the condition "Efficiency of Transfers" 

(E1) gi +pi > c,J fori, j= 1(1)N, 
i.e. for the transfer or one capacity unit from i E I+ to j 
E rwe have to pay C;j transfer costs, but we gain gj +Pi 
in location j. 
Case 2: Transfer from I+ into { 1, 2, ... , N} \ r should 
be inefficient, i.e. a transfer should increase the total 
costs. This leads to the condition "Relative Independ
ence of the locations" 

(RI) cii +pi> P ; fori, j= lO)N, i;ej. 
Condition (RI) means that a transfer between lo

cations with unused capacity is unprofitable. 
A third assumption is the "Shortest Way" condi

tion 

(SW) c" + c,i > c,J, i, j, r= l(l)N , i;ej ;er. 
Condition (SW) expresses that it is cheaper to 

transfer directly than via another location. 
Finally, if for a given location j' there is a location i' 

such that ki' ~ ki" + Cff , we can "close" location j' be
cause of the allocation of transportation capacity in f 
is not cheaper than to allocate that capacity in location 
i' and to transfer it from i" to j'. Thus we assume the 
"Real Allocation" condition 

(RA) k;+c,J >ki fori,j=1(1)N. 
The consequence of conditions (ET), (RI), and 

(SW) is that in the optimal RD unreasonable transfers 
will not occur. The following lemma, which can be 
proved as in [KOCH75], summarises corresponding 
properties. 

Lemma 3.1. 

Let conditions (ET), (RI), and (SW) be fulfilled. 
Then for the optimal RD b" = (b;i") holds: 
(1) bik. bk) · =o fori,j,k=H1)N,i;ej;ek. 
(2) b ii · =0 fori= 1(1)N and jd., i;e j. 
(3) L: b ,J· :<::: sJ -aJ for j !2'1" 

(4),#.' ;~_ bii ' =mi{;~·(s;-a) ;;~_ (ai-si)] 
Properties (1) to (4) for the optimal RD can be in

terpreted as follows. 
Property (1): No location can both initiate and receive 

transfers. 
Property (2): Transfers between locations with unused 

capacities are not optimal. This is a consequence of 
condition (RI). 

Property (3): It is not optimal to transfer to a location 
j E r, i.e. to a location with shortage capacities, 
more than the amount of the shortage. 
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Property (4): The total amount of transfers is equal to 
the minimum of the total unused capacities and of 
the total shortages. 
Using these properties we get for the function 

g(a, s): = g(a, s, b') with g(a, s, b) from (3.1) the fol
lowing expression: 

N 

g(a,s)=Lg; min(a;.s)+:L L b;i, gi-
J= t ie l• je l-

- L
1
_p 1 (s1 - a 1 - :L •• b;1·)- .L

1
, L

1
_ cii b;1' = 

l E l E l E JE 

N 

=L g; min(a;. s)-L pi (s
1
-ai) + 

i=l ie l -

+L :L (gi +pi -cii)bij. (3.5) 
JE I + j E I -

NOW it follows from the equations (3.1 ), (3.2), (3.3) 
and (3.5) that 

G(a)=~ {Cgi +p) 1[1-F;(s)] ds;-{ki ai +p; ~i)} 
+C(a) (3.6) 

where F; () denotes the marginal distribution function 
of§.;, i = 1(l)N. 

Function C( ) is defined by 

C(a)= J L L C;i b';i f(s)ds (3.7) 
. h {s~ O }ie l• ie l · 

Wit 

C;i =g
1 

+ p
1

- cii , i,j= l(l)N, i~ j. (3.8) 

Thus function C(a) from equ. (3,7) represents the 
maximal expected gain from the co-operation of ini
tially N independent locations with given capacity a; 
for location i, i=1(1) N. Now the interpretation of 
equ. (3.6) becomes obvious: The expected reward for 
the given AD a and optimal RD b' is equal to the total 
expected reward earned from independent locations 
with corresponding capacities plus the expected gain 
C(a) from transfers. 

It can be shown (see e.g. [KOCH75]), that g( a, s) is 
a concave function of a and s. Since the density func
tion f() is non-negative it follows that G(a) from (3.3) 
or (3.6) is a concave function of a1 to aN. On the basis 
of this concavity property we can prove in the same 
way as in [KOCH75] the following important result. 

Theorem 3.1. 

Let for the static N-location model with redistribu
tion the assumptions (ET), (RI), (SW), (RA), and 
condition (2,4) be fulfilled. Then it holds: 
(1) The optimal AD a• = (a1, a2, ••• aN) can be uniquely 

defined from the system of equations 

8 G(a) /8 a; = 0, i= l(l)N. 

(2) The repeated application of AD a• and RD b' 
leads to an optimal control for the dynamic model 
with or without discounting. 
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In the following section we consider the two
location model in more detail. 

4. THE 2-LOCATION CASE 

For N =2locations the optimal transfer decision b* 
can be easily defined. From the properties of b* we get 
the following: 
(a) Let S; <a; for i=1,2. 

Then we have I+ = {1, 2}, l = 0, and b';; =a;- S;, 
b';J.j = b'J.jj = 0, i = 1,2. 
(b)Let S; >a; fori= 1,2. 

Now we haver = {1,2 }, I+ = 0, and b';i = a;, 
b'; 3.; = b'3.; ;=0, i= 1,2. We notice that both in case (a) 
and in case (b) the optimal RD dictates no proper re
distribution. 
(c) Let S; >a;, s3.; < a3.;, s1 + s2 ~ a1 + a2 for given i = 1,2. 

It holds that I+ = {3-1}, r = { i }, and b';; =a;, 
b'3-i3-i = S3.;, 

b\;; = min {a3.;- s3_1; S;- a;} = S;- a;, i = 1,2. 
(d) Let s; > a;, s3.; < a3.;_ s1 + Sz > a1 + a2 for the given 

i = 1, 2. 
It follows that I+= {3-i}, l = {i}, and b';; =a;, b\.; 

3-i = S3.;' 
b'3.;; = m in { a3.;- s3.;; S;- a;} = a3.;- s3.;, i = 1, 2 . 
With these results we can compute function 

C(a) = C(a1, a2). To simplify this computation we as
sume: 

The random variables §.1 and §.2 are independent 
random variables with distribution function F;( ), con
tinuous density f;( ), and F;(O) = 0 for i = 1,2 ... 

Then from equ. (3.7) and (3.8) we get 

c(apaJ = 

=~C;,3 _ 1 [l a,:.[~'· (s3 _ ; -a 3 _)f3 _;(s3 _)ds3_,f,(s)ds; + 

+1 a,}~.~ i -s)fJ-i (s3_.) dsJ-1 f; (s) ds; ]= 

2 a 

=LC;,J-i JF;(y)[1-F3_,(a; +a2 -y)] dy 
1=1 0 

Consequently we have from equ. (3.6) that 
2 2 

G (a P a J =-L k; a, -L P; ~, + 
i=l i=l 

2 a 

+ L ( g I + p.) H 1- F; (y)] dy + (4.1) 
i=l () 

2 a 

+L ci.J -i JF;(y)(l-F3 _; (a. +a 2 -y)) dy,ap a 2 ~o 
i=l 0 

The optimal AD a' = (a't, a'2) is a solution of the 
system 8G I 8a1 = 0, i=l, 2.1t follows from (4.1) that 
8G 
8=-k;+[l- F; (a.)] (g; +p.) + 

a; 

+ Ci,J-i F; (a) (1- F3_;(a 3_)]-
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-± C,.3-I JF;(y)f3 .; (a, +a 2 -y) dy,i=1,2. (4.2) 
i=l C) 

From ( 4.2) we derive the inequalities g; + p; > k;, i 
=1, 2, as a necessary condition for a• > (0,0), i.e. the 
optimal fleet size is positive if the profit for a served 
demand unit plus the penalty for an unserved demand 
unit is greater than the costs for a transportation ca
pacity unit. 

To get a better insight into the changes involved by 
the transition from independent work to co-operation 
of locations we consider a simple example with two lo
cations. 

Example 4.1. 

We assume the following data: N = 2; F;(s) = 1-
- exp(-s/11 ;), s ~ 0, 1-l;>O, i = 1, 2; and 

-

i 11 k; g; p, c" C;2 1-l; 
-

1 I 7 12 3 1 50 

2 j 7 15 5 3 80 I 

With these data we conclude from equ.(3.S) that 
cl2 = 19 and ~I = 12. For function G(a,, az), given in 
equ. (4.1), we get 

G(a" aJ = G o(a" a 2) + C(a" aJ 

with 

G
0 (a" a2) = 

=~[g ; ~L,-k; a; -(g;+p) ll; exp(- :JJ= 

=600-7a1-750exp(-a, /50)+ 

+1200-7a2-160exp(-a2 I so) 

and 

c(a" aJ = 
=19[ SOexp( -a 2 I so) +400 I 3 exp( -a I I 50-a 2 I so)

-640/3 exp( -a, I SO-a 2 I so)]+ 

+12[50 exp( -a, I so) -400/3 exp( -a, I 50-a 2 I so)+ 

+250/3exp(-a,/50-a 2 /50)] (4.4) 

For independent locations we get an optimal AD 
a'o; as the solution of the equation 8G0 /0a; = 0 or 

F, (a 0 J={g; + p,- k) /{g; + p,), i= 1, 2. (4.5) 

In the case of an exponential distribution function 
F;() with expectation ll; it follows from equ. ( 4.5) that 

a 0 ;=-!l; ln[k; ;(g;+p)]' i=1,2. (4.6) 

Furthermore, from ( 4.3) and ( 4.6) it follows that 
2 

G 0 (a 0 I,a 0 2)=I [g; fl;-k;{a 0 ;+fl;)]. (4.7) 
i=l 

For the Example 4.1 the equations (4.6) and (4.7) 
yield 
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a0 = (3S.107; S3.9S6) with an expected reward of 
GD(a0 ) = 35.349 monetary units. 

We notice that for location 1 we have an expected 
reward of -16.749 monetary units, i.e. for location 1 
the independent work is a losing deal. The corre
sponding results for the 2-location model are 

a• = (41.6; 90.2), 

and 

G(a*) = 209.006 monetary units. 

Comparing the results for the two models we can 
see that the co-operation leads to a profit increase of 
173.657 monetary units. In other words, the co
operation of the two locations raises the initial profit 
to 591.26%. On the other hand, the optimal transpor
tation capacity A* (and thus the optimal fleet size) for 
the co-operating locations is greater than 
A 0 = aa, + a0

2 - the sum of optimal transportation ca
pacities in the case of independent locations. Various 
numerical experiments have shown that these tenden
cies will be stronger with the increasing number N of 
locations. 

We get further interesting results if we solve the 2-
location model for different values of k, for instance 
(see Table 4.1): 

1. For values ofk1 which violate condition (RA) from 
Section 3 in a sufficiently large size the whole 
transportation capacity is located in one location 
only. If k 1 + c12 ~ k2, i.e. if k1 ~ 6 then we can expect 
that for low values of k1 all capacity will be concen
trated in location I. From Table 4.1. we see that this 
is the case for k1 ~ 5. On the contrary, if 
k2 + Cz1 ~ k" i.e., if k1 ~ 10 then we can expect that 
all capacity will be concentrated in location 2. 
Again, from Table 4.1 we see that this is true for 
k 1 ~ 9. Thus condition (RA) is only a necessary but 
not a sufficient condition for non-existence of de
generate allocation decisions. 

2. The optimal capacity a·, as well as the optimal ex
pected reward are decreasing functions of the cost 
parameter k 1• 

3. For k 1 = 0 it is optimal to have in location 1 an infi
nite transportation capacity, and in location 2 no 
capacity. The expected reward is equal to the ex
pected profit g1 J-1 1 + g2 112 = 1 SOO minus the ex
pected transfer cost c12 flz = SO, i.e., it is equal to 
1720 (cp. Table 4.1). 

4. The benefit from co-operation decreases with in
creasing k1 whereas the percentile benefit in
creases with k 1• 

Obviously the observed dependencies on k1 hold 
also for k2• However, we have to notice that the dis
cussed dependencies are concluded from the data in 
Table 4.1, i.e. from data for a special example. 
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Table 4.1- Results for different values ofk1• 

k, a\ a' 2 I G(a') 

10 0.00 121.48 186.78 

9 0.00 121.48 186.78 

8 5.89 117.28 187.51 

7 41.60 90.20 209.00 

6 131.96 16.87 289.53 

5 167.35 0.00 445.60 

4 188.04 0.00 622.96 

3 213.93 0.00 823.39 

2 249.38 0.00 1053.93 

1 308.25 0.00 1 329.51 

0.5 365.75 0.00 1 496.41 

0.1 496.80 0.00 1662.26 

0.01 682.10 0.00 1712.38 

0.001 866.60 0.00 1719.05 

0.00 CO 0 .00 1720.00 

5. CONCLUSION 

In the present paper we have developed an ap
proximate solution for the optimal allocation problem 
of transportation capacities in a multi-location system 
with redistribution. The proposed solution is an ap
proximate one because the underlying model has dis
crete time, i.e. we have the planning horizon in the 
model divided into periods. One consequence of this 
time discretisation is that controlling actions are possi
ble only at the beginning and at the end of a period. 
The usual approach for the continuous time case is the 
queuing model approach. However, for traffic net
works we can hardly expect exact solutions. To solve 
an adequate problem, the network is decomposed into 
more or less independent nodes (see e.g. [DUHA97]: 
Thus we have again an approximate solution. Further
more, in these models no redistribution between all 
locations is allowed. An interesting topic for future re
search is to verify and to compare the quality of both 
approaches by simulation. Another course for future 
research is to generalise the presented model in at 
least three directions. Usually not all information on 
the stochastic demand is known. Thus an adaptive 
control for the multi-location system makes sense (cp. 
[KOCH88]). Secondly, since the criterion function 
G( ) from Section 3 is not given in an analytical form 
for more than two locations, we have to apply some 
approximation approaches (e.g. as in [KOCH82]) or 
some searching methods as for instance Genetic Algo
rithms in [KOAR96]. Thirdly, in reality we do not 
have linear cost functions. Often, we have non-linear 
functions or some fixed costs. For such cases the Ge
netic Algorithm approach seems to be the best one at 
the moment. 
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ao, a" 2 G(a") G(a')-G(a") 

20.27 83.99 -50.17 236.95 

25.54 83.99 -27.77 214.55 

31.43 83.99 0.66 186.85 

38.11 83.99 35.35 173.65 

45.81 83.99 77.21 212.32 

54.93 83.99 127.44 318.16 

66.09 83.99 187.75 435.21 

80.47 83.99 260.68 562.71 

100.75 83.99 350.61 703.32 

135.40 83.99 466.70 862.81 

170.06 83.99 542.07 954.34 

250.53 83.99 622.05 1040.21 

365.66 83.99 647.94 1064.44 

480.79 83.99 651.16 1067.89 
00 83.99 652.10 1067.90 

ZUSAMMENFASSUNG 

EIN APROXIMATWES MODEL ZUR FUHRPARK
BERECHNUNG UND REDISTRIBUTION 

Beim analysierten Problem der Fuhrparkleitung handelt es 
sich urn das Phenomen der Fah12eug-alokation und urn deren 
Neuverteilung. In dieser Arbeit werden Ergebnisse multi
lokativer-Modelle, appliziert an konkreten Problemen, er
liiutert: 
1. Vorteile der optima/en Distribution 
2. Durchstudierte Konkavitiit der erwarteten Gewinne 
3. Die Arbeit erliiutert eine Beispiellosung bei unabhiingigen 

kooperativen Subjekten in Form der Entscheidung mit 
Riicksicht auf den Standpunkt. Wegen der diskreten 
Berechnungen sind die Ergebnisse aproximativ. 
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