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ON THE CAR-FOLLOWING THEORY 

SUMMARY 

The article deals with bumper-to-bumper driving. A .sys­
temic approach to car-following (bumper-to-bumper driving) 
i.s described and the mathematical model has been developed 
and solved. With this approach an algorithm for analytical and 
numerical solutions has been developed. 

1. INTRODUCTION 

The current problem of bumper-to-bumper driv­
ing has been dealt with in a number of ways. All the 
models used for the simulation and control of 
bumper-to-bumper traffic are derived from physical 
laws of motion. Differential equations describing this 
motion depend on different approaches to the prob­
lem. 

The system of differential equations for our prob­
lem can be obtained from the requirement [ 1] that the 
velocity errore 1k (t)=vk (t)-vk+1 (t) and the spacing er­
ror e2k (t)=xk (t)-xk+l (t) - S are minimal. If this condi­
tion is fulfilled, we get 

e Zk (t )=€ lk (t )-€ lk+l (t) 

. a k 1 
E1k(t)=- M e1/t)+ M e 3/t) (1) 

k k 

In ( 1) e Jk (t )= Fk (t ) - F,k and F,k is the steady state 
tractive effort required to propel the vehicle k at sys­
tem speed. It is necessary to define the most advanta­
geous manner of system regulation. On the other hand 

lo-o 
v,(t) 

x,(t) 

x,_, (t) 

an entire family of the car-following models has been 
investigated based on the following general form [7]: 

.. . "' [xk(t)-xk+l (t)] 
x k+1(t+T)=cxk+1(t+T)[ ] (2) 

xk (t )-xk+1 (t) 

In this article the problem of the car-following the­
ory will be presented with another supposition. 

2. SETTING THE PROBLEM 

Consider the line of n + 1 ( n E 'J{_, n > 1) vehicles. 
The first vehicle is moving at a velocity v0 

(v0=v0(t)>O), and the other n vehicles are following, 
adjusting their velocity to the vehicle in front of them. 

The following notation will be used in the analysis 
(see Fig. 1): 

n+ 1- the number of vehicles in the line of 
traffic, 

k- an index number, k = 0,1,2, ... ,n, 
xk =xk (t)- the coordinate of the k-th vehicle's 

front 
vk =vk (t)- the velocity of the k-th vehicle, 
v 0 = v 0 (t)- the velocity of the leading vehicle, 

Dk = Dk (t)- the postulated legal distance of separa­
tion of the (k-1 )-th and k-th vehicles. 

It follows from Fig. 1 that: 

Dk(t)=xk_1(t) - x/t) (3) 

D,(t) 

lo-o 
v,_,(t) 

Figure 1 - Relations between vehicles in the line 

Promet- Traffic- Traffico, Vol. 9, 1997, No. 5-6, 191-194 191 



J. Usenik, M. Batista: On the Car-Following Theory 

v,_,(t) + b ,(t) 

f 
D,(t) --

+ 

L G, J 
Figure 2 - Simulation diagram of the vehicle-driver system 

and, because vk -t (t) 
lows (3) 
dDk(t) 
~=vk-l (t)-vk (t) (4) 

Equation (4) satisfies the physical requirements of 
the problem. 

Let us suppose that we can obtain dynamic equa­
tions governing the line of traffic by insisting that each 
vehicle keeps the required legal distance [5]. Each 
driver pays attention to the vehicle in front of him 
which means that ' 

vk=vk(DJ, k=l,2, ... ,n (5) 

With this assumption, equation (5) can be written 
in the following way: 

Dk+vk(DJ=vk-P k=l,2, ... ,n (6) 

If we consider each vehicle as dynamic linear sys­
tem, differential equations (6) describe the dynamics 
of the vehicle in the line. Equations (6) are dynamic 
equations of the system of vehicles and represent the 
mathematical model of a continuous dynamic control 
system. The response of the system to this input func­
ti~n is calculated, i. e. the distance Dk(t), which k-th 
dnver (k = l,2, ... ,n) with optimum control of his vehi­
cle (system) adjusts to the motion of the vehicle in 
front of him. This distance is the time function and 
represents the law which drivers in a line of vehicles 
abide by, i.e. the law of the line of vehicles. Simulation 
diagram of this mathematical model is given in Fig. 2. 

G, is the feed-back operator describing the func­
tion's dependence (5). 

The simplest type of motion to analyse is the one in 
which the dependence is linear: 

(7) 

v,_,(s) + --
+ 

v,(O) 

Relations (7) assume that every driver in the line 
adjusts the velocity of his vehicle to the velocity of the 
vehicle in front of him in the linear manner. The coef­
ficient r k =a~1 represents the total time in which the 
k-th driver would cover the distance Dk to the vehicle 
i~ fr~nt of him if the latter suddenly stopped. This 
time IS made up of two parts: the driver's reaction time 
Tk and the time ~k which is needed for displacementD 
in the physical sense: k 

• k = Tk +~ k (8) 

Without affecting the generality of the model, we 
may simplify it and accept that on average all these 
times are the same and therefore 

7:1 =7:2 = ... =7:, =7: 

T1 =T2 = ... =T, =T 

~~=~2= ... =~,=~ 

(9) 

(10) 

(11) 

a 1 =a 2 = ... =a, =a (12) 
By inserting (9) - ( 12) into the equations of the sys­

tem (6) we get a mathematical model in the form of 

vk(t)=a[vk_1(t-T)-vk(t-T)] , k=1,2, ... ,n (13) 

Equations (13) are dynamic equations of the sys­
tem of vehicles and are non-homogeneous linear 
~quations of the 1'1 order. The right side of (8) is the 
mput of the dynamic driver-vehicle system. We will 
calculate th~ output of the system, i.e. velocity vk(t) of 
the k-th dnver. The leading driver's velocity v is 
known. It is arbitrary and depends on the weather c~n­
ditions and the state of the road surface. 
Dk(O)= col Dk, vk(O)= cnlvk (14) 

We can solve the system of equations ( 13) by using 
Laplace transform: 

L{ vk (t)} =a[L{ vk-t (t -T)} -L{ vk (t-T)}] (15) 

_1_ V,(s) 
s+ae·T• 

Figure 3 - Block diagram of the mathematical model of a traffic line 
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We denote it L{ vk (t)} =Vk (s) and obtain (15) 

ae -Ts Vk-! (s) Vk (0) 
Vk(s) T + T k =1,2, .. . , n (16) 

s+ae - s s+ae - s 

The block diagram of equation ( 16) is shown in 
Fig. 3. 

To obtain the solution in real time-space, equation 
(16) cannot be used with inverse Laplace transform, 
so it must be rearranged and stated in a different form. 

Fork = 1 we first obtain 

k =1,2, . . . ,n 

ae-Ts V
0 
(s )+v

1 
(0) 

V,(s) 
I s+ae -Ts 

Because ([2], [3]) the series are convergent 
ak e-kTs "' (r -1)!a ' e-rTs 

-----:-=2.:(-1)'-k ----­
(s+ae Ts )k r=k (k - l)!(r-k)!s '' 

it follows from (17) 

"' [ (r-1)!V (s)a ' e-rTs ] 
Vk(s)=L (-1)'-k o + 

r=k (k - 1) !(r - k) !s' 

k-l[v . (0) "' !!at e -tTs ] 
+ L: -"-'- L: C-1)1-r ---

r =o r! l=r (l-r)!s 1
+
1 

(17) 

(18) 

(19) 

(20) 

Equation (20) undergoes inverse Laplace transfor­
mation and so we obtain the solution of a differential 
equation ( 17), i.e. the speed of the k-th driver (k = 
1,2,3, .. . ,n) in the traffic line: 

.o [ (-1)'-k a' ] 
v/t ) = ~ (k _ 1) !(r -k)! :F, (t - rT) + 

" n - r " e ( 
k-I[V (0) "' (-1)m -r a "' -mTs ] 

+ L.. -- L.. l-mT)"' 
r=O r! m=r (m-r)! + 

(21) 

Here 

() - 1 { (s)(r-1)! } :F t = L V -- = 
' 0 s' 
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~{l '• (t-~·-· d< t;:::.O 
(22) 

t<O 

r-mT t;:::mT 
(t-mT)+= 

0 t >mT 
(23) 

To complete the solution we have to estimate its 
asymptotic behaviour. Since limV/t)=limsVk(s) it 
follows from ( 17) 1-+x. s-+o 

lim Vk (t )= lims V0 (s) 
t - t-c:x;, s-+0 

(24) 

3. SPECIAL EXAMPLES 

1. Drivers react without delay: T = 0. 
2. The velocity of the leading vehicle differs in time: 

v0(t) = v0 + a0 t. 
3. The combination of both conditions: T = 0 and 

v0(t) = v0 + a0 t . 
When T = 0 we obtain the model from ( 13) in the 

form of 

v/t)=a[vk-l(t)-vk(t)], k=l,2, ... ,n (25) 

Hence 
aVk_1(s) vk(O) 

Vk(s) +--
s+a s+a 

and 
I 

v k (t )=ae - w f e "~ v k-l (i;)d~+v k (O)e - ut = 
0 

= e-"'[ a! e "~ vk-J (/;)df,+ (O) Dk ] 

(26) 

Let us state the leading vehicle's velocity as 
v0(t)=v0+aof. The leading vehicle is accelerating when 
a0 >0, decelerating when a 0 <0 and moving at constant 
velocity when a0=0. In this case equation (21) is stated 
in the form of 

, [ (-1)'-k a' , } 
vk (t)=~ (k-1)!(r-k)!! (vo+ao (t-rT -/;))<;k-1 df, 

k-l[v (0) oc (-1)"' - ' a'" e-mTs ] 
+ L: ~ L: Ct -mT):" (27) 

r =O r. m=r (m-r)! 

In the case (T = 0) 1\ ( v/t) = v0 +a 0 t) we obtain 

( 
l k-11 ( t)') v/t)=u+[v0 -u+a0 (t-kr)] 1-e - · L:~ - + 

, =o l. r 

I 

+ao c~~-:)!(~r 
Do 

u=­
r 

(28) 

(29) 

The initial velocity of the k-th vehicle follows from 
(28): 

vk (O)=u+[ V 0 -u-a0 kr ](l-1}+0=u (30) 
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Expression (29) presents the initial velocity of a 
line of vehicles, i.e. the velocity at time t=O. 

4. NUMERICAL EXAMPLES 

Computer simulation with "Maple V" software 
tools was done for some special examples. The graphs 
of corresponding response functions are given in Fig. 
4-6. 

5. CONCLUSION 

The mathematical model of vehicle behaviour in a 
line of vehicles must be based on the real laws of phys­
ics. Solving differential equations which represent the 
mathematical model of a continuous dynamic system 
requires new approaches and the use of computers. 
Algorithms obtained in this way are good foundation 
for computer simulations which are an important tool 
for the study of road capacities. 

POVZETEK 

VOZNJA VOZIL V KOLONI 

V prispevku obravnavamo voi njo vozil v koloni. Opisan je 
sistemski pristop k temu problemu, kreiran in rden je relevan­
ten matematicni model. S takJnim pristopom uspemo razviti 
algoritem za analiticne in numericne rditve danega problema. 

LITERATURE 

[1] Banvell, F.T.: Automation and Control in Transport , 
Pergamon Press Ltd., 1973. 

[2] Batista, M., Bogataj, L.: Analytical approach to logistic 
perturbations in communication and transportation de­
lays, 4th International scientific and professional con­
ference on traffic management, Proceedings, pp. 75-80, 
Maribor, 1997. 

[3] Batista, M., Usenik, J,: On analitycal solution of 
differential-delay equation, SOR 97, Kranj , 1977. 

[4] Gazis, D. G., Herman, R., Renfrey, B. P. : Car-following 
theory of steady-state traffic flow , Operations research, 
1959, 7, pp. 499-505. 

[5] Gazis, D. G., Herman, R., Rothery, R. W.: Nonlinear 
follow-the-leader models of traffic flow , Operation re­
search, 1961, 9, pp. 545-567. 

[6] Jessop, A.: Decision and Forecasting Models With Trans­
port Applications, Ellis Horwood Ltd, England, 1990. 

[7] Leutzbach, W.: Introduction to the Theory of Traffic 
Flow, Springer- Verlag Berlin, Heidelberg, 1988. 

[8] Pipes, L.A.:An Operational Analysis of Traffic Dynam­
ics, Journal of applied physics, V. 24, Number 3, 1953, 
pp. 274-281. 

194 

I v.=O, u=20, -r=1 • 
15 

~ 
E 

~10 
0 

~ 
5 

o +---~~,-----~~~--,-~~~ 

15 

5 

0 5 10 
Time, s 

15 

Figure 4- v.=O, u=20 m s·', -r=1 s, a.=O 

I V0=20, u=O, -r= 1 I 

20 

0+-~--~r---~--,------,--~--~ 

30 

1/) 25 

"E 
~20 
0 
-a; 
> 15 

10 

0 5 10 
Time, s 

15 
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