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EFFICIENCY LOSS OF MIXED EQUILIBRIUM ASSOCIATED
WITH ALTRUISTIC USERS AND LOGIT-BASED
STOCHASTIC USERS IN TRANSPORTATION NETWORK

ABSTRACT

The efficiency loss of mixed equilibrium associated with
two categories of users is investigated in this paper. The first
category of users are altruistic users (AU) who have the same
altruism coefficient and try to minimize their own perceived
cost that assumed to be a linear combination of selfish com-
ponent and altruistic component. The second category of us-
ers are Logit-based stochastic users (LSU) who choose the
route according to the Logit-based stochastic user equilib-
rium (SUE) principle. The variational inequality (VI) model is
used to formulate the mixed route choice behaviours associ-
ated with AU and LSU. The efficiency loss caused by the two
categories of users is analytically derived and the relations
to some network parameters are discussed. The numerical
tests validate our analytical results. Our result takes the re-
sults in the existing literature as its special cases.
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1. INTRODUCTION

Since 1950s, it has been well known that the out-
come of the user’s selfish behaviour is generally not
identical with the system optimum (SO). However, the
gap was not known for a long time. In 1999 Koutsou-
pias and Papadimitriou presented the efficiency loss
(price of anarchy) to measure the inefficiency for the
user’s selfish behaviour and defined it as the largest
ratio between the total cost of Nash equilibrium and
the total cost of an optimal solution achieved by cen-
tralized control [1]. Later, Roughgarden and Tardos in-

troduced it into the transportation network and used it
to quantify the gap between the user equilibrium (UE)
and the SO [2]. After that, quantifying the efficiency
loss of user’s selfish behaviour in the transportation
context has been an important aspect in the traffic sci-
ence. The researchers have extended the above works
in different aspects [3-9].

In the studies mentioned above, the authors as-
sumed that each user has the same route-choose prin-
ciple. In other words, each user tries to minimize her/
his actual (perceived) travel cost. Several researchers
studied the network simultaneously with heteroge-
neous users where different category users have dif-
ferent route-choose principles. Haurie and Marcotte
investigated the network users belonging to some non-
cooperative Cournot-Nash (CN) players, where the us-
ers belonging to the same CN player can cooperate
fully with each other and different players will compete
with each other. The users of one CN player aim to
minimize their own total cost while competing with the
users of other players [10]. Harker examined that the
network users can be divided into different CN play-
ers and UE player and obtained a new network equi-
librium model [11]. Recently, Yang and Zhang studied
the existence of anonymous link tolls in network with
UE-CN mixed equilibrium behaviours [12]. Liu et al.
are concerned with the efficiency loss caused by the
mixed equilibrium behaviour in a system with the ad-
vanced traveller information systems (ATIS), the users
equipped with ATIS choose their route to minimize the
total travel cost, while the unequipped ones make the
route choice decisions on the base of minimizing their
individual travel cost [13]. Guo and Yang first proved
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that any Pareto optimum can be decentralized into
multiclass user equilibrium by positive anonymous link
tolls. They further quantified the system performance
gap when optimized by the two different criteria [14].
Yu and Huang investigated the efficiency loss of trans-
portation network with UE-CN mixed equilibrium [15].
Karakostas et al. studied the effect of oblivious users
using, as the measure of network performance, its
price of anarchy [16].

Experiments have shown that even for simple
games in controlled environments, the participants do
not act selfishly; their behaviour can be either altruistic
or malicious [17-18]. This paper aims to quantify the ef-
ficiency loss of a network with two categories of users.
The AU choose their routes according to the UE princi-
ple by their perceived cost that is a linear combination
of a selfish component and an altruistic component.
The selfish component is the user’'s own actual trav-
el cost, and the altruistic component is the increase
in the travel cost the user causes to others (precise
definition is given in Section 3). The LSU choose their
routes aims to minimize their perceived costs accord-
ing to the SUE principle. Section 2 introduces the nota-
tion and assumptions. Section 3 obtains the equiva-
lent VI formulation of the mixed equilibrium associated
with AU and LSU. Section 4 binds the efficiency loss of
the mixed equilibrium by VI approach and investigates
the relation between the upper bound and the network
parameters. In section 5 a simple numerical example
is provided. Finally, Section 6 gives the conclusions.

2. NOTATION AND ASSUMPTIONS

A transportation network G =(N,A) is composed
of a finite set of nodes N, and a finite set of directed
links A. Let W be the set of all Origin-Destination (OD)
pairs, R - the set of all paths in the network and Ry -
the set of all paths between an OD pair we W. It is
assumed that demand dw between an OD pair w € W
is a constant. Let d be the vector of demand in the
transportation network G. Denote the flow on path
re Rw, w & W as fiw. Suppose that AU have the same
altruism coefficient 5 and presume that the ratio of AU
among all the users between each OD pair is identical,
denoted by A. Denote by f4” the flow of AU and by fi!
the flow of LSU on path r € Ry. The vectors of path
flows by AU and LSU are fAY=(...,fAY, fAY, A%, ..)
and U = (L FBY Y RS ), respectively. By

Y the AU flow on link a |s denoted and v5% is the
LSU flow on link a, while v =(...,v4Y 1, vaY vals,..)
and vV =(.. vEY vESY vEsY ) are the vectors
of the link flows by AU and LSU, respectively. Vector
Va = (vaY v5SY) has components of all the flows on
link @ and va = v4Y + v5Y is the total flow on link a. We
define v = (v? vt*V) and f = (f*Y,f*V). The link travel
cost function ta(va), @ € A is separable, differentiable,

convex and monotonically increasing with the aggre-
gate link flow va. Denote by t the vector of link travel
cost in the transportation network G. The actual travel
cost of the users on path r € Ry is
Cw= D ta(vd’+vs*)0%, re Ru, we W
acA

while 0% = 1 if the path r € Ry traverses link a € A,
and 0% = 0 otherwise. The perceived travel cost of
LSU on path r € Ry (this travel cost is a psychologij-
cal value; it may be larger than or less than the actual
travel cost) will be denoted by C7Y.

For the sake of convenience, the flow conservation
conditions and nonnegative constraint conditions are
summarized as follows:

= Z Zfrﬁvuéévr,aeA, (1)
weWreRy
Zfrevu = Adw, weWw (ﬂ@u)y (2)
reRw
fA“>O reRe,weWw, (3)
Z Zf}s“ ar, @ EA, (4)
weW reRw
2w =(L-Ddw, weW (), (5)
reRw
fiw!>0,reRy, we W. (6)

where Y, piY is the Lagrange multiplier of equa-
tions (2) and (5), respectively. Assume that
QY = {f*| Y satisfying formulas (1) - (3)},

QY = {v*| 3" satisfying formulas( )-(3)};
QIFSU — fLSU ‘ fLSU )} and
QY = {v**V| 3f*% satisfying formulas (4) -(8)}.

Obviously, QAY, Q&Y. QY QLY are all closed and
convex sets.

satisfying formulas (4

3. MIXED EQUILIBRIUM MODEL
ASSOCIATED WITH AU AND LSU

Experiments in economics have found that the us-
ers behave not entirely selfishly, even in simple games.
Based on the results of Ledyard [17], Chen and Kempe
[19], and the definition of the perceived cost of altru-
istic user with altruism coefficient S(AU) is as follows:

Proposition 1 - For given S(AU). (8 €[-1,1]) and
for given w € W, there is a path r € Ry, w € W to min-
imize the perceived cost function

rA;vU(V) = (1 -B) Zta(Va)agr + EZ(ta(Va)Va)’a‘évr =

=(1-8)D ta(va) + B (ta(va)va)

The term

D ta(Va)

aer

is the selfish part of the cost,

> (ta(va)va)

aer

46
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is the altruistic part. (ta(va)va) denotes the derivative
with respect to va. Notice that we can rewrite

= > ta(Va) + B Vata(Va) .

aer aer
Thus, the perceived cost of S(AU) on link a in
the network is t4Y(v) = ta(va)+ Svata(va). Notice
that if S(AU)=0 then this coincides with selfish-
ness; B(AU)=1 corresponds to complete altruism;
B(AU)=-1 means the users are completely spite-
ful. In this paper, we have supposed that AU have the
same altruism coefficient 5 €[0,1].
The AU aim to minimize their personal perceived
travel cost under the current routing decisions of the
LSU, which is equivalent to solve

i, > f t
where the variables v5Y, a € A are taken as fixed. If
the function of t4Y(va) is strictly increasing by link trav-
el cost function ta(va) defined before, then the minimi-
zation problem (7) has a unique solution.

The LSU in the transportation network are consid-
ered now. In the SUE state, each utility-maximized user
always chooses the minimum perceived travel cost
path for travel [20]. The given path utility U5V is re-

v5SY 4 x)dx. (7)

lated to its travel cost, then U5 is given by
WU =-0CEY =-0ck + Em, re Ru, we W. (8)

where C5V is the random perceived travel cost along
the path, ch; is the actual travel cost along the path
as defined before, & is a random term associated
with the path under consideration and can be consid-
ered to represent the unobservable or unmeasurable
factors of utility. A positive unit scaling parameter @ is
related to the standard deviation of the random term
and measures the sensitivity of path choices to travel
cost, so -fcksY is the measure utility. If the P&Y de-
notes the probability of the LSU choosing path r € Rw,
then the utility maximization (perceived travel cost
minimization) principle implies that
U= Pr(USY > U\, Vk € Ry), reRw, we W. (9)
This choice probability has the following properties:

0<PH'<1,reRs,weWw, (10)
D Pwl=1,weWw. (11)

reRy

If the Logit-based model assumes that the random
terms &n in (8) are independently and identically dis-
tributed Gumbel random variables, then the choice
probability can be given by

wsu _ _exp(-Gcrz”)

W =~—=———%—, FERw, weEW. 12
’ > exp(-ciy’)’ (12)
leRw
and the path flow assignment can be given by
Y= (1-)dwPRY, re Ry, we W. (13)

The AU choose their paths aiming to minimize their
perceived cost according to the UE principle and the

LSU choose their paths aiming to minimize their per-
ceived cost according to the SUE principle. Then, at
the state of mixed equilibrium associated with AU and
LSU in the transportation network, the AU (LSU) trav-
el cannot reduce their perceived cost by unilaterally
changing their choice at the equilibrium. The condition
of mixed equilibrium associated with AU and LSU in
transportation network can be formulated as follows
[20]:

(CH -t =0, CAY - P = 0, re Ry, we W, (14)

exp( (9Crwu)
z p( 6 LSU
l€Rw
satisfying equations (1)-(6), where x4 is the minimal
path perceived cost of OD pair w at mixed equilibrium
for the AU. The mixed equilibrium can be formulated as
VI by the following [21].

Lemma 1 - Let (G,d,t,5,4) be a mixed instance
associated with AU and LSU. If the separable link
travel cost function ta(va), a € A is strictly increasing
and convex, then mixed equilibrium of the instance
(G,d,t,58,4) is equivalent with finding f=(f"Y, ),
such that for each Ve QY Ve QFY

Z Zcrw fAv - rw)+

Y= (1-A)dy = L r€ Ry, wEW. (15)

weWreRw (16)
> <CLSU(f)+ Ly frw” fr” )(fr%‘;su Flsuy> o
weWreRw (1 ;{)d

Proof: If f=(f"Y, ) is the mixed equilibrium of
the instance (G, d,t B A), then

(CHY(F)- pd)FaY =
C(F)-u>0,reRy, wew, (17)
FLSU — (1-A)d, M,reR,weW. 18
=( )WZep -0ckY) " (18)

l€Rw

By the relation of complementarity problem and VI,
(17) can be rewritten as

CAY(E)fAl-FAY) =0, re Ry, we W. (19)
From (18) next follows [20]:
ckV(F)+ 1 Zin o for’ _s(c") =0 (20)

(1-A)dw
where c¢" is the path travel cost in OD pair w e W,
S(c%) is the desired minimum perceived travel cost
[20]. Then f5 is the solution of the following VI:

LSU 1 iy w

w;mn;W(C (f)+= In(1 v -S(e ))

(Y -FRY) =0, visU e QFY (21)
i.e.,
> Z( ks ( 1In ! >( FLSU_FLSUY_
weWreRy (1 A)d (22)

-3 DTSRV -FRY) = 0, v € QFY.

weW reRw

The second term of (22) is zero due to the flow con-
servation condition and the OD demand is constant.
Then,
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> <CLSU Flsuy> 0,

weWreRy
FLSU
v

(1 /‘1)d )( FLSU_

e QY. (23)
Thus, in view of (19) and (23), we can obtain that f
is the solution of (16).
If f=(f"Y ) is the solution of (16), by the Ka-
rush-Kuhn-Tucker conditions of VI, we can obtain:
(CAY(F) -1t FAY = 0, Chl (F)- i’ = 0,

reRw,we W (24)
olsu 1 iy LSU> Lsu _
( (f)+ |n(1 Dy ) =0,
re Rw,we W. (25)
clsu 1 fLsu sV >
(f)+- |n(1 A)dw >0,reRuw, we W. (26)

where un’, ptY is the Lagrange multiplier of equa-

tion (2) and (5), respectively. For all f&Y > 0, r € Ry,
w € W, according to (25), then
i’ LSU

@-Ddw *

cer?“(f)+—In

Thus,
Ficl = (1-A)dwexp(OuiY - Oché (£)),
reRw,weW. (28)

Sum up equation (28) and according to the flow
conservation condition we have

=0, reRy,weW. (27)

su_ 1
__| 29
Hw Zexp HCISU) (29)
I€Rw
Substituting (29) into (27) yields
Y =(1-A)d _exp(-Oei) reRy, WEW. (30
=(1-)dv—=——F"Tc5+ S exp(-0ckY) W (30)
€ Rw

This completes the proof.

4. EFFICIENCY LOSS OF MIXED
EQUILIBRIUM ASSOCIATED
WITH AU AND LSU

- (vso,AU so,LSU)

Let v*° WV and v’ =(v3’), ac A be
the solution and the aggregate link flow of the follow-
ing optimization problem, respectively:

min aZe:Ata(va)va, (31)
where Q = QMU x QLY. Let T(v®°) measure the mini-

mal total travel cost of the transportation network, i.e.,
T(v*°) is the total travel cost at system optimum. £,
¢ are the path flow and link flow at system optimum,
respectively. Following the definition by Koutsoupias
and Papadimitriou [1], the efficiency loss of the mixed
equilibrium behaviour above is formulated as:

_T(f) _ T(V)
0(G,d,t,5,4) = -,-so T T1()%9) T T(v$O) (32)
where T =T(f) = > > cw()fw, or

weWreRy

Tmix — T(V) — Zta(\?:?“ + VgSU)(V + VLSU)
acA

= > ta(Va)Va.

acA

SO - T(fSO)

Z ZC (fSO) fw’, 0

weWreRw

0 = T(VSO) = Zta(VaO)V

acA
Hence, 0(G,d,t,/5,A)> 1. According to the origi-

nal composition of each OD pair demand, the SO
path flow %€ =(...,>°,f%° f%%,...) can be decom-
posed into fSOA”-AfSO, fSO.LSU = (1- 1)f*° and the
SO link flow can be decomposed into vS94Y = AvS°,
vSOEU = (1-2)vS°. Replace fa’ by f32Y and replace
23U py £325Y in (16), respectively. Then it can be con-
cluded that

SOAU_FAU) |

>3 A (R

weW reRw
ZLSU
+ LSU (AU gLSU) 4 1|n w ) (33)
w;Wr;w< 0 (1-A)dw
(fSOLSU fr%NSU)Z O
This leads to
Z(ta Va)+/J)Va a(Va))(VSOAU _AU)+
acA
3 b (V) (VLU LU . (34)
acA
fi SO,LSU _ 7 LSU
In—%— rw (frw ’ - frw )2 0.
Hw;Wr; (1 /‘l
Thus,
T < 1504 Zvaso(ta(va)‘ta(vaso))"'
acA
+ B Vat'a(Va)(AVE2-V5Y) + (35)
acA
fio SO FLSU
In—2— rw 1 A)frw -frw )
02,2 " ha

If an upper bound for the sum of the last three
terms on the right hand side (RHS) of (35) can be
found, then we bind the overall cost inefficiency of the
mixed equilibrium associated with AU and LSU in the
transportation network. For the sum of the second and
the three terms on RHS of (35), its upper bound can
be obtained by the following. A parameter is defined:
(Da(ta. Va ,VaSU B, A) =

(ta (Va) - ta (Va) Va + BVat'a (V) (Ava- vAV) - (36)
= max — .
Va=0 ta(Va)Va

Note that the denominator on RHS of (36) is given
and fixed. This indicates that we only need to obtain
the maximum of the numerator on RHS of (36). Let

F(va) = (ta(Va) - ta(Va))Va + BVat’a (Va)(Ava- V4Y),
€0, + ).
Obviously, F(va) is continuous in domain, so F(Va)

has the maximum within va € [0, Va] as long as we can
obtain F’(va) < O under the condition va = Va. It is easy
to obtain F'(va) = ta(Va) + SAVat'a(Va) - ta(Va) - Vat'a(Va)
and  F"(Va) =-2t'a(Va)- Vat"a(va). If ta(va) is con-

48
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vex, monotone increasing function, then we have
F’(va)< 0, when va=V,=0. This means F'(a)
decreases with the variable va € [Va +o0). Since
F,(Va) = (BA - 1)\7at,a(\7a) < O, we get F,(Va) < F’(Va) <0
under the condition va = Va. Thus we conclude that in
(36) the maximum is obtained within [0, Va].

For each given class of link travel cost function L
(a family of linear cost functions or polynomials of a
certain degree), let

@(L,B,ﬂ) = ¢ ér(]:axeA(Da(ta! Va 7vaSU B A) (37)

with the definitions (36) and (37), we have

D V3% (ta(Va) - ta (vE°)) +

acA ) (38)
+f Z Vat’a(\?a)(/lvaso -vpY) < o(L,B,A)T™.

acA
The upper bound of the fourth term on RHS of (35)
can be obtained by solving the following maximization
problem using the method in [6].
Lemma 2 - Consider the following maximization
problem

n
Xi
maxZ(x,y) = i;(YI‘Xi)ln oL (39)
subject to
n n
ZX,:C, ZYI=C, X,¥i=0,i=1,2,...,n (40)

i=1 i=1
where C> 0 is a constant. The optimal value of
this problem is Zmax = KC, where k solves equation
ke**1 = (n-1), with e being the base of natural loga-
rithm.

From Lemma 2, we can obtain

iy £SO.LSU_FLSUY < )
D In e i A)d -Fa?) < kw(1-A)dw,

reRw

(41)

where ki solves kwe" ' =|Ry|-1, w € W. Substitut-

ing (38) and (41) into (35), it yields

MK < TS0 4 (L, B, A) T™ +% 3 ko (1-A)dl (42)
weWw
Let
D= > (1-A)dw
weW

be the total stochastic traffic demand in network and
- (1-A)dw
k= =5k,

wew

then (42) can be rewritten as

T < 750 4 (L, B, A) T™ + %RD. (43)
If we define
S0
e T
D dw
wew

as the actual average travel cost of all network users at
system optimum, then we have the following theorem.

Theorem 1 - For a given separable link travel cost
function class L. Let each instance ta(va) € L being a
differentiable, convex and monotonically increasing

function of the aggregate link flow va. Let (G,d,t,5,4)
be a mixed instance associated with AU and LSU. If
T™* js the total actual travel cost at the mixed equilib-
rium, and T%° is the minimum total actual travel cost,
then

p(G.at A1) =T < (s Jas (LD (40

Theorem 1 states that the upper bound of the ef-
ficiency loss for the mixed equilibrium associated with
AU and LSU in transportation network with fixed de-
mand depends on six parameters, namely ¢(L,5,A4),
0, k, ¢, B, A. Parameter ¢(L,[3,A) < 1 is a dimension-
less number of the efficiency loss depending on the
link travel cost functions, the altruism coefficient and
the demand ratio. The upper bound of the efficiency
loss is a monotonically increasing function of ¢(L,5,4).
Parameter @ in its original meaning is related to the
standard error of the distribution of the perceived path
travel costs [20], and the Logit-based model assumes
that all paths in the network have the same standard
error. Specifically,

__T

Veo'
where ¢ is the common standard deviation of the per-
ceived path travel costs. The upper bound of the inef-
ficiency is a monotonically decreasing function of 4.
When 6§ —+ oo,

1
<+
0(G,d,t,5,4) < T-o(LAA)

then the model becomes the partly uniform altruism
traffic assignment problem. Parameter k is a dimen-
sionless coefficient increasing with the number of
feasible paths and thus reflects the degree of network
complexity. Equation (44) also states that the upper
bound of the efficiency loss is increasing with network
complexity. Since

SO
C= T

>’

weWw

then the upper bound of the efficiency loss decreases
with the actual average travel cost and increases with
the total traffic demand. Parameter A is the demand
ratio of the altruism users in the transportation net-
work. The upper bound of the efficiency loss is a mono-
tonically decreasing function of A. When A = 0,

05(1-;(L)>(1+6’%>’

which is the result in [6], when A = 1,
1
<+
p o 1 - ¢(L,B) Y
thus the model becomes a completely uniform altru-
ism traffic assignment, which is the result in [22].

The efficiency loss bound given in Theorem 1 is the
worst-case measure for the mixed equilibrium model,
taking over all the possible instances. In fact, the ac-
tual ratio of the total cost at equilibrium to the SO total
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cost can be substantially small. Indeed, in transporta-
tion network, the free-flow travel cost is usually not a
negligible fraction. Considering this, we can present a
parameterized and improved bound on the equilibrium
inefficiency, as done by Correa et al. in [3].

Theorem 2 - For a given separable link travel
cost function class L. Let each instance ta(va) €L
being a differentiable, convex and monotonically in-
creasing function of the aggregate link flow va and
t§ = t2(0)> 7(V)ta(Va) for all a €A with constant
0<p(v)<1.Let(G,d,t,pBA) be a mixed instance as-
sociated with AU and LSU. If T™ is the total actual
travel cost at the mixed equilibrium, and T°° is the
minimum total actual travel cost, then

0(Gd,t,p0) =L <
T (45)

S(l-(n(\?))lqo(L,B,A))(l (19§)k)'

5. EFFICIENCY LOSS EXAMPLE
OF MIXED EQUILIBRIUM ASSOCIATED
WITH AU AND LSU

Consider a directed graph consisting of two nodes
and two links (Figure 1).

2

Figure 1 - The network used in the example

The link travel cost functions are defined as t1 = v,
to = 1, respectively. There is one OD pair with fixed de-
mand d = 1. Supposing demand ratio A = 0.8, altru-
ism coefficient 5 = 0.1, parameter 0 = 1.

According to (31), the SO link flow solution can be
obtained by solving the following minimization prob-
lem:

min(vi)? + vz
stvi+tw=1
v, V2 = 0

The optimal solution is vi° = 0.5, v5° = 0.5 and
the total travel cost is 0.75.

The perceived cost of AU on link a in the network
is t4Y = ta(Va) + Svat'a(va). In this example the altruism
coefficient f=0.1 and t1=vi, t2= 1. Path 1 is the
link 1 and path 2 is the link 2. So the perceived cost
of AU on path i, i=1,2 is the perceived cost on link
i, i=1,2,i AU—V1 +vil+ 0.1 (vl +viSY) 1=
=1.1v{ +11vLSU, =1+0.1-(v4Y+v5%Y) 0 =1.

According to (14) and (15), the mixed equilibrium is
obtained by solving the following equations simultane-
ously:
(1.1vY + 1.1v5%Y -
1.4vY + 1.2v5%-

(1-p"Wv5Y=0,1-p2>0.

AU)v/fU - O,
AU> 0

su exp( AU _ LSU)
= 0.2 .
exp(-vi¥-vi®Y) + exp(-1)
=02 Auexpgul)
exp(-viV-vi®Y) + exp(-1)

The mixed equilibrium solutionis v’ = 0.8, v4Y = 0,

vi*V = 0.1048, v5*Y = 0.0952, #*Y = 0.9953. The ag-
gregate link flow is v1 =0.9048, v.=0.0952 which
generates the system total travel cost 0.9139. Thus,
the efficiency loss is

0.9139
0.75

Based on definition
Pa(ta, VAU, VEY, B,2) =
(ta (Va) - ta (Va))Va + Bvat,a
ta(Va)Va
and t1 = v1, to = 1, we can obtain
@1(ty, iVt B,A) =
(0.9048-v1)v1+0.1-0.9048-1-(0.8v1-0.8)
0.9048-0.9048
(46)

while v1 = 0.4886 the problem (46) reaches at the
maximum @1 = 0.2032. It is easy to obtain that @2 = 0.
Then, ¢(L,[,4) = max{@1, @2} = 0.2032. Because kw
satisfies equation kwe**'=|Ry|-1=2-1=1, then
kw = 0.2785. It is easy to obtain that k = 0.2785 by

oy ey,

=1.2185.

0=

~ max (Va)(AVa-V3")
Va=0

= max

Va=0

wew
and
D= ) (1-A)dw, ¢=0.75
wew
by
SO
R
>
wew

Thus, the bound becomes

< <1-¢>(%,,8,/1)><1 (16{1)") — 1.3482

according to Theorem 1.

6. CONCLUSION

This paper has investigated the efficiency loss in a
transportation network associated with AU and LSU. A
variational inequality model is presented to formulate
the route choice behaviours associated with AU and
LSU with fixed demand. The analytical results show
that the upper bounds of the efficiency loss of mixed
equilibrium depend on the type of link travel cost func-
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tion, the altruism coefficient, the demand ratio, the
network complexity, the travel demand and the degree
of travel perception error on travel cost. It is shown that
our result takes the results in [6] and [22] as its spe-
cial cases. Our ongoing work is to explore the efficiency
loss of mixed equilibrium associated with AU and LSU
in transportation network with elastic demand.
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