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ABSTRACT
Portions of dynamic traffic volumes consisting of 

multiple vehicle classes are accurately monitored with-
out vehicle detectors using vehicle-to-infrastructure 
(V2I) communication systems. This offers the feasibility 
of online monitoring of the total traffic volumes with 
multi-vehicle classes without any advanced vehicle de-
tectors. To evaluate this prospect, this article presents 
a method of monitoring dynamic multi-class vehicu-
lar traffic volumes in a road location where road-side 
equipment (RSE) for V2I communication is in opera-
tion. The proposed method aims to estimate dynamic 
total traffic volume data for multiple vehicle classes us-
ing the V2I sensing probe volume (i.e. partial vehicular 
traffic volumes) collected through the RSE. An experi-
mental study was conducted using real-world V2I sens-
ing probe volume data. The results showed that traffic 
volumes for vehicle types I and II (i.e. cars and heavy 
vehicles, respectively) can be effectively monitored with 
average errors of 6.69% and 10.89%, respectively, 
when the penetration rates of the in-vehicle V2I device 
for the two vehicle types average 0.384 and 0.537, re-
spectively. The performance of the method in terms of 
detection error is comparable to those of widely used 
vehicle detectors. Therefore, V2I sensing probe data for 
multi-vehicle classes can complement the functions of 
vehicle detectors because the penetration rate of in-ve-
hicle V2I devices is currently high.

KEYWORDS
V2I communication; V2I probe volume; online  
monitoring; multiple vehicle classes; motorway traffic  
volume.

1. INTRODUCTION
Monitoring real-time traffic volumes is essential 

for dynamic traffic control and operation in modern 
intelligent transportation systems (ITSs). Hence, 
various vehicle detectors, ranging from convention-
al inductive loops to advanced radar sensing, are 
densely deployed and utilised for monitoring re-
al-time traffic volumes. However, the field installa-
tion, operation and management of vehicle detection 
systems require extensive funding and resources to 
ensure reliability and accuracy of the measured traf-
fic information. In addition, the widely used vehi-
cle detectors (e.g. loop and image processing types) 
still have deficiencies when used to classify vehicle 
types (e.g. cars, buses and trucks) from the empiri-
cal perspectives of transportation practitioners.

To address the above issues effectively, we con-
ducted a literature review on academic investiga-
tions regarding advanced data sources [1–3]. Note 
that the literature review in this study is focused on 
academic research in which real-life advanced data 
are used to infer temporal vehicular traffic volumes 
for a road location with no vehicle detector. Two 
types of probe data have been used for the dynamic 
estimation of traffic volumes: cellular phone (CP) 
[1, 2] and car navigation data [3]. Academic trials 
for inferring the hourly vehicular volume using CP 
call counts and the related probability of crossing 
inter-cell boundaries were reported in [1, 2]. These 
two studies showed that CP call data could be uti-
lised to determine hourly traffic volumes, although 
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operated for V2I communication. In relation to this 
research aim, a novel method was developed to con-
vert V2I sensing probe volumes (i.e. partial vehicu-
lar volumes) into overall vehicular traffic volumes. 
An experimental verification for demonstrating the 
feasibility of the method was performed. Based on 
the analysis results, some findings and further re-
search directions related to the possible monitoring 
of traffic volumes with multiple vehicle classes us-
ing V2I probe data in the present and near-future era 
are discussed.

2. METHODOLOGY

2.1 Approach concept
The spatial-temporal evolution of traffic volume 

states serves as an initial deterministic system (i.e. 
a chaotic system) [4–6]. In other words, the evolu-
tion of traffic volume states naturally shows inten-
sive and wide variations in ergodic and non-peri-
odic manners. This is one of the main reasons that 
vehicular traffic volumes are directly measured by 
vehicle detectors rather than indirectly inferred by 
estimation techniques. For instance, geostatistical 
analysis techniques (e.g. kriging interpolation) fail 
to reliably estimate road traffic volume [7, 10]. In 
addition, according to our literature review, the dy-
namic behaviour of traffic volume makes it difficult 
to directly infer reliable temporal traffic volumes 
using indirect probe data (e.g. mobile phone data), 
despite the fact that the PR of this data source is 
very high. Therefore, direct probe data closely re-
lated to vehicle volumes should be employed to ex-
plain the dynamic behaviour of traffic volumes and 
guarantee the reliability of estimations.

V2I communication is conducted between in-ve-
hicle devices (e.g. RF OBU terminals) and RSE. 
This implies that in-vehicle devices in service can 
be considered as moving probes that can be used to 
measure partial vehicle volumes at RSE locations 
when the PR of in-vehicle devices is not 100%. 
Based on this self-evident fact, it can be assumed 
that the V2I probe volume (i.e. partial vehicle vol-
ume) represents a portion of the total traffic volume, 
or is at least directly correlated with this volume, 
considering random sampling variations. If this as-
sumption is reasonable, the total traffic volume at 
an RSE location can then be calculated using the re-
lationship between the V2I probe volume and total 
vehicle volume as measured from locations close to 
the RSE location. This assumption is also supported 

the average estimation error was 20%. Point-to-
point vehicle trajectory data collected from car nav-
igation systems were also employed by Chang and 
Yoon to monitor dynamic traffic volumes [3]. They 
demonstrated that temporal traffic volumes at a 
time length of 5 min can be directly monitored with 
5.69% average error at a 14.91% penetration rate 
(PR) of vehicle global positioning system (GPS) 
systems.

Despite these notable achievements, two current 
issues should be effectively addressed in relation to 
the actual application of ITSs from the perspectives 
of traffic engineers and field staff. Real-time traffic 
volumes with multiple classes of vehicles should be 
monitored by other methods as an alternative to ve-
hicle detectors. Advanced probe data sources (e.g. 
CP and vehicle GPS), used as the input dataset of a 
method, should be stably supported because online 
monitoring reliability is one of the crucial require-
ments of vehicle detection systems. Unfortunately, 
the CP call and vehicle GPS probe counting data 
do not include any direct clues for identifying the 
vehicle type (e.g. cars, buses and trucks) in many 
cases. These data sources usually belong to private 
businesses and are thus linked to serious obstacles, 
such as high cost and privacy policies. In addition, 
transmission delays are expected in the process of 
transferring data between the private sector and ad-
vanced transportation data centres.

Fortunately, vehicle-to-infrastructure (V2I) 
communication systems based on dedicated short-
range communication (DSRC) have been widely 
introduced and utilised for electronic toll collec-
tion and section-based traffic speed monitoring in 
modern ITSs. The V2I system essentially solves the 
aforementioned obstacles inherent in private sector 
data because sensing probe data collected through 
this V2I system include direct information about ve-
hicle types, and monitoring stability and direct ac-
cess to the sensing data are guaranteed in real time. 
In addition, in-vehicle V2I devices (e.g. 5.8 GHz ra-
dio frequency (RF) onboard unit (OBU) terminals) 
have a high PR in many developed countries. These 
facts offer a practical opportunity to directly infer 
real-time traffic volumes of multiple vehicle class-
es for any road location where vehicle detectors are 
not installed. 

This research aims to verify the feasibility of 
using V2I sensing probe data for obtaining the dy-
namic traffic volumes of multiple vehicle classes in 
road locations where roadside equipment (RSE) is 
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the zero probe volume values simultaneously. The 
filtering method is designed based on the fact that 
the RV distribution (RVD) of temporal probe vol-
umes is greater than or at least equal to that of tem-
poral vehicle volumes, as shown in Figure 1. Thus, 
unnecessary variations in probe volumes can be re-
moved using the RVDs of the temporal probe vol-
umes and temporal vehicle volumes.

To compute the temporal RV values, the 
time-series values and average values for the ve-
hicle and probe volumes are defined as follows: A 
set consisting of three RSE locations is defined as  
l={tg,up,dn} for the target RSE (tg), along with 
the upstream (up) and downstream (dn) of tg. A 
series of time intervals at the present time interval 
(t) toward the previous time intervals is defined as  
T=[(t),(t-1),…,(t-d)], where d is the embed-
ding size of the time series. A set of vehicle vol-
umes (v, vehicles per time interval) and a set of 
probe volumes (p, vehicles per time interval) for 
l are defined as Vl=[vl(t),vl(t-1),…,vl(t-d)] and 
Pl=[pl(t),pl(t-1),…, pl(t-d)], respectively. With these 
definitions, let x̅l represent the average values of the 
elements of Vl and those of Pl, where x={v,p}. Let  
R

l
x=[rl

x(t),rl
x(t-1),…,rl

x(t-d)] be a time series of 
RV values for Vl or Pl. Thus, each element of  
Rl

x(i.e. rl
x(i)) is calculated using xl(i) and x̅l(if l=tg, 

then x≠v) as follows:

( )
( )

, , , ,r i x
x i x

l x i i Tl
x

l

l l
6 !=

-
r
r  (1)

As mentioned before, the RV of the probe vol-
umes (i.e. Rl

p) is greater than that of the vehicle vol-
umes (i.e. Rl

v) (Figure 1). Thus, rl
p(i) can be modified 

such that it becomes similar to rl
v(i) using the stan-

dard deviations of Rl
p and Rl

v. Let σ
l
x be the standard 

deviation of RVD of Rl
x, where x={v,p} and l≠tg. 

Let Pl
a=[pl

a(t),pl
a(t-1),…,pl

a(t-d)] be a time series of 
the adjusted probe volumes for l. Based on these 

by research [3, 7, 10], in which vehicle-GPS probe 
volume data are employed directly to estimate ve-
hicular traffic volumes along road sections. Impor-
tantly, in-vehicle V2I devices are widely utilised for 
electronic toll collection, with high market share. 
Accordingly, V2I sensing probe data intrinsical-
ly include direct information about multi-vehicle 
classes. For this reason, V2I sensing probe data 
provide key information to effectively address the 
uncertainty problem during direct monitoring of re-
al-time traffic volumes with multi-vehicle classes.

Based on the aforementioned concepts, a method 
of producing dynamic traffic volumes for multi-ve-
hicle classes at RSE locations using V2I sensing 
probe volume data is proposed in this study. The 
method consists of two steps: filtering and convert-
ing the probe volume data. In the filtering step, the 
temporal probe volumes are tuned into suitable data 
by eliminating random noise effects. In the conver-
sion step, a filtered probe volume at an RSE location 
where an estimation is desired is expanded into a 
vehicle volume value using the optimal relation-
ship between the filtered probe volume and vehicle 
volume. Integrating the two steps can efficiently 
solve the problem of estimating the vehicle volume 
by minimising the number of uncertainties that un-
avoidably arise when addressing this problem.

2.2 Filtering method
The V2I sensing probe volume is a random sam-

ple with a given PR of in-vehicle V2I devices. Natu-
rally, the temporal development of the probe volume 
(i.e. partial vehicle volume) shows a wider relative 
variation (RV) than that of the total vehicle volume 
when the PR (0.0-1.0) of the in-vehicle V2I devices 
with respect to the vehicle volume is less than 1.0. 
This sampling variability significantly increases 
when the vehicle volume or PR values are low. Zero 
probe volumes can also occur even when the vehi-
cle volumes are not low and the PR values are high. 
Because of this sampling variability, estimation fail-
ures (i.e. over- and underestimation problems) are 
inevitable, especially at turning points when raw 
probe volume data are directly employed to produce 
estimations of vehicle volumes without a filtering 
or imputation process. In addition, such estimation 
failures caused by sampling variability are closely 
related to the reliability of the estimation.

To address these problems efficiently, the filter-
ing method assesses the reduction of unnecessary 
random variations and conducts an interpolation of 
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Figure 1 – Temporal RVs of vehicle and probe volumes
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(K=2·(d+1)). Let P=[p1,p2,…,pK] and V=[v1,v2,…,vK]  
be the independent and dependent variables, respec-
tively.

The temporal evolution of vehicular volume 
states shows intensive variations ergodically and 
non-periodically [4–6], that is, vehicle volumes 
vary steeply at turning points (Figure 1). In this case, 
undesirable results (e.g. repetitive over- and un-
derestimations and even negative estimations) can 
occur because of the failure of the directionality of 
a proper relationship between P and V when linear 
regression is used. To address these estimation fail-
ures effectively, a power curve for nonlinear curve 
fitting (ranging from logarithmic and linear to pos-
itive exponential fittings) is used to identify a suit-
able relationship between P and V (Figure 2). The 
power curve is defined as follows:

V P$a= b  (5)

where α (>0.0) and β (>0.0) are the coefficient and 
exponent, respectively, of P. For an optimal curve 
fitting that minimises the total estimation error, the 
individual errors between the observations and esti-
mations can be expressed as

v pi i i$e a= - b|
|  (6)

where  α̂ and β̂  are the optimal α and β values, re-
spectively, and ϵi is the estimation error for observa-
tion i (i.e. vi), i!K. Based on these considerations, 
a minimisation problem for determining an optimal 
curve is defined as follows:

. . , .

v p

0 0 0 0

Min

s.t < <
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1
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a b

- b

=
t

t t
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(7)

where  ̂α is greater than zero, as vehicle volumes are 
greater than zero, and β̂  is greater than zero, as vehi-
cle volumes do not decrease with increasing probe 

definitions, each element of Pl
a is computed with p̅l 

and an adjustment factor (fl) (i.e. the rate of σl
v to σl

p) 
using Equation 2. In this manner, each probe volume 
(i.e. pl(i)) is tuned into pl

a(i) by removing any unnec-
essary random sampling variation.

( ) . ( ) , , ,p i p r i l i l tg i T1 0l
a

l l
p

l
p
l
v

$ $ 6 !
v
v= + =r Y< F  (2)

With regard to tg, it is impossible to calculate 
the value of an adjustment factor (i.e. ftg=σv

tg/σ
p
tg), be-

cause Vtg is not measured. Therefore, it is assumed 
that the adjustment factor value for tg is more sim-
ilar to that of l when p̅tg (i.e. the average of the ele-
ments of Ptg) is closer to p̅l, (l≠tg). This can be sup-
ported by the rational reasoning that the PR values  
(=p̅l/v̅l) of the in-vehicle V2I devices for the three 
locations are analogous with acceptable differences, 
despite the fact that v̅tg cannot be estimated.

To determine the adjustment factor value for 
tg(ftg), let p̅max and p̅min be max.{p̅l} and min.{p̅l}, 
(l≠tg), respectively. Let fmax and fmin be the adjust-
ment factor values associated with p̅max and p̅min, 
respectively. Based on these considerations, the 
similarity between p̅tg and p̅l can be effectively em-
ployed to combine the two adjustment factors (i.e. 
fmax and fmin) into one adjustment factor (i.e. ftg) for 
tg, (l≠tg). ftg is determined by the inverse of the sim-
ilarity in Equation 3.
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Finally, an adjusted probe volume for tg at (t) 
(i.e. pa

tg(t)) is computed with a determined value of 
ftg as

( ) ( ) . ( )p t p t r t f1 0tg
a

tg tg
p

tg$ $= +r 6 @  (4)

2.3 Conversion method
A nonlinear relationship between Pl

a and Vl(l≠tg) 
was employed in this study to convert the adjust-
ed probe volume (i.e. pa

tg(t)) to vehicle volume  
(v̂tg(t)) for the target location (tg) at time interval 
(t). To determine an optimal fitting, Pl

a and Vl(l≠tg) 
were used as explanatory and dependent variables, 
respectively. These two variables are defined as 
follows: Let P=[Pa

up,P
a

dn] and V=[Vup,Vdn] be the 
sets of probe and vehicle volumes, respectively. To 
describe the conversion method, these definitions 
are redefined based on the number of observations  
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market share of RF OBUs exceeds 40%. The RF 
OBU probe volume data used for the V2I sensing 
probe data in the case study were collected from the 
RSE located at three tollgates of the testbed through 
the DSRC system of Korea Expressway Corpora-
tion (KEC). The vehicle volume data were moni-
tored at the same tollgates in the toll collection sys-
tem of KEC. As such, the RF OBU probe volume 
is a direct part of the vehicle volume at a tollgate. 
In addition, for analysing multiple vehicle classes, 
the vehicles were categorised into two: vehicle type 
I pertains to cars whereas vehicle type II includes 
buses and trucks.

Figure 4 illustrates the PR of the probe volume 
to the vehicle volume for the two types of vehicles, 
where PR=[probe volume / vehicle volume]. On av-
erage, the PR values for vehicle types I and II reach 
0.384 and 0.537, respectively. Note that these aver-
age PRs are very high from the standpoint of statis-
tical sampling rate. The result reveals a wide varia-
tion for the two vehicle types despite the high PRs. 
The range of variation becomes narrower when the 
vehicle volume increases as the sampling variability 
decreases.

The PRs of vehicle type I vary widely from 0.19 
to 0.60 in the vehicle volume regime of v<100, but 
the variation decreases (ranging from 0.29 to 0.48) 
in the vehicle volume regime of 100≤v. The PRs of 
vehicle type II, in spite of the average exceeding 
0.5, vary extensively from 0.11 to 1.0 in the vehi-
cle volume regime of v<40, while the variation de-
creases, ranging from 0.26 to 0.77, in the vehicle 
volume regime of 40≤v. Thus, the behaviour of the 
PR (i.e. the sample size) relative to the degree of 
vehicle volume (i.e. population) is close to a mixed 
state, and it shows a closed boundary condition. 
This indicates that the probe volume for estimating 
the vehicle volume should be adjusted to eliminate 
the sampling variability, even when it is collected 
at a high PR of in-vehicle V2I devices. However, 
the PR trends for the two types are constant on av-
erage, even when the vehicle volume decreases. 
This implies that the V2I sensing probe volume can 
be effectively employed to obtain the total vehicle 
volume through a method that expands the probe 
volume into the vehicle volume when the sampling 
variability included in the probe volume is elimi-
nated.

To thoroughly examine the performance capabil-
ities of the method presented in this paper, the fol-
lowing three performance measures were carefully 

volumes. Once the optimal values of  α̂ and β̂  for a 
best-fit curve are determined by solving the minimi-
sation problem, a vehicle volume (i.e. v̂tg(t)) for the 
target RSE location is directly obtained as

( ) ( )v t p ttg tg
a$a= bt t

t  (8)

3. RESULTS

3.1 Study design
To demonstrate the feasibility of using V2I sens-

ing probe volume data for directly monitoring vehic-
ular traffic volumes with multiple vehicle classes, 
a case study was conducted using real-world data. 
The test data were collected from three tollgates 
located in Seoul External Beltway in South Korea 
(Figure 3). The road section between the upstream 
and downstream locations includes two junctions 
and six interchanges. There were four lanes on all 
road locations. The distances (km) from the target 
location to the upstream and downstream locations 
are 11.6 and 24.5, respectively. These unfavourable 
testbed conditions are desirable for verifying the 
feasibility of the proposed method from the stand-
point of practical applications.

Downstream location

Upstream location

Target location

24.5 km

11.6 km

Figure 3 – Test bed

Two types of real-world data (i.e. V2I sensing 
probe volume data and vehicle volume data) for 
two types of vehicles were collected with a 5-min-
ute aggregation on 1-5 September 2019. In South 
Korea, RF OBUs are widely utilised for monitor-
ing section-based traffic speed between two RSE 
locations and electronic tolling at tollgates, and the 
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the model parameters by using a single parameter. 
This is a significant advantage in practical appli-
cations where the estimation accuracy needs to be 
guaranteed. Despite this consideration, the perfor-
mance of the method relies heavily on the d value 
(i.e. the embedding size of the time series) in terms 
of estimation accuracy. Hence, for a given dataset, 
the d value plays a critical role in reducing any un-
necessary temporal variation in the probe volumes, 
which in turn influences our understanding of the 
relationship between the probe volume data and ve-
hicle volume data.

The effects of the d value on the estimation ac-
curacy of the two types of vehicles are shown by 
the MAPE in Figure 5. The target time span is 18 h 
(06:00–24:00) per day. This analysis period is im-
portant given the dynamic traffic control and opera-
tional strategies of the ITS. Regarding vehicle type 
I, the estimation error decreases steeply (d=2→4) 
and then remains (d=5→11) in the optimal error 
space, after which it increases (d=12→20) with 
small variations. For vehicle type II, the error curve 
decreases exponentially (d=2→6) and then remains 
(d=7→16) within the optimal error space, after 
which it increases (d=17→20). Thus, the estimation 
error decreases to the optimal error space, and then 
gradually increases as the d value increases. This 
concave error behaviour indirectly indicates that the 
locality of the temporal development of the probe 
or vehicle volume exists regardless of whether the 
boundary condition is obvious. This also implies 
that the relationship between the probe and vehicle 
volumes can be determined within an acceptable 
margin of error.

selected and applied, excluding the average perfor-
mance measures. The volumes of the two vehicle 
types (I and II) vary widely (from 12 to 540 and 2 to 
105, respectively) (Figure 4). In this case, the abso-
lute percentage error (APE) and relative percentage 
error (RPE) provide a useful basis for  comparison 
[5–7]. The APE and RPE have shortcomings when 
used with low traffic volumes, as the RV of a low 
traffic volume is higher than that of a high traffic 
volume. To compensate for the deficiencies of the 
two measures, a straight error for lane (SEL, vehi-
cles per lane) was also employed, which can be use-
ful in practice from the viewpoints of traffic control 
and operation. Using these performance measures, 
various analyses were conducted: hit rate and statis-
tical analyses. Additionally, the mean of the APEs 
(MAPE) was used as the total performance measure 
to determine the optimal parameter values (i.e. the d 
value) of the proposed method. APE (%), RPE (%) 
and SEL (veh) are expressed as follows:

, .APE y
y y

y100 0 0>
i

i i
i#=

-t  (9)

, .RPE y
y y

y100 0 0>
i

i i
i#=

-t^ h  (10)

SEL l
y yi i=

-t^ h  (11)

where yi and ŷi are the observed and estimated val-
ues of sample i, respectively, and l denotes the num-
ber of lanes.

3.2 Results and findings
The model presented in this study was developed 

based on the integration of the filtering and conver-
sion steps. The model was designed to minimise 
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Figure 4 – Penetration rate according to the vehicle type
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standard deviation of the RPD (SDRPD) of the raw 
probe volume is 36.9, whereas that of the filtered 
probe volume is 14.6. The adjustment gain is also as 
high as 60.4% [=(36.9-14.6)/36.9·100]. Specifically, 
the temporal raw probe volumes for vehicle type II 
reveal intensive variations, similar to the temporal 
variation in signalised traffic volumes [5, 8]. The 
SDRPDs of the raw and filtered probe volumes are 
72.3 and 34.6%, respectively. In addition, the zero 
probe volumes are replaced with suitable values. 
Similar to vehicle type I, the adjustment gain for 
type II reaches 52.2%. The results clearly indicate 
that the temporal variation in the raw probe volumes 
can be successfully adjusted to become similar to 
that of the vehicle volumes, at least in this case. 
Thus, undesirable estimations can be effectively 
prevented by filtering out unnecessary random sam-
ple variations.

Most importantly, the optimal error space for 
each vehicle type is very stable, with a minimal 
error of +0.5%. This indicates that the best or sec-
ond-best parameter values can be analysed and de-
termined within the margin of error on a weekly or 
even a monthly basis in advance. This is a crucial 
advantage from the perspective of field staff person-
nel who do not have a broad range of experience in 
calibrating and modifying an advanced ITS model. 
In addition, the optimal d values of 7 and 11 for ve-
hicle types I and II, respectively, were selected for a 
deeper analysis.

Figure 6 shows a comparison of the temporal vari-
ations in the raw and filtered probe volumes for one 
day. Extreme variations at turning points, which can 
result in undesirable estimations, are filtered, elim-
inating unnecessary sampling variations in terms 
of the relative percentage difference (RPD), where 
RPD=[p(t+1)-p(t)]/p(t)·100. For vehicle type I, the 
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The analysis results for the two vehicle types ac-
cording to the two traffic-volume regimes are sum-
marised in Table 1. For all volume regimes, it can be 
seen that the accuracy of the method proposed in 
this study is at least comparable to those of modern 
vehicle detectors. Note that the vehicle counting de-
tection errors for the inductive loop, laser scanner, 
weight-in-motion (WIM) piezoelectric and WIM 
quartz detectors with five.g.-minute data aggrega-
tion were reported to be 10.6, 24.1, 7.4 and 17.6% in 
terms of the MAPE, respectively [9]. In all regimes 
of the two vehicle types, the performance capabili-
ties of the proposed method in terms of the MAPE 
are also comparable to those of short-term forecast-
ing studies of motorway traffic flows [6] and signal-
ised traffic flows [5, 8]. 

 The worst performances for the APE and RPE 
are observed in the low-volume regime, excluding 
the SEL, as shown in Figures 8 and 9, especially for ve-
hicle type II. The APEs exceed 20% in many cases, 
which is undesirable from a forecasting standpoint. 

Figure 7 displays the relationships between the 
probe and vehicle volumes before and after filter-
ing. The relationships between the two variables for 
the two vehicle types are effectively improved in 
terms of R2 after the filtering process. Thus, the R2 
values of vehicle types I and II increase from 0.953 
and 0.895 to 0.991 and 0.953, respectively. These 
results indicate that the filtered probe volumes for 
vehicle types I and II statistically explain 99.1% and 
95.3% of the vehicle volumes, respectively. This 
result appears to be statistically acceptable despite 
the fact that the attribute of R2 increases when the 
number of observations increases. The effect of fil-
tering random variations is also distinguished when 
the vehicle volumes are low. Therefore, the explan-
atory power of the probe volumes is remarkably im-
proved, which in turn is related to a more reliable 
understanding of the relationship between the probe 
and vehicle volumes during the conversion process.
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Table 1 – Summary of results

Performance measure

All regimes Low-volume regime Heavy-volume regime
Vehicle type Vehicle type Vehicle type
I II I II I II

Cases (volume) 314(<100) 374(<20) 1126(100≤) 1066(20≤)

APE
Mean 6.69 10.89 11.32 15.25 5.40 9.36

Median 5.04 8.67 8.72 11.45 4.57 7.90
Max. 49.15 105.25 49.15 105.25 23.59 39.00

RPE

Mean 0.88 0.13 0.88 2.83 0.37 -0.81
Max. 49.15 105.25 49.15 105.25 23.59 39.00
Min. -35.59 -49.02 -35.59 -49.02 -19.54 -37.94
SD 9.10 14.56 14.44 20.07 6.84 11.91

HR±10% 79.17 57.36 54.14 45.19 86.15 61.63
HR±20% 96.25 85.63 83.44 71.39 99.82 90.62

SEL

Mean 3.54 0.85 1.07 0.50 4.23 0.97
Max. 18.38 4.47 5.56 2.15 18.38 4.47
Min. 0.00 0.00 0.00 0.00 0.01 0.00
SD 3.11 0.73 0.99 0.37 3.15 0.78

HR±5veh 71.94 100.00 99.68 100.00 64.21 100.00
HR±10veh 95.76 100.00 100.00 100.00 94.58 100.00

Note: SD and HR stand for standard deviation and hit rate.
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heavy-volume regime reaches 99.82% (Figure 9a). 
Moreover, the worst cases, with rates of -35.59% 
or +49.15% occur late at night, although they are 
tolerable for SELs within ± 5.0 vehicles (Figure 9b). 
It should be noted that the prediction performanc-
es of the proposed method in low-volume regimes 
are comparable to those of pattern selection-based 
short-term predictions [5–6] in terms of the MAPE.

The hit rate performance within the RPE±10% is 
depicted in Figure 10. It can be seen that the perfor-
mance of the proposed method in terms of the APE 
is obviously comparable to the required detection 
accuracy for modern vehicle detectors [9]. The R2 
values for vehicle types I and II are 0.983 and 0.952, 
respectively. This indicates that the predicted traf-
fic volumes for vehicle types I and II statistically 
explain 98.3% and 95.2% of the actual traffic vol-
umes, respectively. Hence, the proposed method of 
directly estimating the traffic volumes for multiple 
vehicle classes can be a feasible complementary ap-

Note that the marginal error of detection by vehicle 
detectors should not exceed 20% relative to the ac-
tual traffic volume [1]. In spite of these undesirable 
performances, the estimations for the low-volume 
regime for vehicle types I and II are acceptable with 
the maximal SELs of 5.56 and 2.15, respectively, 
which are less than or equal to one vehicle per min-
ute in practice.

The hit rate within the RPE±10.0% does not reach 
90.0% in any regime for the two vehicle types; how-
ever, the RPE±20.0% is greater than 90.0% in the 
case of the heavy-volume regime. The hit rate with-
in the SEL±10 vehicles is as high as 95.76% and 
even reaches 100.0% at times for all regimes of the 
two vehicle types. In contrast, for the heavy-volume 
regime with vehicle type I, the APE values are less 
than 20.0% in most cases (Figure 9a), where the tem-
poral variation of the estimations is in good agree-
ment with that of the observations (Figure 8a). In ad-
dition, the hit rate within the RPE ± 20.0% for the 
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predicted traffic volumes with respect to the real 
traffic volumes for vehicle types I and II reach 0.98 
and 0.95, respectively, and even higher. This means 
that the predictions for vehicle types I and II statisti-
cally explain at least 0.98% and 0.95% of the obser-
vations, respectively. The average errors for vehicle 
types I and II are 6.69% and 10.89%, respectively, 
with a hit rate (± 10.0 vehicles) of more than 96%. 
This indicates that the estimation capability of the 
proposed method is at least comparable to the de-
tection capabilities of modern vehicle detectors [9] 
based on the R2 statistics and monitoring accuracy. 
Therefore, the direct estimation of real-time traffic 
volumes for multiple vehicle classes is a promising 
approach to solve the current hindrances associated 
with the vehicle detection infrastructure and traffic 
volume surveillance. In addition, the method pre-
sented here is instantly applicable when real-time 
V2I sensing probe volume data is available.

Despite the meaningful results, there are other 
potential approaches for directly monitoring re-
al-time traffic volumes in unmeasured road loca-
tions using advanced methods and data. Further re-
search on improving the performance of the method 
proposed in this study should be conducted. More-
over, GPS-enabled V2I OBU probe volume data 
can be used effectively for monitoring spatially un-
constrained real-time vehicle traffic volumes. 
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proach to the functions of vehicle detectors when 
V2I sensing probe data with a significant PR are 
available.

4. CONCLUSION
The measurement of real-time traffic volumes 

for multiple types of vehicles is crucial for the op-
eration of advanced traffic control systems. Thus, 
various vehicle detectors are densely deployed and 
utilised in modern ITSs. However, this causes dif-
ficulties because vehicle detection systems require 
extensive costs and resources to ensure accuracy of 
the monitored information. This is a current issue 
that needs to be effectively addressed in relation to 
modern ITSs. This challenge explains the motiva-
tion behind this study.

V2I systems supported by DSRC are being 
widely introduced and utilised for section-based 
speed monitoring and electronic toll collection, 
with a high OBU PR at present. This provides a 
promising opportunity for effectively monitor-
ing vehicular traffic volumes with multi-vehicle 
classes. In this study, a method for directly mon-
itoring the real-time traffic volumes of multi-ve-
hicle classes using V2I sensing probe volume data 
was developed. To demonstrate the feasibility of 
this method, a case study was conducted using re-
al-world RF-OBU probe volumes and actual vehi-
cle volumes.

The analysis results are favourable in terms of 
the R2 statistics and average error (%) when the 
PRs of the RF OBU devices for vehicle types I and 
II (i.e. cars and heavy vehicles, respectively) are 
0.38 and 0.54, on average. The R2 values of the 
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미관측	도로지점의	다	차종	교통량	온라인	모
니터링을	위한	V2I	검지	프로브	데이터의	활
용	가능성

초록

다	차종	동적	교통량의	일부분은	차	대	시설(V2I)	
통신시스템을	통해	정확히	수집된다.	이는	차량	검
지기	미	설치	도로지점에서	다	차종	교통량의	실시
간	모니터링	대한	실행	가능한	기회를	제공한다.	이
러한	가능성을	실현하고자,	본	연구에서는	(V2I	통
신을	위한)	노변	기지국(RSE)이	운영중인	도로지점
에서	다	차종	동적	교통량의	모니터링을	위한	방법
을	제시한다.	제안된	방법은	RSE을	통해	수집된	차
종별	V2I	검지	프로브	교통량(즉,	차량	교통량의	일
부분)을	이용하여	차종별	동적	교통량을	산출하도
록	개발되었다.	개발된	방법의	성능	평가는	실제	V2I	
검지	프로브	교통량	데이터를	이용하여	수행되었다.	
평가	결과,	승용차와	중차량	교통량은	차내	V2I	장비
의	평균	점유율(0.0~1.0)이	각각	0.384와	0.537인	경
우	6.69%와	10.89%의	평균	오차수준에서	효과적으
로	모니터링될	수	있음을	보였다.	이는	제안된	방법
과	범용	차량	검지기의	성능이	검지	에러의	측면에
서	동등함을	의미한다.	따라서	차내	V2I	장비의	점
유율이	높은	상태에서	수집된	차종별	V2I	검지	프로
브	통행량	데이터는	차량	검지기의	기능을	보완할	
수	있을	것으로	판단된다.
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