
ABSTRACT
This study introduces a novel methodological frame-

work for extracting integral vehicle trajectories from 
several consecutive pictures automatically. The frame-
work contains camera observation, eliminating image 
distortions, video stabilising, stitching images, identify-
ing vehicles and tracking vehicles. Observation videos 
of four sections in South Fengtai Road, Nanjing, Jiangsu 
Province, China are taken as a case study to validate the 
framework. As key points, six typical tracking algorithms, 
including boosting, CSRT, KCF, median flow, MIL and 
MOSSE, are compared in terms of tracking reliability, 
operational time, random access memory (RAM) usage 
and data accuracy. Main impact factors taken into con-
sideration involve vehicle colours, zebra lines, lane lines, 
lamps, guide boards and image stitching seams. Based 
on empirical analysis, it is found that MOSSE requires 
the least operational time and RAM usage, whereas 
CSRT presents the best tracking reliability. In addition, 
all tracking algorithms produce reliable vehicle trajecto-
ry and speed data if vehicles are tracked steadily.

KEYWORDS
video observation; integral trajectory extracting;  
vehicle tracking.

1. INTRODUCTION
With the development of traffic investigation 

techniques, empirical vehicle data support numer-
ous up-to-date researches. Li et al. predicted safety 
and operation impacts of lane changes in oscilla-
tions with empirical vehicle trajectories [1]. Based 
on traffic data collected from Los Angeles County 
in 2010, the effects of traffic conditions and road 

characteristics on air pollutant emissions at the 
level of traffic analysis zone were investigated [2]. 
Wang et al. discussed the stability of CACC-manu-
al heterogeneous vehicular flow with partial CACC 
performance degrading [3]. Based on cellphone 
location and license plate recognition data, Liu et 
al. dealt with urban transport network flow estima-
tion [4]. Wang et al. presented a crash prediction 
method based on vehicle trajectory data extract-
ed from intersection videos collected in Fengxian, 
China by an unmanned aerial vehicle [5]. Zhao et 
al. proposed a driving behaviour rule extraction 
algorithm based on the driver’s long-term driving 
experience in the processes of perception, interac-
tion and vehicle control of road traffic information 
[6]. Considering travel time, travel time reliability 
and distance, Sun et al. proposed a multi-criteria 
user equilibrium model [7]. Based on bus speed, 
acceleration and emissions data collected from 
four fuel types in China, a mean distribution devia-
tion method was proposed to identify bus pollutant 
emissions [8]. Gu et al. utilised unmanned aerial 
vehicle video data for in-depth analysis of drivers’ 
crash risk at interchange merging areas [9]. Guo et 
al. obtained crash data from 367 freeway diverge 
areas in a three-year period and modelled a nov-
el random parameters multivariate tobit model for 
evaluating risk factors on crash rates of different 
collision types [10]. Based on vehicle trajectory 
data analysis, Wang et al. proposed a combined us-
age of microscopic traffic simulation and extreme 
value theory for safety evaluation [11]. Li et al. 
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ation. Reliability, operational time, random access 
memory (RAM) usage are all important indicators, 
especially for vehicle tracking, which is usually 
the key point in the whole methodological frame-
work. Unfortunately, few investigations discussed 
this issue.

There are several classical object tracking al-
gorithms. Camshift is a robust method of finding 
local extrema in the density distribution of a data 
set [18]. Sparse optical flow attempts to figure 
out where some points in an image have moved 
to in another image [19]. Regrettably, these al-
gorithms expose latent problems when tracking 
vehicles. Camshift is unstable and may capture 
another nearby vehicle. Moreover, white vehicles 
can hardly be tracked by Camshift. In observation 
videos taken from high altitude, sometimes it is 
not easy to find trackable feature points, as well as 
corners, to apply sparse optical flow, especially in 
pure colour vehicles. Even worse, any occlusion, 
such as a road ramp or an indicator, could probably 
stop the tracking.

Recently, some novel tracking algorithms have 
attracted attention. Boosting algorithm is an on-
line AdaBoost feature selection algorithm. The 
algorithm selects the most discriminating features 
for tracking depending on the background [20]. 
CSRT is based on the Discriminative Correlation 
Filter with channel and spatial reliability [21]. 
KCF uses a circulant structure of tracking-by-de-
tection with kernels, which utilises properties of 
circulant matrix to improve processing speed [22]. 
Median flow detects the forward-backward error 
and selects reliable trajectories in video sequenc-
es [23]. MIL applies multiple instance learning 
instead of traditional supervised learning during 
tracking-by-detection to avoid incorrectly labelled 
training examples from slight inaccuracies in the 
tracker, which may result in drifting [24]. MOSSE 
trains a minimum output sum of squared error fil-
ter to adapt changes of the target object appearance 
in tracking [25]. TLD decomposes the long-term 
tracking task into tracking, learning and detection, 
which localises all appearances that have been ob-
served so far and corrects the tracker if necessary 
[26].

Multiple tracking methods based on different 
theories cause selection hesitation. Even though 
most tracking methods do not limit their appli-
cation scenes distinctly, diminutive object, lim-
ited clarity, lack of notable features and complex  

developed a model to predict vehicle trajectories in 
the straight-line and non-free flow state using his-
torical trajectories and external parameters [12].

It can be found that the above named research-
es relied on empirical vehicle data, directly or 
indirectly. However, it is difficult for tradition-
al traffic investigation, such as manual counting, 
floating car observation or earth coil collection, to 
obtain vehicle trajectory and speed data through-
out observation areas. In recent years, with the 
advance of camera equipment, video observation 
has shown enormous potential in traffic surveys, 
but extraction of vehicle data from videos is still a 
challenge nowadays.

Many researchers were concerned about that 
problem and proposed their solutions. Kim et al. 
constructed frameworks for detecting vehicles 
from videos based on data-driven features [13]. 
Eliker et al. studied the reference flight trajecto-
ry generation and planning problems for quad-
copter unmanned aerial vehicles [14]. Chen et al. 
presented a novel methodological framework for 
vehicle trajectory extraction from aerial videos 
and compared the extracted vehicle trajectories 
with manual calibrated data to testify the perfor-
mance [15]. Feng et al. researched a method for 
vehicle trajectory construction from videos under 
mixed traffic conditions [16]. Lu et al. put forward 
a point-based tracking algorithm for trajectory ex-
tracting in traffic jams and complex weather con-
ditions. [17]. In general, most findings focused 
on valid methods of extracting video vehicle data 
from one camera. However, the observation range 
of cameras is limited to ensure vehicles in videos 
are visible and clear. If the observation area is out 
of range, more than one camera ought to be used. 
In this case, an inevitable problem is how to stitch 
videos from different cameras and obtain integrat-
ed vehicle trajectories. To solve the problem, this 
paper proposed a methodological framework for 
extracting integral vehicle trajectories from sever-
al consecutive pictures automatically. The frame-
work contains camera observation, eliminating im-
age distortions, video stabilising, stitching images, 
identifying vehicles and tracking vehicles.

Another thing worth mentioning is that majori-
ty of current researches introduced their own meth-
odologies for trajectory extracting. Partial studies 
compared extracted data with real data to verify 
the effectiveness of adopted methods. In fact, data 
accuracy is only one aspect of methodology evalu-
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2. VIDEO COLLECTION  
AND PROCESSING METHODS
Video collection and processing methods con-

tain following steps: camera observation, eliminat-
ing image distortions, video stabilising, stitching 
images, identifying vehicles and tracking vehicles. 
Detailed descriptions are as follows.

2.1 Camera observation
For the sake of comparing the aforementioned 

tracking algorithms, a field observation was con-
ducted in South Fengtai Road near Fenghuanghe-
mei residential block, in Nanjing, Jiangsu Province, 
China. The observation area is shown in Figure 2a, 
which is a part of a city expressway and contains 
a weaving area in both directions. Complex road 

background of traffic videos probably cause trou-
ble for vehicle tracking. Therefore, it is worth com-
paring the above-mentioned methods from various 
aspects and finding out the best one for traffic in-
formation collection. By testing, it is found that 
the TLD tracking region might shift to another ve-
hicle, which has a similar shape and colour, and 
cause inevitable chaos. In this case, other six al-
gorithms, including boosting, CSRT, KCF, medi-
an flow, MIL and MOSSE, are selected for further 
analysis based on empirical videos.

The paper is organised as follows. Video col-
lection and processing methods are introduced in 
Section 2. Tracking algorithms comparison is pre-
sented in Section 3. Major findings of the paper 
are summarised in Section 4. The framework of 
the paper is shown as Figure 1.

Video collection and processing
methods

Camera observation

Eliminating image distortions

Video stabilizing

Stitching images

Identifying vehicles

Tracking vehicles

Tracking algorithms comparison

Tracking reliability Operational time RAM usage

Boosting CSRT KCF MIL MOSSEMedian flow

Data accuracy

Conclusions

Figure 1 – The framework of the paper
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tripods were used. Figure 3d is the first frame of a 
camera video and Figure 3e is a subsequent frame 
from the same video. In order to distinguish the dif-
ference between them, the regions marked with dot-
ted lines in Figures 3d and 3e are enlarged. It is worth 
noting that the positions and scales of the top left re-
gions in Figures 3d and 3e are identical, and the bottom 
right regions in Figures 3d and 3e are also the same. 
Figures 3a and 3b are the enlarged views of the top left 
regions in Figures 3d and 3e respectively. Figures 3g and 
3h are the enlarged views of the bottom right regions 
in Figures 3d and 3e respectively.

By comparison, it can be found that the visual 
angles of Figures 3a and 3b are different. For exam-
ple, the distance between the image’s top left cor-
ner and the left endpoint of the isolation barrier in 
Figure 3a is larger than that in Figure 3b. Besides, the 
nearest lane line at bottom left of the isolation barri-
er in Figure 3a has four visible sections, whereas five 
sections of the same lane line can be observed in 
Figure 3b. Analogously, the lane lines in Figures 3g and 
3h manifest the difference between them. Though 
the differences seem to be insignificant in the whole 
view, meter-level errors arise since the length of one 
section of the lane line is about 2 meters and the in-
terval between lane line sections is about 3 meters. 
Therefore, specific processes are necessary.

Obviously, the discrepancies arise because Fig-
ures 3d and 3e are recorded by the shaking camera 
at different visual angles. Based on the structure 
of the camera, images are projections of points in 
the physical world into the camera plane. The pro-
cess of changing the visual angle of the subsequent 
frame to eliminate the discrepancies is a kind of 
image reprojection from one plane to another. As 
Figure 4 shows, from the perspective of projective 
geometry, the reprojection can be regarded as map-
ping a convex quadrilateral to another, which is 
called perspective transformation [28].

structure and frequent vehicle lane changing be-
haviors bring challenges to vehicle identification 
and tracking. Therefore, it is helpful to find poten-
tial deficiencies of different tracking algorithms.

To cover the 460 meters long observation area, 
four cameras were set on the tops of two buildings 
just beside the road, which both had 34 floors and 
were about 100 meters above the road surface, as 
shown in Figure 2b.

2.2 Eliminating image distortions
Owing to the optical lenses used in cameras, 

distortions are inevitable, so images fail to show 
the actual positions of vehicles. Radial distor-
tions and tangential distortions are main reasons 
for image distortions. Radial distortions arise as a 
result of the shape of the lens, whereas tangential 
distortions arise from the assembly process of the 
camera as a whole. To eliminate image distortions, 
Equation 1 is adopted [27]
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point. A calibration board like that in [27] is made to 
calculate the values of k1, k2, k3, p1 and p2 of the cam-
eras used in this research. In this case, undistorted 
coordinates of points in images can be calculated and 
undistorted images are available.

2.3 Video stabilising
Because the videos were shot from the rooftops 

of the buildings, as Figure 2 shows, cameras were of-
ten shaken by the strong wind despite the fact that 

a) b)
Figure 2 – Observation positions (a) and one of the cameras (b)
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Since coordinates of one point in the first and sub-
sequent frame can provide two equations, an equa-
tion based on x coordinates and one based on y coor-
dinates, at least four points are necessary for the eight 
unknowns in Equation 2. In order to avoid equivalent 
equations, any of the three points, which are in this 
paper referred to as mark points, should not lie in a 
straight line. In addition, the mark points near image 
edges show better results in general. Besides, mark 
points must be fixed in the physical world and visible 
throughout the videos. Examples of mark points are 
indicated with crosses in Figure 3d. A valid way to re-
cord positions of mark points is to click on them with 
a mouse and record the positions of the mouse point-
er. When the camera shakes, mark points change po-
sitions in videos as well. Therefore, tracking mark 

According to the deduction in [27], the mathe-
matic model of perspective transformation is as fol-
lows.
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frame, the subsequent frame will be projected to the 
visual angle of the first frame, as Figure 3f shows. To 
distinguish the result, identical regions in Figure 3f are 
enlarged as Figures 3c and 3i. By comparison, it can be 
found that vehicles in Figure 3c are corresponding to 
those in Figure 3b, whereas the visual angle of Figure 3c 
is the same as that of Figure 3a, which is validated by 
positions of the isolation barrier left endpoint or visu-
al sections of the lane lines. The black parts in Figures 
3c and 3i present the portions of Figure 3f that are less 
than Figure 3e. Similarly, Figure 3i shows the identical 
scene as Figure 3h but analogous visual angle is as in 
Figure 3g. On the basis of above explained video stabi-
lising process, all subsequent frames can be projected 
to the visual angle of the first frame and the effect of 
camera shaking will be eliminated.

2.4 Stitching images
To ensure the consistency of tracking vehi-

cles, video images from 4 observation cameras are 
stitched together to compose the whole bird’s-eye 
view [33], as shown in Figure 5. In detail, quadran-
gle areas in Figures 5a, 5b, 5d and 5e are projected to 
corresponding positions in the whole bird’s-eye 
view image (Figure 5c) based on projection matrices 
calculated by Equation 2 with positions of peak points 
of the quadrangle areas.

points is essential to reduce the workload and manual 
errors. However, the artificially selected mark points 
are seldom applicable for computer tracking. The 
points focused on tracking should be nearly unique 
and parameterizable, and contain enough information 
to be picked out from one frame to the next. Since 
visible colour changing in two different directions 
usually appears near these points, they are called 
corners in computer vision. [29] provided a method 
to find corners and [30] raised improvements. Some-
times, the peak of colour changing does not occur at 
the centre of a pixel. To solve the problem, a common 
method is to fit the curve of image colour values and 
find the peak with mathematical calculations. The 
work is called subpixel corner detection, which was 
explained in detail in [31, 32].

When it comes to video stabilising described in 
this paper, the nearest subpixel corner around each 
mark point is chosen as focus. Sparse optical flow 
[19] is found to be reliable when tracking these sub-
pixel corners since they are uncovered. Positions of 
the subpixel corners in subsequent frames are record-
ed, as shown in Figure 3e. Based on the coordinates 
of four subpixel corners in the first frame and the 
subsequent frame, the projection matrix in Equation 2 
can be worked out. If the projection matrix is applied 
to change positions of all points in the subsequent 

a) b)

c)

d) e)

Figure 5 – Observed scene: a), b), d), e) are images from four cameras and c) represents the whole scene
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tions, such as eliminating image distortions, video 
stabilising, stitching images and identifying vehi-
cles are all reserved. The tests were conducted on a 
computer equipped with an Intel Core i5-6300HQ 
CPU @ 2.30GHz, a NVIDIV GeForce GTX 960M 
GPU, an 8.00 Gb RAM and a Windows 10 64bit 
system.

3.1 Tracking reliability
All above mentioned algorithms provide a rect-

angle to represent the most likely bounding box for 
the target during tracking. If the bounding box is 
detached from the tracked vehicle, the tracking of 
a vehicle is lost, as shown in Figure 7.

This section records the quantities of track loss-
es in different areas when varied algorithms are ap-
plied. The results are shown in Figures 8b-8g, where 
numbers of colour bars indicate quantities of lost 
vehicles. To distinguish prominent interferences, a 
binarization diagram of the observation area high-
lighting zebra lines, lane lines, lamps, guide boards 
and stitching seams is shown in Figure 8a for further 
comparison. In addition, green lines and red lines 
in Figure 8a indicate where the tracking starts and 
ends respectively.

Considering the operational time of partial 
tracking algorithms, which will be introduced in 
Section 3.2, 10-minute stitched observation videos 
are intercepted for further analysis. It is found that 
dark coloured vehicles (DCV for short), such as 
black or dark grey ones, are usually difficult to be 
identified or tracked because their colours are close 
to those of road surface and shadow. Therefore, 
light coloured vehicles (LCV for short), such as 

2.5 Identifying vehicles
Based on stabilised stitched video images, the 

mixture of Gaussians (MOG) model, a statistical 
model marrying the average distance method and the 
codebook method [34, 35], is adopted to differenti-
ate between background, shadow and foreground, as 
shown in Figure 6b. The foreground part (white part in 
Figure 6b) is regarded as potential vehicles and cho-
sen for further analysis. It is eroded to remove noise 
(Figure 6c) and dilated to fill the blanks from MOG and 
erosion (Figure 6d). In addition, contours and shapes 
of the foreground part are extracted to help recognise 
vehicles. Based on aforementioned procedures, 95% 
vehicles can be identified.

2.6 Tracking vehicles
If an identified vehicle passes the light grey 

in Figure 5c, its position will be fed to tracking 
algorithms as the initial input. The vehicle will 
be tracked until it leaves the dark grey lines in 
Figure 5c. If one tracked vehicle is lost in the pro-
cess, it will be deleted in time after the last position 
is recorded to avoid interference with other tracked 
vehicles.

3. TRACKING ALGORITHMS 
COMPARISON
The difference of tracking algorithms is anal-

ysed with respect to tracking reliability, operation-
al time, random access memory (RAM) usage and 
data accuracy. To exclude the effect of irrelevant 
factors, a control group is included, in which the 
tracking of vehicles is ignored, whereas other func-

a) From stabilized stitched video image b) MOG result of a), in which foreground is white, 
shadow is gray and background is black

c) The erosion result of foreground in b) d) The dilatation result of c)

Figure 6 – Identifying vehicles
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According to Table 1, CSRT has the fewest track 
losses in total, whereas KCF has the most. For visu-
alised comparison, track loss probability is calculated 
based on Equation 3

p n
m=  (3)

where p is track loss probability, m is the quantity of 
track losses of LCVs or DCVs, and n is the amount 
of tracked LCVs or DCVs. For example, the track 
loss probability of LCVs affected by foreground is 
28/941=2.98 %. All track loss probability is shown 
in Figure 9.

white, silver, red, yellow or blue ones, and DCVs are 
analysed separately. During the 10-minute stitched 
observation video, 941 LCVs and 230 DCVs are ob-
served in total. Interference factors which can be cov-
ered by vehicles, such as zebra lines and lane lines, 
are classified as background factors. Oppositely, in-
terference factors which can cover vehicles, such as 
lamps and guide boards, are classified as foreground 
factors. In addition, image stitching seams are re-
garded as another kind of factors. Detailed track loss 
information is shown in Table 1.

a) b)

c) d)

e) f)

Figure 7 – Tracks are lost because of the lane line (a, b), the lamp (c, d) and the seam (e, f) respectively

Table 1 – Track loss quantities of tracking algorithms

Boosting CSRT KCF Median Flow MIL MOSSE

Track loss quantities of LCVs caused by background 0 16 22 25 0 18
Track loss quantities of LCVs caused by foreground 28 0 46 132 24 26

Track loss quantities of LCVs caused by seams 0 0 155 0 0 21
Track loss quantities of DCVs caused by background 23 0 0 42 19 0
Track loss quantities of DCVs caused by foreground 17 18 67 71 153 64

Track loss quantities of DCVs caused by seams 33 0 101 20 0 10
Total amount of track loss 101 34 391 290 196 139
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Figure 9 – Track loss probability of tracking algorithms
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Obviously, MOSSE has the fastest running speed, 
whereas MIL needs the longest time. Boosting and 
CSRT take almost the same amount of time, which 
is longer than that of KCF or median flow. If the 
tracking time of MOSSE is assumed as 1, expen-
ditures of other algorithms range from 25.05 to 
367.52.

3.3 RAM usage
As for the RAM usage, different algorithms also 

show individual features. As Table 3 shows, extra av-
erage RAM usage is equal to average RAM usage 
subtracting that of none. MOSSE becomes the focus 
again for the least extra average RAM usage. CSRT 
costs a little more. Boosting needs the most RAM, 
whereas KCF, median flow and MIL consume more 
RAM than CSRT and less RAM than boosting. If 
extra average RAM usage of MOSSE is assumed as 
1, those of the others range from 1.83 to 60.58.

3.4 Data accuracy
For the sake of data accuracy, a rectangular 

plane coordinate system in the road surface is es-
tablished as the white arrows in Figure 5c. The ori-
gin is the no. 2 point in Figure 5a and the x axis goes 
through the no. 3 point in Figure 5a. A portable high 
precision GPS device, whose positional error is 8 
mm, was used to measure GPS coordinates of the  
quadrangle areas peak points in Figures 5a, 5b, 5d and 
5e. The image scale can be calculated by dividing 
pixel distance of the quadrangle areas peak points 

As Figure 9 shows, all algorithms track LCVs 
better than DCVs, generally. Boosting, CSRT, MIL, 
MOSSE are reliable when tracking LCVs. KCF is 
more likely to lose track of LCVs at seams. When 
it tracks DCVs, the problem becomes even worse. 
Median flow is interfered with the foreground when 
tracking LCVs. All algorithms face challenges 
when DCVs are occluded. In this case, boosting and 
CSRT perform relatively well, whereas MIL loses 
tracks of about two-thirds of DCVs. Boosting, me-
dian flow and MIL are also unstable when DCVs 
are affected by background. However, CSRT, KCF 
and MOSSE overcome the problem if DCVs are 
identified. Boosting, median flow and MOSSE may 
lose tracks of DCVs at seams, though they are bet-
ter than KCF to some extent. It also can be found 
that if any kind of algorithm has trouble in tracking 
LCVs through the foreground or at seams, it will 
have even worse problems when tracking DCVs.

3.2 Operational time
The study reveals that different algorithms differ 

greatly in operational time. It is worth noting that 
there are about 50 vehicles tracked together on av-
erage. As Table 2 shows, none means no tracking al-
gorithm takes effect and the time cost is mainly due 
to eliminating image distortions, video stabilising, 
stitching images and identifying vehicles. Track-
ing time, which shows the actual operational time 
of tracking algorithms, is calculated by subtracting 
the total time of none from that of each algorithm. 
Table 2 – Operational time of tracking algorithms

Tracking Algorithms Boosting CSRT KCF Median 
Flow MIL MOSSE None

Total Time [h:mm:ss] 5:40:01 6:19:44 1:48:42 2:40:36 15:42:02 0:50:10 0:47:44

Tracking Time [h:mm:ss] 4:52:17 5:32:00 1:00:58 1:52:52 14:54:18 0:02:26 0:00:00

Tracking Time Relative Rate 120.11 136.44 25.05 46.38 367.52 1 /

Table 3 – RAM usage of tracking algorithms

Tracking Algorithms Boosting CSRT KCF Median Flow MIL MOSSE None

Average RAM Usage [Mb] 1217 512 566 625 914 502 490

Extra Average RAM Usage [Mb] 727 22 76 135 424 12 0

Extra Average RAM Usage Relative Rate 60.58 1.83 6.33 11.25 35.33 1 /
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ranges from 1 to 5. Therefore, there are 10 kinds 
of possible match, including g(2i+1) with o(5i+1), 
g(2i+1) with o(5i+2), g(2i+1) with o(5i+3), g(2i+1) 
with o(5i+4), g(2i+1) with o(5i+5), g(2i+2) 
with o(5i+1), g(2i+2) with o(5i+2), g(2i+2) with 
o(5i+3), g(2i+2) with o(5i+4) and g(2i+2) with 
o(5i+5). The data matches are shown in Figure 10.

During numerical calculation, mean deviation 
values of x, y and v are computed based on Equa-
tions 6–8 and the comprehensive mean deviation 
value M is calculated with Equation 9. The minimum 
value of M is worked out with Equation 10, and the 
data match with Mmin is chosen as the best one. In 
other words, the particular data match of g(2i+ig) 
with o(5i+io) resulting in Mmin presents minimum 
deviation between GPS data and video data. In ad-
dition, the 85th percentile of the deviation value, 
which is greater than 85% of the data and less than 
the other 15%, and the standard deviation are cal-
culated for more details.

dx q x x1
,i i o i i g i i

i

q

5 2
0

o g o g= -+ +
=

^ ^h h/  (6)
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,i i o i i g i i
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q

5 2
0

o g o g= -+ +
=

^ ^h h/  (7)
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, ( ) ( )i i o i i g i i

i

q

5 2
0

o g o g= -+ +
=
/  (8)

M dx dy dv3
1

, , , ,i i i i i i i io g o g o g o g= + +7 A  (9)

, , , , , , , , ,
M
min M M M M M M M M M M, , , , , , , , , ,

min

1 1 2 1 3 1 4 1 5 1 1 2 2 2 3 2 4 2 5 2

=
" ,  (10)

where q is the number of data with 0.2 s interval, 
i is a natural number and ranges from 1 to q, io is 
the order of the first video data adopted and ranges 
from 1 to 5, ig is the order of the first GPS data ad-
opted and ranges from 1 to 2, dx  is the mean de-
viation value of x, dy  is the mean deviation value 
of y, dv  is the mean deviation value of v, M is the 
comprehensive mean deviation value of x, y and v, 
and Mmin is the minimum value of M.

The results of data error are shown in Table 4. 
Though there are some differences between dx, dy 
and dv, the gaps are narrow.

Furthermore, the study analyses the effect of 
image stitching seams on data accuracy, which are 
marked with blue ellipses in Figure 5c. If the vehi-
cle passes a seam at time t, data from one second 

into their physical distance. Since vehicles move 
in the plane of the quadrangle areas approximate-
ly, their physical displacement can be calculated 
with their pixel displacement multiplied by the im-
age scale. The vehicle position in the road surface 
coordinate system is denoted as (x, y). Since the 
frame rates of observation videos are 25 Hz and 
the data intervals are 0.04 s, vehicle speed can be 
calculated with Equation 4

v dt
x x y y

2t
t t t t t t tt

2 2

=
+- -D D DD ++ - -^ ^h h  (4)

where vt is the vehicle speed at time t, Δt is the 
time interval of data, (xt+Δt, yt+Δt) is the vehicle 
position at (t+Δt) s, and (xt-Δt, yt-Δt

) is the vehicle 
position at (t-Δt) s.

To acquire empirical data, a car equipped with 
the portable GPS device went through the observed 
section several times. Trajectory and speed data of 
the vehicle were collected from videos by different 
tracking algorithms. The data from steady tracking 
were selected to be compared with the data from 
the GPS device on the car.

Since the GPS device used the WGS84 coordi-
nate system, GPS data were transformed to points 
in the road surface coordinate system by Equation 5. 
GPS coordinates and road coordinates of special 
fixed points in videos, such as stitching mark 
points, were measured to compute the parameters.
where (xr, yr) is the position of point in the road 
surface coordinate system, (xg, yg, zg) is the posi-
tion of point in the WGS84 coordinate system, Δx, 
Δy, Δz are distance of translation and α, β, γ are 
angles of rotation.

Another fact worth noting is that the sampling 
frequency of the GPS device is 10 Hz, which means 
the data interval of GPS is 0.1 s and it differs from 
those of the videos. To calculate the deviation  
between them, 0.2 s is taken as the least common 
multiple data interval. For convenience, GPS data 
are marked as g(1), g(2), g(3) and so forth. Video 
data are marked as o(1), o(2), o(3) and so forth. 
To find the best data match, GPS data marked as 
g(2i+ig) are matched with video data marked as 
o(5i+io) for calculating deviations, where i, ig and 
io are natural numbers, i ranges from 1 to the num-
ber of data with 0.2 s interval, ig is the order of 
the first GPS data adopted and ranges from 1 to 2, 
io is the order of the first video data adopted and 
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lated and shown as Table 5. In Table 5, the minimum 
and maximum of each line are listed. In contrast 
with Table 4, the results in Table 5 do not exceed the 
range of potential random errors. In other words, 
no obvious deviation increase is observed when  

before t to one second after t are collected as data 
near seams. The rest are categorised as data of the 
vehicle staying away from seams. Increases in po-
sition and speed error of vehicle data near seams 
compared with data away from seams are calcu-

Table 4 – Position and speed error of integral video vehicle data

Boosting CSRT KCF Median flow MIL MOSSE

Mean of dx [m] 0.68 0.61 0.96 0.70 0.61 0.92

Standard deviation of dx [m] 0.42 0.48 0.41 0.43 0.46 0.44

The 85th percentile of dx [m] 1.22 1.18 1.47 1.16 1.17 1.54

Mean of dy [m] 0.65 0.47 0.61 0.54 0.76 0.64

Standard deviation of dy [m] 0.39 0.35 0.39 0.38 0.33 0.37

The 85th percentile of dy [m] 1.10 0.92 1.08 1.04 1.15 1.07

Mean of dv [m/s] 0.48 0.56 0.48 0.31 0.45 0.41

Standard deviation of dv [m/s] 0.34 0.57 0.35 0.23 0.35 0.31

The 85th percentile of dv [m/s] 0.85 0.96 0.93 0.55 0.88 0.67
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Figure 10 – The matches of GPS data (light grey) and video data (dark grey)
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probably preferred for its prominent reliability. In 
addition, if vehicles are tracked steadily, all tracking 
algorithms can extract reliable trajectory and speed 
data.

In the study, it is found that different weather 
and sunlight influence vehicle identification and 
tracking, especially in respect of road surface co-
lour and object shadow. Therefore, the difference 
of algorithms in special environments and possible 
improvement will be our research contents in the 
near future.
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considering the vehicle passing seams. Therefore, 
image stitching seams have little influence on data 
accuracy.

Based on the above analysis, it can be conclud-
ed that if the vehicle is tracked steadily, there will 
be little difference between the above algorithms in 
the error of position or speed. In this case, all algo-
rithms produce reliable trajectory and speed data.

4. CONCLUSIONS
In this paper, an integral framework and main 

algorithms of vehicle information collection from 
several consecutive videos are introduced. A practi-
cal and programmable method of video stabilising is 
explained in detail. As key points, six novel tracking 
algorithms, including boosting, CSRT, KCF, medi-
an flow, MIL and MOSSE, are compared in terms 
of tracking reliability, operational time, RAM usage 
and data accuracy based on empirical observation 
videos. According to data analysis, it is found that 
MOSSE has the best running efficiency, the least 
RAM demand and medium reliability. CSRT shows 
optimum reliability in the cost of time, and its RAM 
usage is more than that of MOSSE and less than 
those of the others. In addition, if observation vid-
eos are from the same camera, image stitching can 
be ignored. If so, boosting and KCF could have bet-
ter performance. Even though MIL performed well 
when tracking LCVs, long time cost and high RAM 
usage may limit its application. In general, MOSSE 
is worth trying especially when there are few DCVs. 
If high-performance computers are used, CSRT is 

Table 5 – Increases in position and speed error of vehicle data near seams compared with data away from seams

Boosting CSRT KCF Median flow MIL MOSSE Minimum Maximum

Mean of dx [m] 0.26 0.03 0.67 -0.01 0.25 0.68 -0.01 0.68

Standard deviation of 
dx [m] 0.33 0.38 0.15 0.22 0.31 0.21 0.15 0.38

The 85th percentile of 
dx [m] 0.70 0.37 0.90 0.27 0.55 1.00 0.27 1.00

Mean of dy [m] -0.46 -0.39 -0.48 -0.46 -0.37 -0.4 -0.48 -0.37
Standard deviation of 

dy [m] 0.38 0.29 0.35 0.33 0.32 0.35 0.29 0.38

The 85th percentile of 
dy [m] 0.01 0.05 -0.06 0.02 0.03 0.01 -0.06 0.05

Mean of dv [m/s] -0.09 -0.36 -0.10 -0.08 0.00 -0.04 -0.36 0.00
Standard deviation of 

dv [m/s] -0.23 -0.91 -0.18 -0.05 -0.11 -0.16 -0.91 -0.05

The 85th percentile of 
dv [m/s] -0.03 0.06 -0.32 -0.16 -0.35 -0.48 -0.48 0.06
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从连续视频中提取完整轨迹的车辆跟踪算法实
测分析

摘要
本研究介绍了一种新的方法论框架，用于从几

张连续的图片中自动提取车辆的完整轨迹。该框架
由摄像机观测、图像畸变消除、视频稳定、图像拼
接、车辆识别和车辆跟踪部分组成。本文以中国
江苏省南京市凤台南路四个路段的观测视频为例，
对该框架进行了验证分析。作为关键点，本文比较
了六种典型的跟踪算法，包括Boosting、CSRT、K-
CF、Median Flow、MIL和MOSSE，在跟踪可靠性、
运行时耗、内存开销和数据精确度方面的差异，并
考虑了多种干扰因素的影响，包括车辆颜色、斑马
线、车道线、路灯、指示牌和图像拼接接缝。通过
实测分析，我们发现MOSSE的时间和内存开销最
低，而CSRT则表现出最佳的跟踪可靠性。此外，我
们还发现如果车辆被稳定地跟踪，所有跟踪算法都

能获得可靠的车辆轨迹和速度数据。

关键词
视频观测；完整轨迹提取；车辆跟踪
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