
ABSTRACT
The outbreak of COVID-19 disrupted our everyday 

life. Many local authorities enforced a cordon sanitaire 
for the protection of sensitive areas. Travellers can only 
pass the cordon after tested. This paper aims to propose a 
method to design an on-ramp control scheme to maximise 
urban freeway network throughput with a predetermined 
queuing delay constraint at all off-ramps around cordon 
sanitaire. A bi-level programming model is formulated 
where the lower-level is a transportation system equi-
librium to predict traffic flow, and the upper-level is on-
ramp metering optimisation that is nonlinear program-
ming. A stochastic queuing model is used to represent the 
waiting phenomenon at each off-ramp where testing is 
conducted, and a heuristic algorithm is designed to solve 
the proposed bi-level model where a method of successive 
averages (MSA) is adopted for the lower-level model; A 
genetic algorithm (GA) with elite strategy is adopted for 
the upper-level model. An experimental study is conduct-
ed to demonstrate the effectiveness of the proposed meth-
od and algorithm. The results show that the methods can 
find a good heuristic optimal solution. These methods are 
useful for freeway operators to determine the optimal on-
ramp control for disease control and prevention. 

KEYWORDS
cordon sanitaire; on-ramp control; bi-level  
programming model; heuristic algorithm; queuing  
theory.

1. INTRODUCTION 
The COVID‑19 pandemic is an ongoing global 

pandemic of a novel coronavirus disease (WHO). 
The outbreak was first reported in December 2019 
in Wuhan, China. Epidemiologists determined that 
the virus possibly came from an animal sold at a 
seafood market. However, the source is still not 
identified. As of 20 October 2020, more than 40.4 

million cases of COVID‑19 have been reported 
across 188 countries and territories, resulting in 
more than 1.1 million deaths. The virus is primar‑
ily spread between people during close contact, 
most often via small droplets produced by cough‑
ing, sneezing, and talking. Common symptoms 
include fever, cough, fatigue, shortness of breath, 
and loss of sense of smell. Recommended pre‑
ventive measures include hand washing, covering 
one's mouth when coughing, maintaining social 
distance from other people, wearing a face mask 
in public settings, disinfecting surfaces, increasing 
ventilation and air filtration indoors, and monitor‑
ing and self‑isolation for people who suspect they 
are infected.

In order to contain the rapid spread of 
COVID‑19, authorities worldwide have respond‑
ed by implementing travel restrictions, lockdowns, 
workplace hazard controls, and facility closures. 
Many places have also worked to increase the test‑
ing capacity and trace contacts of infected persons. 
Mostly, a cordon sanitaire was set up on 23 Jan‑
uary 2020 to control travel in and out of Wuhan, 
and then it was extended to many other cities. A 
cordon sanitaire is the restriction of movement of 
people travelling to or from a defined geographic 
area, such as a community, city, or region. Only 
qualified travellers after testing are allowed to 
pass the cordon. Such an approach demonstrated 
to be an effective way to prevent the infectious vi‑
rus from spreading into a city [1–3]. All travellers 
passing the cordon are have their body temperature 
checked to ensure they are not infected. Howev‑
er, it is reported that the queue length is too long  
and the waiting cost is too high at the cordon sani‑
taire. Note that the traffic flows at all freeways in‑
cluding off‑ramps are determined by the upstream  
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The other approach to determine queuing delay 
is Vickrey’s bottleneck model [8] where the queu‑
ing delay time is derived explicitly using the de‑
terministic queuing theory. It aims to address the 
departure time choices of commuters on a bottle‑
neck‑constrained freeway during the morning rush 
hours. This model is able to model the formulation 
and dissipation of queuing behind the bottleneck in 
a tractable and straightforward way, thus making it a 
benchmark representation of the dynamics of traffic 
congestion in peak periods. The classical bottleneck 
model states that the travel time on each link is a 
free-flow travel time plus a queuing delay before 
the downstream bottleneck. The bottleneck model 
research studies discovered a significant progress 
in the past 50 years. A lot of insights into under‑
standing the features of traffic queuing in peak pe‑
riods have been obtained via the bottleneck model. 
Li et al. [9] recently gave a very good bibliometric 
review and future research directions on the bot‑
tleneck models, where interested readers can find 
much more details. 

Although queuing delay at a cordon sanitaire is 
analogous to that at ramp meters, signalised inter‑
sections, and bottlenecks, it has different character‑
istics that provide potential research opportunities 
for further studies. First of all, the testing time for 
each vehicle is stochastic as it depends on the uncer‑
tain number of occupants. Therefore, the tradition‑
al deterministic queuing model may lead to a large 
deviation from the actual values and, thus, restricts 
real applications of the model. In order to model 
the uncertain testing time at each checkpoint, a sto‑
chastic queuing model is specified in this research. 
Secondly, the aspiration level of queuing delay is 
highlighted at cordon sanitaire. Although the queu‑
ing phenomenon is well explored in the transport 
networks, the manipulation for the desired level of 
queuing delay at cordon sanitaire is not investigated 
to our knowledge. Lastly, the existing studies have 
mainly focused on the topics of travel behaviour 
analysis and demand‑side strategies (particularly on 
congestion pricing). However, only limited atten‑
tion was given to the topics of supply‑side strategies 
[9]. This research aims to propose a novel bi-level 
programming model and an efficient heuristic algo‑
rithm to design on‑ramp metering rates of an urban 
freeway network for epidemic disease control and 
prevention.

controlled on‑ramp meters. This paper aims to 
propose a method and an algorithm to design an 
on‑ramp control scheme at an urban freeway net‑
work while ensuring a tolerable waiting time at 
off‑ramps around the cordon sanitaire. 

As for optimisation, there are many ways to 
measure the performance of the queuing system 
around a cordon sanitaire. The most important one 
is the queuing delay cost, i.e., vehicle waiting time. 
It is also an important indicator in transport network 
analysis. Generally speaking, there are two ways 
to determine queuing delay costs in the transport 
network. One is proposed by Yang and Yagar [4], 
where queuing times are determined implicitly. 
They formulated bi‑level programming for on‑ramp 
traffic control problem where the upper-level prob‑
lem is to determine the ramp metering rates that mi‑
nimise system total travel time, and the lower‑lev‑
el problem represents a traffic equilibrium model 
involving ramp queuing. Note that the total travel 
time is defined as the sum of travel times spent in 
the corridor and queuing times at controlled ramps 
by all vehicles. It can be proved that the link queu‑
ing time corresponds exactly to the Lagrange mul‑
tiplier associated with the link capacity constraint. 
Yang and Yagar [5] further extended the bi-level 
model to optimise signal timings in saturated road 
networks. Both queuing and congestion on saturat‑
ed links are taken into account in predicting equilib‑
rium flows and setting signal split parameters for a 
fixed pattern of origin-to-destination trip demand. 
Besides traffic control, Yang and Lam [6] extended 
the bi‑level model for the determination of road toll 
pattern at bottlenecks, such as tunnels and bridges. 
The lower‑level problem represents a queuing net‑
work equilibrium model that describes users' route 
choice behaviour under conditions of both queuing 
and congestion. The upper‑level problem is to deter‑
mine road tolls to optimise a given system's perfor‑
mance while considering the route choice behaviour 
of users. The previous research studies are all under 
fixed origin-to-destination trip demand so Yang and 
Bell [7] further extended to an elastic-demand net‑
work equilibrium model with queues. The queuing 
delay time is not explicitly represented in this way. 
It is determined implicitly as the Lagrange multi‑
plier associated with the link capacity constraint in 
the lower‑level problem. Queues only form when 
capacity is reached. Otherwise, link travel time will 
solely depend on flow. 
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where travel behaviours of freeway users can be 
predicted. Note that the equilibrium is a feedback 
procedure between a trip distribution and traffic 
assignment with fixed travel demand. The detailed 
models are elaborated in the following sections.

2.1 Network equilibrium with queuing
The lower‑level model is a transportation sys‑

tem equilibrium that combines trip distribution 
and traffic assignment models with settled meter‑
ing rates and given road network. It has long been 
criticised that travel times are inconsistent in the 
conventional four‑step sequential model because 
travel times are determined endogenously in fact. 
Generally speaking, two ways can be used to solve 
the inconsistent problem to achieve transport sys‑
tem equilibrium according to the literature. One 
way is to combine several steps to an equivalent 
mathematical programming, which can achieve a 
well-converged and consistent result [10, 11]. The 
other is to feedback the sequential models itera‑
tively until travel times meet the consistency cri‑
teria [12, 13]. Although the former is commonly 
adopted in literature, the latter is more flexible at 
each step [14, 15]. Therefore, a combined model 
with feedback is adopted here.

Note that traffic assignment is not a traditional 
one here as queuing delay at cordon sanitaire is 
accommodated. The determination of queuing de‑
lay time is a critical problem. Generally, queuing 
theory is an excellent tool to analyse the cost of 
vehicles waiting. In most traffic situations, inter‑
arrival and service times are described randomly 
by the exponential distribution. This stage adopts 
a stochastic queuing model that combines both 
arrivals and departures based on the Poisson as‑
sumptions. That is, the interarrival and the ser‑
vice times follow the exponential distribution. In 
addition, the first-in-first-out (FIFO) discipline is 
respected on each off‑link. The derivation of the 
specialised queuing model is based on the steady‑
state behaviour of the queuing situation, achieved 
after the system has been in operation for a suffi‑
ciently long time. 

According to the conventional traffic flow the‑
ory [16], the waiting line at each toll booth can be 
formulated as a fundamental M/M/c queuing mod‑
el, where M means Markovian (or Poisson) arrivals 
or departures distribution or equivalently exponen‑
tial interarrival or service time distribution, and c 
means the number of identical parallel servers with 

The structure of this paper is organised as fol‑
lows. Section 2 elaborates on the proposed bi-level 
programming model. Section 3 describes explicitly 
a heuristic algorithm designed to solve the proposed 
model. Section 4 demonstrates the effectiveness of 
the model and algorithm by means of an experimen‑
tal study. Section 5 concludes this paper.

2. METHODOLOGY
In order to avoid unbearable waiting time at 

the testing station, this paper aims to propose a 
method and an algorithm to design an on‑ramp 
control scheme at an urban freeway network. The 
traffic flows are indirectly controlled at on-ramps 
so that they cannot exceed the testing capacity at 
off‑ramps. This is a Stackelberg game with a lead‑
er‑follower decision structure. The operator in the 
upper‑level aims to maximise network throughput 
by metering on‑ramps. The operator can predict, 
but cannot control travel behaviours of freeway us‑
ers including destination choice and route choice, 
while all users make their own decisions in a user 
optimal manner. The users’ decisions at the low‑
er‑level are made after the upper‑level decisions. 
However, the operator must anticipate the be‑
havioural responses of the users to adjust his deci‑
sions. A bi-level optimisation model is usually pro‑
posed to capture the leader‑follower nature of the 
relationship between the operator and users. The 
conceptual framework is shown in Figure 1. The 
upper‑level is a network throughput maximisation 
with a queuing delay constraint. The lower‑level is 
a transportation system equilibrium with queuing 

Ramp metering control

Trip distribution

Traffic assignment
with queuing

Shortest path
problem

Transportation system equilibrium

Figure 1 – The conceptual framework of bi-level programming 
model
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da(va,ca) is queuing delay time. The traffic flows va 
at an off‑link is regarded as the arrival rate of the 
queuing system. Then the traffic assignment with 
queuing for a metering scheme u is a conventional 
problem. 

In summary, the lower‑level model is conduct‑
ed as follows, given travel demand and road net‑
work. Trip distribution is generated by aggregat‑
ing individual destination choice. The multinomial 
logit model is used for destination choices, and it is 
regarded as the simplest and most practical. After 
the trip distribution matrix is generated, travel de‑
mands are assigned into the road network by user 
equilibrium with queuing to generate link traffic 
flows. Note that the predicted traffic flow at each 
link is regarded as the average arrival rate of the 
queuing system. Then all the origin‑destination 
(O‑D) pair travel times are produced by Dijkstra’s 
algorithm with link travel times and queuing delay 
times. These path travel times are fed back to the 
multinomial logit model to update the trip distri‑
bution matrix. This process is iterated until the trip 
distribution matrix is well‑converged. The state is 
known as transport system equilibrium. Figure 2 il‑
lustrates the feedback process at the lower‑level. 

Variable notations used in Figure 2 are defined as 
follows:
qrs  – travel demand between origin r and  
    destination s; 
ur  – traffic inflow through the ramp at origin r;
sr   – set of destinations for travellers departed  
    from origin r;
βs  – traveller preference for destination s; 
trs  – path travel time between origin r and  
    destination s; 
A   – set of links in the network; 
A*  – set of off‑links that is a subset of links in  
    the network; 
βt   – coefficient of travel time trs;
va  – traffic flow at the link a; 
ca  – number of checkpoints at the link a;
ta   – travel time at the link a which is a function  
    of traffic flow va and number of check‑ 
    points ca;
fk

rs  – traffic flow on the path k connecting origin  
    r and destination s;
δa,k

rs  – link‑path incidence relationship which is  
    expressed as:

,
,

.
a k r s1

0
if link is on path connecting and
if not,a k

rsd = )

same service rate per unit time. There could be one 
or more parallel checkpoints (i.e., servers) at each 
off‑link. Suppose that there are m off‑ramps at a 
sanitary cordon. It is necessary to study the entire 
queuing network performances. Assume that vehi‑
cles arrive at i‑th (i=1,2,…,m) off‑ramp according 
to a Poisson process with predicted inflow λi and 
that i‑th off‑ramp has an exponential service time 
distribution with an identical parameter μ for its ci 
parallel checkpoints, where ci μ>λi. Therefore, the 
elementary M/M/c queuing model can be used to 
analyse each off‑ramp. 

Analogous to a single service facility, the most 
commonly used measures of queuing situation in 
a given off‑ramp i are the expected number of ve‑
hicles (li) and expected delay time (di). Note that 
li includes the expected number of vehicles in the 
queue and in service, and di includes expected 
waiting time in the queue and expected service 
time. The relationship between li and di is known 
as Little’s formula, and it is given as li=λi di. The 
relationship is valid under rather general condi‑
tions. Let ρi=λi/μ, the expression li can be deter‑
mined as follows:
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where pi is the steady‑state probability of none cus‑
tomers in an off‑ramp i, A* is the set of off‑links, 
Equation 3 is a steady‑state condition. The measure  
di is determined through dividing li by λi according 
to Little’s formula. It can be formulated in detail 
as follows:

,
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The travel times at off‑links consist of two 
parts. One is link travel time determined by link 
traffic flows. The other is queuing delay time de‑
termined by traffic flow and the number of par‑
allel checkpoints. Note that the queues are as‑
sumed to have zero physical length, and there is 
no queue spillback, which implies that link travel 
time is independent of the length of the queues. 
Let the generalised travel time be defined as  
ta(va,ca)=ta(va)+da(va,ca), if a!A* and ta(va,ca)=ta(va)  
otherwise where ta(va) is link travel time and 
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The freeway operator in the upper‑level aims to 
maximise the total input flow through all ramps with 
queuing delay constraint. The operator can predict, 
but cannot control travel behaviour of freeway users 
including destination choice and route choice, while 
all users make their decisions in a user optimal man‑
ner. The upper‑level model is formulated as follows:

U uMax r
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/  (7)
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where
ur – inflow through on-ramp r!R;
ur

d – traffic demand at on-ramp r!R;
R  – set of on‑ramps, i.e., origins;
I  – set of off‑ramps;
u  – vector of all inflows (upper-level decision  
   variables).

In the upper‑level model, Equation 7 is the objec‑
tive function to maximise the total input flow through 
all on‑ramps, Equation 8 means that the waiting time 
at each off‑ramp should not exceed a predetermined 
acceptable level T. Note that the link flow λi (u) is 
formulated as a function of all inflows, Equation 9 is 
the steady‑state condition, and Equation 10 indicates 
that the inflow through each ramp should be non‑
negative and equal to or less than the corresponding 
traffic demand. The link flow λi (u) is obtained by 
solving the lower‑level problem. 

2.2 The bi-level programming model
There is a transportation system equilibrium 

with queuing in the lower level for a given on‑ramp 
metering scheme in the upper level. The operator 
aims to maximise network throughput with a pre‑
determined level of waiting time at each off‑ramp 
by metering on-ramps. Acceptable control should 
consider queuing delay constraints. The aspiration 
level model works directly with the performance 
measures of the queuing situation. The idea is to de‑
termine an acceptable range for the service level by 
specifying reasonable limits on measures of perfor‑
mance. Such limits are the aspiration levels the de‑
cision‑maker wishes to reach. Note that the service 
level in a given off‑ramp i is a function of the link 
flow λi which could be controlled by on‑ramp me‑
ters. This step presents a constraint for determining 
acceptable on‑ramp metering rate considering the 
average waiting time such as

, ,d c T ii i i 6#m^ h  (5)

The constant T in Equation 5 is the level of as‑
piration specified by the decision-maker, for exam‑
ple, T=3 minutes. Note that di is a function of link 
flow λi and number of checkpoints ci. According to 
Equation 4, the constraint on average waiting time di  
can be specified in more detail as follows:
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A bi-level optimisation method was proposed 
by Yang et al. [17], where the on-ramp traffic con‑
trol problem was described as a leader‑follower or a 
Stackelberg game. With the inspiration of their work, 
a bi‑level programming model is also adopted here. 
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Figure 2 – The iterative process in the lower-level model
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The detailed MSA algorithm is specified step by 
step as follows:
Step 1: Input an on‑ramp metering scheme decision   
u and a built road network. 
Step 2: Initialise trip distribution matrix q0

rs with ini‑
tial O‑D pair travel time t0rs. Besides, let n=1 be the 
number of iterations.
Step 3: Traffic assignment with queuing. The trip 
distribution matrix q0

rs is assigned to the road net‑
work by the Frank-Wolfe algorithm [10]. The link 
travel flows va and link travel times ta are generated. 
Note that queuing delay times can be determined 
with flows at off-links.
Step 4: Update the shortest path travel time between 
an O‑D pair rs, namely t1rs, by Dijkstra’s algorithm. 
Step 5: Trip distribution. The multinomial logit 
model is used to update the trip distribution matrix 
q1

rs:

exp
exp

q u
t

t
rs r

s t rs

s t rs

s Sr

1
1

1

b b

b b
=

+
+

!

_
_

i
i/  (11)

Step 6: Average trip distribution matrices q1
rs and   

q0
rs using decreasing weight

q q n q q1
rs rs rs rs
1 0 1 0= + ‑^ h  (12)

Step 7: Convergence identification. Check the 
convergence of trip distribution matrix using the 
squared root of the relative gap:

q
q q

<
rs

rs rs

rs
0

1 0 2

f
‑e o/  (13)

where ε is a predetermined tolerance. If the conver‑
gence condition is satisfied, terminate the iteration 
and go to Step 9, otherwise go to Step 8.
Step 8: Let q0

rs:=q1
rs and n:=n+1. Then go to Step 3.

Step 9: The outputs are the trip distribution matrix  
q1

rs and the link traffic flow va.

3.2 The solution of the bi-level 
programming problem

The bi‑level programming problem is a well‑
known NP-hard problem that is difficult to solve by 
classical optimisation algorithms. It is challenging 
even if the upper‑level and lower‑level are both lin‑
ear programming models, let alone the upper‑level 
is a nonlinear programming model. For example, 
the traditional gradient‑based approaches to solve 
the optimal cordon toll problem usually fail to con‑
verge for larger‑scale problems due to multiple op‑
tima. This failure led to the development of a heu‑
ristic algorithm to determine the optimal toll level 

3. SOLUTION ALGORITHM

3.1 Equilibrium algorithm with queuing
To solve the proposed bi‑level programming 

model, it is always beneficial to solve the lower-lev‑
el model first as it is embedded in the upper-level 
model. With a built road network, there will be a sta‑
ble flow pattern in the lower-level for a given ramp 
metering scheme from the upper‑level. Note that the 
lower‑level is a feedback procedure between a trip 
distribution and traffic assignment with queuing. 
The method of successive averages (MSA) can be 
used to achieve system equilibrium. An initial trip 
distribution matrix can be produced by a multino‑
mial logit model with initialised origin‑destination 
(O‑D) pair travel times. The trips are then assigned 
the road network according to the user equilibri‑
um principle. The link travel flows and link travel 
times can be generated by the Frank‑Wolfe algo‑
rithm [10]. In addition, queuing delay times can be 
determined with predicted traffic flows at off-links. 
The generalised travel time of each off‑link includes 
link travel time and queuing delay time. According 
to Wardrop's first principle of route choice, also 
known as user equilibrium, traffic arranges itself 
in congested networks such that all used paths be‑
tween an O‑D pair have an equal and minimum 
cost. Therefore, Dijkstra’s algorithm is used to up‑
date the O‑D pair travel times. These times are then 
fed back to the multinomial logit model to generate 
a new trip distribution matrix. However, this matrix 
cannot be assigned to the road network directly. The 
convergence of direct or naive feedback is usually 
impossible. An averaging of successive trip distri‑
bution matrix is necessary. Although there are some 
successful applications of constant weights, the 
convergence is usually not guaranteed. Therefore, 
the MSA with decreasing weight is used here to up‑
date the trip distribution matrix, which is the recip‑
rocal of the iteration number. The updated matrix is 
further assigned to the road network. The iteration 
process continues until the successive matrices are 
quasi‑equal. The convergence is generally measured 
by the squared root of the relative gap between suc‑
cessive travel demand matrices. If a predetermined 
tolerance is achieved, terminate the iteration. The 
stable state is known as the transportation system 
equilibrium. The resultant traffic inflows at all the 
off‑links then go into the upper‑level model. Figure 3 
shows the flowchart of the equilibrium algorithm 
with queuing.
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the notation of generation gen=1, the portion for 
elitist strategy pe. Note that the population size de‑
pends on the nature of the problem, but typically 
contains several hundreds of possible solutions. 
Step 2: Generate a feasible initial population ran‑
domly. A chromosome is a solution that consists 
of several genes. Note that the number of genes in 
a chromosome is equal to the number of on‑ramp 
meters which are decision variables in the up‑
per‑level. Real encoding technology is used where 
a gene stands for the on‑ramp metering rate at an 
off‑link. Generate a chromosome randomly. If it is 
not feasible, generate another one until it is feasi‑
ble. A total number of M viable chromosomes are 
generated, scattering the entire range of possible 
solutions. 

and toll location problem. The heuristic algorithm 
was shown to be successful in solving the cordon 
toll optimisation problem, although it is found to 
be time‑consuming, and there is no proof of global 
optimum. However, the successful applications of 
heuristic methods, especially genetic algorithms, 
have been growing to generate high‑quality cor‑
don schemes in the literature [18–21]. Therefore, a 
genetic algorithm with an elite strategy is adopted 
here. Figure 4 shows its flowchart.

To be more specific, the detailed genetic algo‑
rithm with an elite strategy is specified in steps as 
follows:
Step 1: Initialisation. Set the parameters used in 
the genetic algorithm, including population size 
M, the maximum number of generations Gen, 
crossover probability pc, mutation probability pm, 

Initialize trip distribution matrix q0
rs

with initial travel time t0
rs and let

n=1 be the number of iteration

Input a ramp metering
scheme decision

FeedbackTraffic assignment with
queuing to generate link
travel time ta and flow va

Update shortest path travel
time by Dijkstra algorithm t1

rs

Trip distribution by logit
model to update q1

rs

Average trip distribution matrix
by MSA with decreasing weight

q1
rs=q0

rs+(1/n)(q1
rs-q

0
rs)

No

Let q0
rs=q1

rs and n=n+1

Output trip distribution
matrix and link traffic flow

q
q q

rs

rs rs

rs
0

1 0 2

1 f
-e o/

Figure 3 – The flowchart of the MSA algorithm
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Step 6: Generate the next generation population. Af‑
ter genetic operators, there are still (1‑pe)M feasible 
chromosomes. The labelled peM elitists are added 
to ensure the population size M. This allows the 
best chromosomes from the current generation to 
carry over the next unaltered. It guarantees that the 
solution quality will not decrease from one gener‑
ation to the next. Let the notation of generation be  
gen:=gen+1. 
Step 7: Termination judgment. If the maximum 
number of generations is achieved, that is gen≥Gen, 
terminate the iteration process and output the opti‑
mal scheme of on‑ramp metering. Otherwise, go to 
Step 3. 

4. EXPERIMENTAL STUDY
In order to verify the effectiveness of the pro‑

posed method and algorithm, an experimental study 
is conducted. The Nguyen‑Dupuis road network, as 
shown in Figure 5 is commonly used in transporta‑
tion research to demonstrate various methods. The 

Step 3: Selection operation. The objective function 
of the upper-level model is used to work as a fitness 
function to evaluate the performance of all chromo‑
somes in the population. Note that to maximise the 
network throughput, the best pe is labelled for elit‑
ists and the worst pe is discarded.
Step 4: Crossover operation. The remaining  
(1‑pe)M chromosomes are used for crossover op‑
eration. These parent chromosomes are matched 
in pairs randomly. The probability of carrying out 
the crossover is pc. If it is chosen for the crossover, 
a random gene is identified. If new-born chromo‑
somes are not feasible according to constraints in 
the upper‑level model, try another gene location un‑
til they are feasible. These new solutions typically 
share many of the characteristics of their parents.
Step 5: Mutation operation. The probability of car‑
rying out mutation is pm. A random gene is identi‑
fied for mutation within the domain of definition. 
If the new chromosome is not feasible, try another 
gene location until it is feasible.

Generate a feasible initial
population randomly

Selection

Crossover

Elite strategy

Mutation

Generate the next
generation population

Maximum number
of generation

Yes

Output optimal solution

No

Initialization

Figure 4 – The flowchart of a genetic algorithm with the elite strategy
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link characteristics, including free-flow travel time, 
link capacity, and link length, are shown in Table 1. 
Note that it is a closed road network with two or‑
igins being controlled as the entry points and two 
exits containing a sanitary cordon. The background 
stream outside the Nguyen‑Dupuis road network is 
not considered at present.

There are two origins and two destinations in the 
Nguyen‑Dupuis network. The maximum travel de‑
mands at origin nodes 1 and 4 are 1,500 veh/h and 
1,500 veh/h respectively. That is, u1

d=1,500 veh/h 
and u2

d=1,500 veh/h. There is a ramp meter at each 
origin to control travel demand going into the free‑
way network. All of the existing links are labelled 
from 1 to 19. The destination nodes are 2 and 3 so 
the off-links to destinations are 11, 15, 16, 19. The 
problem is to determine the on‑ramp metering rate 
at each origin in order to maximise the total input 
flow with an acceptable waiting time at cordon san‑
itaire.

The parameters used in the lower‑level model 
are summarised as follows. The multinomial logit 
model for destination choices is simplified as

exp
exp

q u
t

t
rs r

s t rs
s Sr

s t rs1
1

1

b b

b b
=

+
+

!

_
_

i
i/  (14)

where βs is traveller preference on destination s and 
βt is the coefficient of path travel time between O-D 
pair rs. The values of βs and βt can be calibrated 
empirically. Here we set β2=0.5, β3=0, and βt=-0.1. 
That is, the traveller preference on destination node 

Check station Cordon line

Destination

Destination

Origin

Origin

4 5

1

3 5 7 9

6

12 14 15

8 10 11

2

171 18

12

6 7 8

4

9 10 11 2

13

13 319

16

Figure 5 – The Nguyen-Dupuis road network

Table 1 – Link characteristics of the Nguyen-Dupuis road 
network

Link a
Free flow 

time
[min]

Link capacity 
[veh/h]

Link length 
[km]

1 7.0 800 4.00

2 9.0 800 6.00

3 9.0 800 5.00

4 12.0 800 8.00

5 3.0 800 2.00

6 9.0 800 5.00

7 5.0 800 3.00

8 13.0 800 8.00

9 5.0 800 3.00

10 9.0 800 6.00

11 9.0 800 5.00

12 10.0 800 6.00

13 9.0 800 5.00

14 6.0 800 4.00

15 9.0 800 6.00

16 8.0 800 5.00

17 7.0 800 4.00

18 14.0 800 6.00

19 11.0 800 7.00
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waiting time. The maximum waiting time is 1.660 
min at off‑link 15, and the minimum waiting time is 
0.866 min at off-link 19. Although the GA based al‑
gorithm can give an approximated optimal solution, 
attention should be paid to the issue of choosing the 
best parameters, i.e., generation number, population 
number, probability of crossover, and the probabil‑
ity of mutation.

5. CONCLUSION
This paper proposed a method to determine the 

optimal on‑ramp metering rates for maximum net‑
work throughput with a predetermined queuing de‑
lay constraint at off‑ramps around cordon sanitaire. 
A bi-level programming model is formulated where 
the upper-level is on-ramp traffic control problem, 
and the lower‑level is transportation system equilib‑
rium problem. To be more specific, the lower-level is 
a closed‑loop feedback procedure between trip dis‑
tribution and traffic assignment given ramp control 
and freeway network. The iteration continues until 
the transportation system equilibrium is achieved. 
Note that a multinomial logit model is used for trip 
distribution and user equilibrium model is used for 
traffic assignment. The traffic flow at each off-link 
can be predicted in this way. The upper‑level is to 
design an on-ramp traffic control scheme with an 
acceptable queuing delay constraint at cordon san‑
itaire. The traffic flow at each off-ramp is regarded 
as an average arrival rate in queuing model. Note 
that there could be many off‑ramps and the M/M/c 
queuing model is used to analyse each off‑ramp 
independently of the others. A nonlinear program‑
ming model is built in the upper level where the ob‑
jective is to maximise the total input flow through 
all on‑ramps.

A heuristic algorithm is proposed to solve the 
bi‑level optimisation model. Method of successive 
averages (MSA) is used to achieve transportation 
system equilibrium at the lower‑level model. Note 
that the conventional Frank‑Wolfe algorithm is used 

2 is 0.5, and on destination node 3 is 0 which means 
that the travellers traditionally prefer destination 2. 
The coefficient of travel time is -0.1, which means 
that the travel time is a negative utility. In addition, 
a link impedance function, named BPR function, is 
used to accommodate congestion effect in traffic as‑
signment with the following formulation:

,t v t e
v a A1a a a a

a0 !a= +
b^ ah k: D  (15)

where ta
0 is the free-flow travel time of link a; α and 

β are volume/delay coefficients which can be cal‑
ibrated empirically, they are usually set as α=0.15 
and β=4 conventionally; ea is road capacity of link  
a. The other notations are consistent with previous 
definitions. The convergence criteria for MSA is 
set as ε=0.01. A stable transportation system can be 
achieved for a built road network. 

The lower‑level model is embedded in the up‑
per‑level model. The parameters used in the up‑
per‑level model are listed as follows. The popu‑
lation size is M=500. The maximum number of 
generations is Gen=30. The portion for elitists is  
pe=0.1. The crossover probability is pc=0.1, and 
the mutation probability is pm=0.5. Although these 
parameters are conventionally used in genetic algo‑
rithms, it is worth tuning parameters to find reason‑
able settings for the problem. The maximum accept‑
able waiting time T at each off‑ramp is assumed to 
be 2 minutes. The number of testing checkpoints is 
assumed to be 9, 3, 5, 5 for off-links 11, 15, 16, 19, 
respectively according to their physical conditions.

Note that traffic volumes are usually mea‑
sured in hours (veh/h) while the arrival rates are 
usually measured in minutes (veh/min). There‑
fore, unit conversion is needed. The average ser‑
vice rate for a single checkpoint is assumed to be  
μ=2 veh/min. That is the checkpoint averagely tests 
two vehicles per minute. The calculation is pro‑
grammed using the popular open‑source language 
R 3.6.3 in a personal computer with Intel Core i7-
4790 CPU @ 3.60GHz. The running time is 2.8 
hours. The maximum network throughput is 2,366 
veh/h. The on‑ramp metering rate at origin 1 is 
1,385 veh/h, and that at origin 2 is 981 veh/h. The 
network performances for all links with checkpoints 
are shown in Table 2. 

It is shown that traffic inflow volumes are differ‑
ent at off-links. The maximum one is 1,025 veh/h at 
off-link 11 while the minimum one is only 319 veh/h 
at off‑link 15. The waiting time at each off‑link is 
different, but they do not exceed the predetermined 

Table 2 – The queuing performance with maximum network 
throughput

Off‑link Traffic inflow 
volume [veh/h]

Number of 
checkpoints

Waiting 
time [min]

11 1,025 9 1.407

15 319 3 1.660

16 522 5 1.036

19 499 5 0.866
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口匝道优化控制方法，以防疫封锁线上安全检查站
处的排队延迟时间为约束，使城市高速公路网络的
通行能力最大化。为此建立了双层规划模型，其中
下层是预测道路流量的交通系统平衡模型，上层是
用于优化控制的非线性规划模型。尤其是采用了随
机排队模型描述在安全检查站处的等待现象，并设
计了启发式算法求解该双层模型，其中下层模型采
用连续平均算法（MSA），上层模型采用具有精英
策略的遗传算法（GA）。最后，进行了实验研究以
验证所提出的方法和算法的有效性。结果表明，该
方法可以找到一个良好的启发式最优解。这些方法
对于高速公路运营者确定用于疾病防控的最优匝道
控制方法十分有效。

关键词：防疫封锁线；进口匝道控制；双层规
划模型；启发式算法；排队论
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匝道优化控制方法

摘要：

新型冠状病毒肺炎（COVID-19）的爆发扰乱了
人们的正常生活。地方政府普遍采用了设置防疫封
锁线的措施来构建城市安全屏障，出行的人们只有
经过检测后才能通过封锁线。本文旨在提出一种进
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