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PARAMETERS

ABSTRACT

The ability to predict the motion of vehicles is essen-
tial for autonomous vehicles. Aiming at the problem that
existing models cannot make full use of the external pa-
rameters including the outline of vehicles and the lane,
we proposed a model to use the external parameters thor-
oughly when predicting the trajectory in the straight-line
and non-free flow state. Meanwhile, dynamic sensitive
area is proposed to filter out inconsequential surround-
ing vehicles. The historical trajectory of the vehicles and
their external parameters are used as inputs. A shared
Long Short-Term Memory (LSTM) cell is proposed to en-
code the explicit states obtained by mapping historical
trajectory and external parameters. The hidden states
of vehicles obtained from the last step are used to ex-
tract latent driving intent. Then, a convolution layer is
designed to fuse hidden states to feed into the next pre-
diction circle and a decoder is used to decode the hidden
states of the vehicles to predict trajectory. The experi-
ment result shows that the dynamic sensitive area can
shorten the training time to 75.86% of the state-of-the-
art work. Compared with other models, the accuracy of
our model is improved by 23.7%. Meanwhile, the model's
ability of anti-interference of external parameters is also
improved.

KEYWORDS
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sensitive area; long-short term memory.

1. INTRODUCTION

With the rapid development of intelligent trans-
portation, more and more autonomous vehicles ap-
pear on the road. To ensure safety and efficiency of
the autonomous driving in the increasingly complex
traffic, autonomous vehicles must have the abil-
ity to predict the motion of surrounding vehicles.
For example, through detecting the insertion of the
side vehicle and sudden braking of the vehicle in
front, the vehicle has the ability to take reasonable
measures to avoid crash. Predicting the trajectory
of vehicle accurately is a challenging task. In most
cases, the traffic flow is complex and flexible, and
vehicles will follow and change lanes for different
purposes, which makes the vehicle trajectory highly
non-linear [1].

Historical trajectory is used to explore the move-
ment pattern and calculate the probability of next
location for historical trajectory. Based on the mod-
el-based trajectory prediction [2], traditional pre-
diction models generally combine vehicle dynamics
and kinematic model for trajectory prediction [3-6].
For examples, Barth [3] used Kalman filtering and
Monte Carlo method to achieve high accuracy in
the short-distance uncertainty prediction of the ve-
hicle model. Houenou [6] proposed a method based
on a combination of acceleration motion model
and polynomial trajectory planning to make up for
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shortcomings of model-based methods in long-term
prediction. Markov-based models also used similar
methods [7, 8]. The abovementioned methods ignore
the interactive effects of vehicles and could not make
full use of historical information. Therefore, their ac-
curacy declined greatly with the passage of time. In
recent years, the research on data-driven trajectory
prediction methods became more and more popular
[9-11], and the aim is mostly to improve recognition
of the lane-changes intention. Many scholars are
committed to using recurrent neural networks (RNN)
for prediction [12-14]. Liu [15] used hidden Mar-
kov models and support vector machine to recognise
driving intentions. The most representative methods
are the trajectory prediction algorithms based on
long-short term memory (LSTM) [16]. Alahi [17]
proposed social pooling layer that connected the
predicted target and its surrounding targets, which
considers the influence of surrounding vehicles. Xu
[1] proposed a pooling layer to substitute a convo-
lutional layer on the basis of Social LSTM to make
further adjustments to sensitive areas. Liu [18] intro-
duced the attention mechanism on the basis of Social
LSTM, which further improved the accuracy of the
model to predict long sequences.

However, there are some critical questions in the
above data-driven algorithms. Firstly, according to
statistics [19], the different vehicles in diverse lanes
show large differences in trajectory. However, the in-
put parameters of the current algorithms are confined
to the historical trajectory of the vehicle, ignoring the
influence of the vehicle’s fixed parameters. Second-
ly, these algorithms define the target area as a circle,
which is used to filter out irrelevant vehicles, ignor-
ring the driving characteristics of the vehicle [20]: the
vehicles rarely make large movements while driv-
ing, and their lateral speed is relatively small on the
straight road. In the longitudinal direction, the target
vehicle will be affected by surrounding vehicles. Fur-
thermore, the shape and size of the area are directly
related to the vehicle speed.

To solve the above problems, aiming at the non-
free flow lane-changing behaviour on the straight
road, in this paper we propose a dynamic sensitive
area based on the relationship between the safe fol-
lowing distance of the vehicle and their speed. Other-
wise, based on LSTM, a model that can make full use
of the vehicle external parameters is proposed. The
main research contents are as follows:

1) Dynamic sensitive area: The sensitive area should
be the smallest area that includes all the vehicles
that may affect the target vehicle. Based on the ac-
tual driving data and the safe following distance, a
straight line is obtained by fitting with the length
of the sensitive area and the speed of the vehi-
cle. Finally, a method for determining the area of
interest based on the speed of the vehicle is pro-
posed.

2) Predicting trajectory with external parameters of
vehicles: A vehicle trajectory prediction model
that considers external parameters is proposed. In
this paper, vehicle external parameters including
the type of vehicle, length and width of vehicles,
and lane information are added to the database, so
that the model can relate the influence of exter-
nal parameters while predicting trajectory. In ad-
dition, some datasets containing trucks and other
types of vehicles are specially selected for train-
ing and evaluation while setting dataset.

3) Shared LSTM cell: The model proposed by Liu
[18] sets up different LSTM cells for the target car
and surrounding cars. One of them is used to en-
code the explicit states, another one is only used
as splicing information, which makes it hard to
train LSTMs well. In this paper, an LSTM cell is
shared by all of the vehicles to speed up the train-
ing process and to reduce the model scale.

2. DYNAMIC SENSITIVE AREA

The sensitive area should be the smallest area that
includes all surrounding vehicles having an effect on
the target vehicle. The smaller this area is, the less
required calculations will be, and the better real-time
performance this model will have. According to the
general characteristics of driving [20], the laterally
sensitive area of the target vehicle should keep within
the width of an adjacent vehicle. According to the na-
tional standard GB-50220 [21], the sensitive height
of the area is set as 7.3 m in this paper. For the width
of the sensitive area, the driver always keeps safe fol-
lowing distance with ahead vehicle in normal driving.
Therefore, we propose that the width of the sensitive
area can be replaced by the safe following distance,
and the speed of the vehicle is used to delimit the
width of the rectangular sensitive area (Figure 1).

Next Generation Simulation (NGSIM) [22] is a
real-world dataset that consists of detailed vehicle
trajectory, wide-area detector, and data for research-
ing driver behaviour. In order to get realistic relation-
ship between safe following distance and speed, we
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Figure 2 — The relationship between speed and distance

analysed more than 300 car-following data in NG-
SIM, and the conducted linear regression is shown
in Figure 2.

According to the relationship in Figure 2, an empir-
ical formula is proposed as follows:

30, v <40 km/h
0.8v+20, v=40km/h

w=2 { (1)
where W is the length of the sensitive area, v is the
speed of the target vehicle.

In the process of data acquisition, the size of the
dynamic sensitive area is judged according to the
speed of the target vehicle. The vehicles driving in
the dynamic area are assumed to affect the trajecto-
ry of the target vehicle.

3. MODEL ARCHITECTURE

The model proposed in this paper is shown in
Figure 3. It has two embedding layers to map vehicle
trajectories and external parameters. The LSTM cell
is used to encode the parameters mapped from em-
bedding layers, a convolution layer is proposed to
fuse the hidden states of each vehicle, and a decod-
ing layer is designed to output the prediction result
of the target vehicle.

3.1 Input and output

If the number of vehicles in the sensitive area of
the target vehicle is n, there are n+1 sets of datasets
as the inputs of our model. The aim of the model is
to predict the trajectory of the target vehicle at time
(T, H,Tm 4 with trajectory of these vehicles in
[T),T,,.]. In this paper, the influence of the target ve-
hicle and its surrounding vehicles are considered for
trajectory prediction. At the same time, the outline
and types of the vehicle and the lane position of the
vehicle have a great impact on the trajectory, so the
model must take the parameters of these vehicles
into account when predicting the vehicle trajectory.
Finally, the inputs of this model are:

{X={X‘,Xz,...,X,...,XT”b‘}
: 2
X ={(hp )l €[ 1, Tl j €[ 1,n]}

Among them, T, is the end point of histori-
cal data input; X’ is the input parameter at time z;
(x%,»%,p;) includes the position coordinate of car
j at time ¢ and vehicle external parameters; 7 is the
total number of surrounding vehicles. We defined p;
in experiment as follow:

)

where Zlen and / .., are the normalised width
gth width

and length of the vehicles; v, . v —andv, .

are the expressions of vehicle types which are

p;i= [ llength, lw[dlh, Vmotors Vears Vitruck, t[g/t, lr[gh/ ]

P x, ‘3
g G, 2, p) > i Decoder >
_ h/ A
& »| Embed 1 >
¢ g y
= LSTM
g >
e' . .
' Social grids
————————————————— > == === 1
Embed 2
Conv and pooling
Hi

Figure 3 — Model structure
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executed by one-hot method; 7, oft and 7, it ATC the
labels for the information of the lane position of
the vehicles.

NGSIM provides abundant vehicle data such as
type of vehicle, length, width, and inherent parame-
ters of the target vehicle including the lane informa-
tion and road information.

The output of the model is the trajectory of the
target vehicle in the next few seconds:

Y=(xf,yf)|l6 [Tabs+ l,Tpred]

4

According to the experiment [1], the accuracy of
predicted result will drop rapidly while the length
of sequence exceeds 5 seconds. In order to have the
same evaluation system as other models, the longest
length of predicted sequence is defined as 5 seconds.

3.2 Embedding layer

In order to input the trajectory of surrounding
vehicles into a shared LSTM, the data needs to be
mapped to the explicit state e/ of common length D.
Another embedding layer is needed for mapping the
target vehicle’s historical trajectory. Besides, con-
sidering the position of target vehicles, the lane and
road information are also embedded in e;:

)

where ® is a full connect layer, w, is the parameter
of ®@, the shape of w, is determined by the length
of p, and D. Two different embedding layers are
designed for surrounding vehicles and target vehi-
cle separately, because their explicit states e, have
different information. As is shown in Figure 3, ef_l
is generated for target vehicle 7 and e/ is for sur-
rounding vehicle ;.

Our model considers the external parameters of
vehicle by adding an additional supplementary pa-
rameter p,, which consists of types, length width of
the vehicles, and the lane information. The specific
processing mode is showed in experiment.

er= q)(xl:yfapf;wf)

3.3 LSTM encoder

In the normal driving environment, vehicles
change lanes and adjust their speed according to
their own conditions including the surrounding
vehicle’s information, which affects the actions of
other vehicles in turn. In this paper, the LSTM cell
was used to capture the historical trajectory infor-
mation of all relevant vehicles. Mutual interference

between the vehicles is also taken into account. Us-
ing Social-LSTM as a reference, in this paper we set
up one LSTM cell for each vehicle in a scene.

The recessive hidden state %/, is a vector of
length D obtained by the LSTM after the last cycle.
The internal forget gate of the LSTM model is used
to control the degree of influence of the recessive
features on the trajectory prediction. Explicit state
¢ and hidden state 4/, are inputted into the LSTM
model after concatenation, and get the hidden state
hJof the car j at time #:

hi=LSTM (e, Hi.1,h.,)

(6)

These LSTM cells need to share their hidden state
with each other to realise the interaction. Therefore,
a shared convolution layer is designed for the model
to fuse all hidden states from LSTM cells.

After obtaining the hidden states of all surround-
ing vehicles, a function named /,  is proposed to
fuse hidden states in order to obtain environment
characteristics of the target vehicle H/(m,n). For the
next step, a convolution layer and a pooling layer
are used to shrink the data scale to D, which pre-
serves position relationship of vehicles according to
the used region proposal network (RPN) proposed
by He [23].

(7

where N, is the set of surrounding vehicles; the
function /,  judges whether the car j is in the (m,n)
grid. The obtained H! is the surrounding feature
map, which contains all the historical trajectory fea-
tures of surrounding vehicles. H! is used to input
LSTM for the next round of trajectory prediction
and judgment.

H;(m,n) = lmn' Z (X{-xf,y;’-yi) . h{

JENI

3.4 Prediction

In order to obtain the points of prediction trajec-
tory, the hidden states 4/ generated by the LSTM
need to be mapped by a decoding layer showed in
Figure 3. Since the reliability of the prediction results
is still poor, considering Alahi’s advice [17], in this
paper our model outputs a bivariate normal distri-
bution to obtain the location area of target car at the
next time point, which includes the relevant param-
eters of N~( fdi+1,00+1,00+1):

ﬂiﬂ = (/u«\'aﬂy);Jr] Giﬂ = (O_)@O_y);ﬂ

®)
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where uand 1, are the means of bivariate normal
distribution, the ¢, and o, are the standard devia-
tions of the same Gaussian distribution. The p is the
correlation parameter of two dimensions.

The specific mapping relationship is:

Npara: I//(hé,WN) (9)

where N para = [ﬂf+1,6§+1,p§+1 |, v is a full connect
layer to embed hidden states to N, > Wy TEpIEsents
the parameters of this layer.

Owing to the accuracy of the model and vehicles
tracks generally appearing on the road, a constraint
condition is added in the output layer of the mod-
el: the last layer of the mapping uses the sigmoid
activation function to constrain the output of the
vehicles’ horizontal coordinates to (0,1) in order to
avoid the output exceeding the roadside range.

ara’

4. EXPERIMENT

In this section, our model is trained and evaluat-
ed in the NGSIM dataset. Meanwhile, the accuracy
and efficiency of our model are compared with oth-
er models.

4.1 Data pre-processing

We selected Lankershim Boulevar and US-101
road data in the NGSIM dataset as experimental data.
As shown in Figure 4, the sections from Lankershim
Boulevar without any bends and traffic lights were
selected for the experiment. For the US-101 road, we
also took the straight section for the research.

During data filtering, 50,000 sequences of US-
101 datasets and 50,000 sequences of Lankershim
Boulevard datasets were obtained by filter. Each se-
quence includes the target vehicle and surrounding
vehicles which are in a rectangle area. A sequence
of selected sample is shown in Figure 5:

Each training and testing sequence is processed
in the following steps:

1) Downsampling
The original data are collected at 10 Hz, which
cause too much load for our model. After multi-
ple experiments, the sampling frequency is set
to 2 Hz, which is accurate enough to express a
trajectory of vehicle.

2) Filtering useless data
NGSIM dataset contains more than 25 columns
including Vehicle ID, Frame ID, Global Time.
We filter some columns which are useless for the
trajectory prediction out. Meanwhile, the follow-
ing processes could run faster.

3) Setting an area to get sequence
After setting a random starting point and start-
ing time in global coordinates, the information
of vehicles driving in this area at this moment is
recorded in the next 10 seconds. The sequences
with data missing will be abandoned.

4) Normalisation
The biggest problem is the universality of the
model. However, the differences in coordinates
of different sequences are tremendous. There-
fore, a normalisation method is designed for all
of the coordinates in this paper as follows:

€[0,19]

(10)

P
Wroad k
- _ Yt = Vmin

Y= Ymax = Ymin

Study area

\

b) US-101 Section

T B e Ty W
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Figure 5 — US-101 data sample
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where (x,,y,) is the global coordinate of the vehi-

cles. (;k,;k) is the normalised coordinate. y, .
and y, . are the maximum and minimum ordinates
in current sequence.

The vehicle types are identified by number 1~3
in NGSIM, our model encoded it through one-hot
(Table 1).

Table 1 — Coding methods of vehicle types

Vehicle types NGSIM One Hot
Motor 1 001
Car 2 010
Truck 3 100

Besides, the length and the width of vehicles are
also encoded by min-max normalisation. One-hot
method is also applied in lane information execu-
tion (Figure 6).

Finally, the sliding window method is used to
gather the short sequence of length »n from the tra-
jectory sequence into LSTM. The first 5 seconds of
the sequence is used as the historical trajectory and
the last 5 seconds of data is used as the future trajec-
tory. The sample is shuffled and divided into 8:2 for
training and testing. In addition, a dataset including
trucks is set to test the stability of the model.

4.2 Parameter adjustment and evaluation

For the model’s parameters, we set the input vec-
tor length D as 32 and Adam is used as optimiser with
the batch size of 128. Learning rate decay is used to
accelerate the decline of loss in the early stage and
make loss smaller latterly. Therefore, learning rate
reduces 0.05 per 5-epochs during training and the
initial value was 0.5. Besides, the training param-

eters are initialised with normal random numbers.
For the dataset, the trajectory data is normalised
by min-max. We selected the external parameter as
vehicle types (motorcycles, cars, trucks), vehicle
length, and vehicle width, combined with the ve-
hicle lane and road information. One-hot method is
applied in the execution of the vehicle types, which
eventually export encoded characters.

The loss function of this model includes three
parts. The first part is the target vehicle position
prediction deviation obtained by negative log likeli-
hood (NLL) loss:

Tpred

Z IOg(P(Xg,y”Npara))

t="Tobs+1

_ 1 _
T Tpred - Tobs

(11)

where P(-) is the likelihood function. Tpre o 1s the
last point of prediction sequence. 7, is the current
time. N is the parameter of bivariate normal dis-
tribution obtained by the model. Equation 7 explains
the specific parameters of Npam. The purpose of L/
is making the bivariate normal distribution as close
to the real value as possible.

The second part is the prediction deviation of the
hidden parameters of surrounding vehicles. Differ-
ent from other models, the target vehicle and sur-
rounding vehicles share the same LSTM cell, so the
hidden parameters of all the vehicles can be used as
the loss value to train the LSTM. Setting this devi-
ation can make full use of the dataset and train the
LSTM parameters better:

L

Tpred

Lé:m' Z % z ]0g<P<x}/,yt/|N£am)) (12)

JENj  t=Tobst+1
where Nf,m = l,t/(out',j ;WN) is the normal parame-
ter of trajectory prediction of surrounding vehicle
Jj. n is the total number of the surrounding vehicles.

'

Setting start coordinates and time

Yes

Y

Initial datasets

L

Total frame=20?

—> Record data in current frame —+ Yes
Downsampling in 2HZ Normalization
+ No
Filtering useless data
No

Figure 6 — Dataset execution
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This paper also quotes the mean square error
(MSE) loss function used in models such as Convo-
lution Social LSTM. Since the outputs of the model
are the parameters of a bivariate normal distribu-
tion, the parameters of bivariate normal distribution
(,ux,,uy) are selected as the prediction point. The final
RMSE loss is as follows:

Tobs+ Tpred
LRMSE=mr:%H [(xl'ﬂt)2+(yt'ﬂt)2] (13)

During training, the loss function taken in this
paper is L=L{+LI+L,, .. Meanwhile, the same eval-
uation system is selected, namely NLL loss L{ and
RMSE loss Ly

4.3 Training and fine-tuning

Training mode is firstly applied for pre-training.
Sequences are cut into two sub sequences for train-
ing, and the length of each is 19 (Figure 7).

\IIHH\IHHHIHIE X Seq
[T T LT LTI Ml titial Seq

Y Seq

Figure 7 — Segmentation training method

In order to improve long-term prediction accu-
racy, our model is fine-tuned in the same sequences
with different segmentation (Figure 8).

X Seq

Initial Seq

Y Seq
Figure 8 — Segmentation fine-tuning method

A sequence contains 20 points. In training mode,
we use ¢ point and history information to predict 7+1
point. In fine-tuning mode, the 10 points ahead are
used to predict the last 10 points.

RMSE loss
(3] w EN

0 1 2 3 4 5
Time [s]
a) NLL loss of models

—@®— CS-LSTM

=@ Our model

4.4 Performance analysis of dynamic
sensitive area

In order to verify the effect of dynamic sensitive
areas, we set up static sensitive areas in the experi-
ment, which does not filter the sequence and takes
all vehicles within 150 m around the target vehicles
as input. Comparing with the models using dynamic
sensitive area, we obtained the loss function after
smoothing (Figure 9).

1.2r
1.1F
Z
< -
0.9+
—————
0.8 L . . . . . )
2 8 14 20 26 32 38 44

Epoch
—— Dynamically sensitive area —— Fixed sensitive area

Figure 9 — MSE of model with different area

Since the data can be reasonably filtered by the dy-
namic sensitive area, the decline speed of the training
process has been greatly improved. Without the dy-
namic sensitive area, the time required for each batch
is 0.633~1.102 seconds, which drops to 0.352~0.836
seconds after using dynamic regions. At the same time,
the shortened input sequence reduces the iteration
speed exponentially. Therefore, the dynamic sensitive
area proposed in this paper has great improvement of
training speed and real-time performance.

4.5 Predictive accuracy analysis

We select 80,000 sets of driving data to train and
use 20,000 sets to evaluate the accuracy of the mod-
el in the experiment. The final results of comparison
with CS-LSTM and Social LSTM (S-LSTM) are
shown in the 7able 2. The comparison standard is root
mean square error (RMSE) [14] and log likelihood
loss (NLL) (Figure 10).

4
2 3
a
a
2 2

1

00 1 2 3 4 5

Time [s]
b) RMSE loss of models
S-LSTM

Figure 10 — Comparison results of different models

Promet — Traffic& Transportation, Vol. 33, 2021, No. 5, 745-754

751




Li X, Fan L, Chen T, Guo S. Vehicle Lane-Changes Trajectory Prediction Model Considering External Parameters

Table 2 — RMSE and NLL of models

Assessment method Time [s] S-LSTM CS-LSTM Our model Truck as object

1 0.61 0.62 0.61 0.58

2 1.27 1.29 1.27 1.13

RMSE 3 2.09 2.13 2.03 2.10
4 3.10 3.20 2.82 2.33

5 4.37 4.52 3.37 3.17

1 0.89 0.58 0.77 0.70

2 2.43 2.14 2.13 2.10

NLL 3 3.30 3.03 2.89 3.13
4 3.97 3.68 3.13 3.01

5 4.51 4.22 4.11 3.98

The RMSE loss of our model gradually exceeds
other models with time. This is because the input
sequence contains more important fixed informa-
tion. During long-term prediction, these parame-
ters have a greater impact on the vehicle trajectory.
The accuracy of the model at 5 seconds is 23.7%
higher than in other models. The last column in
Table 2 is the experimental result, where the truck
is used as the target vehicle. Meanwhile, owing to
considering the possible impact of vehicle external
parameters in the input sequence, the loss value of
our model has a lower decline compared to other
models.

In order to verify the stability of our model with
the interference of external parameters, this paper
selects four sets of data which have different condi-
tions including vehicle types and lane information.
CS-LSTM is a state-of-the-art model for predict-
ing trajectory which ignores the above parameters.
The parameters of bivariate normal distribution

(,ux,,uy) are selected as the predictive point. The
predictive trajectory is shown in Figure 11, where
circle points represent the true trajectory, triangle
points are the predictive trajectory of our model,
and square points are the CS-LSTM result.

Figure 11a is the normal condition in which the
prediction result is not affected by the vehicle types
and lane condition. It can be seen that the results of
the two models are close to the true trajectory.

Figure 115 is the condition that the target vehi-
cle hugged the side of the road. With ignoring lane
information, the prediction result of the driving
intention is wrong for CS-LSTM. In contrast, con-
sidering the road information, our model provides a
relatively accurate result.

Figure 11c 1s the condition that a truck is one of
surrounding vehicles. The length and width of the
truck are commonly bigger than those of other types
of vehicle. Therefore, there must be more distance
when other cars overtake a truck. The prediction

a) Normal condition

¢) Truck as one of surrounding vehicle

d) Truck as target vehicle

Figure 11 — Vehicle trajectory prediction under the different conditions
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Table 3 — Target vehicle trajectory prediction with truck
participation

coor d;l;lr;ees [m] S-LSTM Our model
Pl (9.8,2.1) 9.7, 1.9) (9.7,2.2)
P2 (11.2,4.7) (11.2,3.7) (10.8,4.7)
P3 (13.8,9.3) (11.7,8.2) (12.8, 10.0)

result of our model is obviously closer to the truth
and safer than the CS-LSTM result. Specific data
including true value, prediction results of the
S-LSTM, and our model are given in Table 3. The
maximum accuracy gap between the two models
exceeds 25.6%.

Figure 11d shows the result with the truck being
the target vehicle. Trucks usually have lower maxi-
mum acceleration than cars, so the necessary condi-
tions of overtaking are more stringent. Without con-
sidering the types of vehicle, the CS-LSTM finally
has a negative prediction result of driving intention.
Meanwhile, the predictive line of our model can
track the true trajectory accurately.

In conclusion, the model proposed in this paper
comprehensively considers the impact of vehicle
external parameters on the trajectory. The results
show that our model can avoid some prediction er-
rors of driving intention and have better accuracy of
prediction result.

5. CONCLUSION

Aiming at the fact that the existing data-driven
vehicle trajectory prediction algorithm cannot con-
sider the impact of vehicle external parameters, this
paper proposes a vehicle trajectory prediction mod-
el that can handle the vehicle external parameters.
The historical trajectory and the external parameters
of the vehicles are used as inputs, and the bivari-
ate normal distribution parameters of the vehicles
prediction are eventually obtained. In our model,
a LSTM cell is designed to encode the historical
trajectory and a convolution layer is used to fuse
hidden state of all vehicles so that our model can
predict trajectory of the target vehicle considering
the influence of the surrounding vehicles.

Meanwhile, the existing algorithms ignore the
difference between the longitudinal and lateral safe
following distance when the vehicles are driving
normally. Therefore, the dynamic sensitive area

based on vehicle speed is proposed in this paper,
which is used to filter other vehicles around the tar-
get vehicle.

Finally, the model is trained and evaluated in
the NGSIM data. The results show that the predic-
tive accuracy of our model is greatly improved by
23.7% when compared to other models in long-term
prediction. The model's ability of anti-interference
with the external parameters such as vehicle types
is also improved. The results show that our model
can avoid some errors of predicting driving inten-
tion and have better accuracy of prediction result.
Furthermore, the dynamic sensitive area proposed
in this paper is significantly optimised to speed up
the training process. The time required for each
batch with a normal sensitive is 0.633~1.102 sec-
onds, which drops to 0.352~0.836 seconds after us-
ing dynamic regions.
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