
ABSTRACT
In this paper, smart card data collected from the Nan-

jing Metro over 2-hour time periods are used to charac-
terize within- and between-day human mobility patterns 
within the metro network. Results show that the OD (or-
igin to destination) flows can be characterized well by 
shifted power law distributions with similar exponents 
around 2, which reflects the fact that a few OD pairs in 
the system play a dominant role and undertake dispro-
portionately large OD flow distribution. The different ex-
ponents signify heterogeneous human movement in with-
in- and between-day ranges. In addition, we analyze the 
metro community structures over different time periods 
based on the community detection method using random 
walks to visualize and understand passenger movement 
from a spatial perspective. Normalized mutual informa-
tion is used to compare community partitions over differ-
ent time-intervals. The results show that the properties 
of human mobility during different time periods have a 
similar rhythm, although some nuances exist, and the 
community structure is usually divided according to the 
line distribution. This empirical study provides spatio-
temporal insights into understanding urban human mo-
bility and some potential applications for transportation 
management.

KEYWORDS
metro system; OD flows; shifted power law; community  
partition.

1.  INTRODUCTION
With fast-growing urbanization, urban transpor-

tation systems become very important in our soci-
ety. They facilitate daily mobility of people as they 
enable continuous movement of many passengers. 
Meanwhile, they ensure the sustainable develop-
ment of cities as they save energy and reduce carbon 
emissions [1]. Uncovering the dynamics of human 

mobility and urban interaction helps many appli-
cations, ranging from urban planning to epidemi-
ology [2-4]. Since automatic fare collection (AFC) 
systems are widely used in urban transportation 
systems all over the world, it becomes possible to 
collect real-time transaction information from AFC 
systems to accurately capture daily movement of 
people in cities [2, 5-11]. Compared to traditional 
transport data sources, such as questionnaires and 
travel diaries, smart card data (SCD) are more ex-
tensive and accurate since all transactions are re-
corded in the system, timestamped and geotagged 
[10]. These properties ensure SCD a reliable and 
promising source for the analysis of human mobil-
ity and urban interaction at a large scale with low 
cost.

Benefits from the spatiotemporally explicit SCD 
records and other types of big-data sources (e.g. 
GPS devices, taxi trajectories, mobile phone data 
and social media check-in data) have triggered an 
explosion in the study of human mobility from a 
statistical physics perspective during the last de-
cade. Recently, the scaling law of human mobility 
has drawn much attention from both physics and 
transportation research [9]. As an important and 
high-capacity traffic mode in modern cities, pub-
lic transit systems such as metro and bus networks 
have been an active research object to explore and 
analyze urban human mobility. Studies of traffic 
flow (or trip displacement) distributions of public 
transit systems underlying the topological context 
have proved that analysis using statistical physics 
approach is a useful method for understanding hu-
man mobility, in which human travel behavior fol-
lows specific mathematical forms such as power 
law, exponential, gamma and other distributions [2, 
9, 12]. A Total of 11.22 million trips from London 
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studies have applied the community detection ap-
proach to investigate urban travel mobility so as 
to improve transport management. Drawing upon 
the smart card data from public transit system in 
September 2010, April 2011, and September 2012, 
Zhong et al. [4] used spatial network analysis to de-
tect the dynamics of urban structure in Singapore 
and indicated that the most important communities 
remain the same although there are some signifi-
cant changes in flows between communities. Based 
on the GPS trajectories of more than 6600 taxis in 
Shanghai, Liu et al. [15] applied a community de-
tection method to reveal sub-regional structures and 
examine the properties of sub-regions. 

The findings from prior studies provide valuable 
insights in understanding urban human mobility. 
However, to the best of our knowledge, we are un-
able to find works that explore people movement 
within a metro system through combining the tech-
nologies of scaling law and commuting detection. 
Moreover, most previous studies focused on the 
properties of the node (station) including inflow, 
outflow, and visitation frequency, while a small 
body of prior studies paid attention to the properties 
of linkage between stations such as trip displace-
ment and OD (origin to destination) flows. Howev-
er, the OD flows are more conductive to understand 
human mobility characteristics from a space-time 
perspective [16]. Meanwhile, few existing studies 
are attentive to whether the transport properties are 
different during different time periods (e.g. morn-
ing, noon, afternoon, etc.) and whether the differ-
ences are significant or not. Hence, this study takes 
this stream of exploring human mobility patterns 
one step further by examining the properties of OD 
flows within days and between days.

Against this background, this study aims to en-
rich the existing literature on human mobility with-
in a city by considering within- and between-day 
OD flows based on AFC data pertaining to the 
metro system of Nanjing, China. Since flows dis-
tribution and flows spatial-organization are two 
important aspects in structure features of passenger 
movement and together provide a basic understand-
ing of human mobility characteristics, the research 
is organized around two objectives. First, we obtain 
the spatiotemporal OD flow size distribution pattern 
on weekdays (Monday to Thursday, Friday) and 
weekends (Saturday and Sunday). This part should 
provide evidence about the global statistical char-
acteristics of OD flow distributions across time.  

metro system revealed that intra-urban movement 
is strongly heterogeneous in terms of volume but 
not displacement. The results showed that a limited 
number of central stations involves a large amount 
of flows and the trips between two stations can be 
fitted by a power law [2]. Jiang et al. [12] noticed 
that trip displacement of bus and metro follows 
the exponential and gamma distribution separately, 
while the fusion trip displacement follows the pow-
er law with an exponential cutoff. Xu et al. [9] stud-
ied passenger flows in Beijing Metro System and 
found that the distributions of departure flow (out-
flow), total inflow and outflow of station, exogenous 
flow (flow from outside to the station or flow from 
the station to outside) of station, and throughflow of 
station are all heavy-tailed and illustrate significant 
curvature on log-log scales. These distributions can 
be characterized by power law functions. 

Meanwhile, mobility pattern detection, the so-
called clustering, also attracted much attention 
because it helps urban planners and public transit 
operators to better understand passenger demand, 
which is useful to redesign and improve current 
transportation policies. Based on daily fluctuations 
in passenger flows, urban transportation stations 
can be clustered into several categories. Stations 
in one cluster may have high in-flow morning peak 
and out-flow afternoon peak volumes, while other 
stations in another cluster may exhibit the opposite 
patterns – “high out-flow morning peak and in-flow 
afternoon peak volumes” [7, 10]. This research 
has provided valuable insights into human mobili-
ty from a spatiotemporal perspective. However, it 
lacks the identification of the strength of the rela-
tionship between stations, which reflects the spatial 
interaction over time.

In recent years, a common feature of many net-
works (e.g. social networks, biochemical networks, 
and internet networks), called “community struc-
ture”, has been found [13-14]. Its salient property 
refers to the division of network nodes into different 
groups, with dense connections within groups but 
sparser connection between them [13]. The commu-
nity detection is able to help us to analyze and visu-
alize the structure of traffic network. Furthermore, 
the community partitions based on dynamic travel 
flows will be useful for better understanding human 
mobility over within- and between-day in a specific 
city, which may provide suggestions to urban-plan-
ners and transport agencies for urban planning and 
transport management. Unfortunately, few existing 
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The SCD records, provided by the Nanjing Met-
ro Corporation, were collected by the AFC system 
of Nanjing Metro from 13 April to 26 April 2015. 
Each raw journey record includes smart-card ID, 
tap-in time, tap-out time, line number of boarding, 
line number of alighting, station ID of boarding, sta-
tion ID of alighting, and trip duration. For the pur-
pose of analysis in the study, we divided the dataset 
into 2-hour time periods to analyze human mobility 
in different time periods of the day in terms of the 
departure time. Then, a passenger OD flow matrix is 
constructed to calculate the aggregated movement 
in the metro network. Every element of this matrix 
represents the number of passengers travelling from 
an origin metro station to a destination station over 
the given time period.

3.  OD FLOW DISTRIBUTION ANALYSIS

3.1 Shifted power law function
One goal of this study is to figure out the global 

characteristics of the urban OD flow distributions 
over different time-intervals. It helps us to analyze 
whether human mobility differs within days (e.g. 
peak hours, mid-day, and evening) and between 
days (Monday to Thursday, Friday, Saturday and 
Sunday). For example, the complementary cumula-
tive distribution function (CCDF, F(x)=P(X>x)) of 

Second, community detection is applied to discover 
the community structure of the transportation net-
work. This part aims to explore the spatial interac-
tion during different time-intervals and provide the 
analysis of heterogeneity among stations of a spe-
cific transit network.

The remainder of this paper is organized as fol-
lows. Section 2 introduces the empirical dataset of 
Nanjing Metro. Section 3 presents and analyzes the 
statistical properties of OD flows patterns on week-
days (Monday to Thursday, Friday) and weekends 
(Saturday and Sunday). Section 4 explores and visu-
alizes community structures of the metro networks 
across time. Finally, Section 5 provides conclusions 
of the work.

2.  DATASETS
Our study uses data from more than 20 million 

SCD records from the metro system of Nanjing, 
China. Nanjing is the capital of Jiangsu Province 
and one of the central cities in eastern China. As of 
April 2015, the Nanjing Metro System has 6 lines 
and 112 stations (Figure 1). It carries 717 million pas-
sengers annually and its share in 2015 was about 
34.8% of the passenger volume of all types of pub-
lic transit, being a major transportation mode in this 
modern city.

0 3 6  12 km

N

Metro lines
1
2
3
10
S1
S8
Metro stations
Core districts
Inner districts
Remote districts

Figure 1 – Location of the case study area
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use the “Mandelbrot law”, also called “shifted pow-
er law” (SPL), to fit the within- or between-day OD 
pairs distributions instead of the basic power law 
[19]. This method can well fit the distributions of 
samples without eliminating many small observed 
values. It is expressed as

( )P x A x b= + a-^ h  (2)

where β is a constant, the so-called shifting coeffi-
cient. For β<<x, Equation 2 can approximate a normal 
power law (Equation 1). While if β>>x, it approxi-
mates:

( ) expP x A x$ b= + a-^ h  (3)

indicating an exponential distribution. When β 
changes from 0 to ∞, the distribution varies from 
a power law to an exponential distribution. The 
typical SPL functions can be shown with β lower 
than 100 because the SPL function shows a rather 
good linear line on a semi-log scales indicating an  

the number of trips at different time spans of Mon-
day to Thursday, P(N ≥ n), is plotted in Figure 2. The 
corresponding CCDF of the number of trips at oth-
er time intervals is not shown in the paper due to 
length limitations. The plot on the lin-lin scale in 
Figure 2 shows that the CCDF of the number of trips 
sharply declines at first and then smooths out over 
a wide range. Meanwhile, the plot of the CCDF on 
log-log scales approximates a line, which meets 
the power law distribution. Normally, A quantity x 
obeying a power law can be expressed as:

( )P x Ax= a-  (1)

where A is a constant parameter, α is the scaling pa-
rameter, also known as the exponent.

Considering that few empirical phenomena obey 
power laws for all values of x, more often the power 
law applies only for values greater than the thresh-
old xmin [17]. Thus, only the tails of the distributions 
are fitted by power laws and a large number of ob-
served values are thrown away [17, 18]. Here, we 
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Figure 2 – Distribution of OD flows from Monday to Thursday on a lin-lin scale 
Insets: the CCDF is plotted on log-log scale



Gan Z, Liang J. Understanding Human Mobility Within Metro Networks – Flow Distribution and Community Detection

Promet – Traffic&Transportation, Vol. 33, 2021, No. 3, 413-423 417

and the evening (after 19:00) is lower than that of 
other time-intervals on weekdays. However, this is 
not applicable for weekends, and α for the morning 
peak is not lower than that of mid-day.

Refocusing on the OD flow distributions during 
the morning peak in Figure 3, the exponents on 
21:00~23:00 are slightly lower than those on other 
time spans, which demonstrates that the OD flow 
distributions in the evening may be more unbal-
anced and a few ODs may have more trips than 
those in other time spans. The results from Table 1 
further indicate that the OD flow distribution in the 
evening (19:00~23:00) is the most unbalanced, re-
gardless of the day of the week, while the most bal-
anced time periods for different days of the week 
are not entirely the same.

In addition, to confirm the relationships between 
the OD flow distributions and exponent α, we nu-
merically calculated the proportions of the OD 
flows at 2-hour time periods. Table 2 shows some of 
the results (only the results from Monday to Thurs-
day are described here because of space limitation, 
and the results of other time spans are available 
upon request). The average number of trips (μ) and 
the corresponding standard deviations (σ) are cal-
culated first, and then the proportions of the num-
ber of ODs (PoN) and the proportions of the OD 
trips (PoT). The value of μ is all trips (OD flows) 
divided by the number of OD pairs involving pas-
sengers with respect to a specific time interval (OD 
pairs without passenger flows are not included). 
We only focus on those trips between metro sta-
tions that exceed the value of the average number 
of trips (μ) plus their standard deviations (σ). Then, 
the OD trips that exceed threshold values, μ+σ and 
μ+2σ, are calculated. According to the results in  

approximately exponential distribution when β is 
larger than 100. The exponent α and shifting coeffi-
cient β can be fitted by nonlinear iteration [19].

After taking the logarithm, Equation 2 can be ex-
pressed as:

( )ln ln lnP x A xa b= +- ^ h  (4)

3.2 Temporal difference of the OD flow 
distributions

The SPL function can be plotted as a linear line 
with slope α on the log-log scale. Temporal differ-
ences of OD flow distributions are examined across 
eight 2-hour time periods. Figure 3 represents four 
CCDF of OD flow distributions from Monday to 
Thursday. The values of the key coefficients α and β 
of all time-intervals are presented in Table 1.

In Figure 3, the OD flow distributions can be 
approximately fitted by SPL using the exponents 
1.991, 2.149, 2.318, and 1.567, respectively. On the 
one hand, the shifted power law distributions indi-
cate significant heterogeneity in human movement 
in the metro network over different time-intervals, 
revealing that human movements in Nanjing met-
ro represent heterogeneous flows. Since it has been 
confirmed that the heterogeneous flow organization 
exists in metro systems over a day, it also provides 
further evidence that the heterogeneity also exists 
over different time periods of a day [2, 9]. On the 
other hand, the exponential decay rate α explains 
the decay difference. The larger the α, the greater 
the rate of decay, which means the OD flow distribu-
tions in the network are more balanced and the dif-
ferences of OD flows are smaller. Figure 3 and Table 1 
show that the α for the morning peak (7:00~9:00) 

Table 1 – The exponents α and shifting coefficients β of OD flow distributions

Time of day
Monday to Thursday Friday Saturday Sunday

α β α β α β α β

7:00~9:00 1.991 59.210 2.018 59.709 2.186 39.176 2.095 24.111

9:00~11:00 2.306 36.472 2.264 35.947 2.194 40.004 2.131 30.729

11:00~13:00 2.149 29.108 2.255 37.866 2.065 37.952 2.107 37.397

13:00~15:00 2.128 31.532 2.141 36.557 1.944 34.651 1.979 36.483

15:00~17:00 2.304 41.319 2.399 58.005 1.954 37.193 2.001 39.856

17:00~19:00 2.218 74.99 2.361 91.047 2.007 43.476 2.062 41.278

19:00~21:00 1.991 23.732 2.003 34.308 1.859 24.643 1.906 24.571

21:00~23:00 1.567 7.182 1.628 13.767 1.680 15.213 1.632 9.296
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7:00~9:00 and 9:00~11:00 on Monday to Thursday 
as an example for within-day OD flow distributions 
analysis, we observed that the top 5% (2.24%) of 
ODs account for 50.63% (35.1%) of all trips at 
7:00~9:00 (α=1.991), while 5.6% (2.74%) of ODs 
account for only 48.12% (34.61%) of all trips at 
9:00~11:00 (α=2.306). 

Tables 1 and 2, it is hard to find a simple positive or 
negative relation between the exponent α and the 
mean value μ and standard deviations σ. Neverthe-
less, we find that with a slightly lower exponent α, 
there are fewer ODs (PoN) whose trips are more 
than μ+σ (or μ+2σ) but would account for relative-
ly more OD trips (PoT). Taking the time periods of 
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Figure 3 – Comparison of distribution of OD flows from Monday to Thursday. The red lines denote the fitting of the data with 
exponents of 1.991, 2.149, 2.318, and 1.567, respectively. All R2 values are higher than 0.98

Table 2 – Proportions of the OD flows during different time-intervals on Monday to Thursday

Time of day Mean (μ) S.D. (σ)
≥μ+σ ≥μ+2σ

PoN PoT PoN PoT

7:00~9:00 31.102 99.771 5% 50.63% 2.24% 35.1%
9:00~11:00 15.155 40.455 5.6% 48.12% 2.74% 34.61%

11:00~13:00 13.855 36.976 5.45% 48.28% 2.72% 35.39%
13:00~15:00 15.434 42.047 5.48% 48.54% 2.46% 33.89%
15:00~17:00 17.07 44.488 5.96% 49.35% 2.75% 34.55%
17:00~19:00 27.247 75.904 5.69% 51.38% 2.81% 36.93%
19:00~21:00 13.489 40.474 4.89% 47.95% 2.29% 34.35%
21:00~23:00 10.200 39.322 3.41% 44.02% 1.53% 31.9%
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The idea behind this algorithm is that random walks 
tend to get trapped in a community, strongly weight-
ed parts of a network. A random walker, also called 
an agent, moves from one vertex to another, and at 
each time step, the next vertex is selected at random 
picking a neighbor of the current vertex. Defining Pt

ij 
as the probability of the agent going from vertex i 
to vertex j in t steps within a set of vertices V, three 
basic rules of WalkTrap are described as follows:
1)  If two vertices i and j are in the same community, 

the probability Pt
ij should be high. But a higher 

value of Pt
ij does not necessarily state that i and j 

are in the same community.
2)  The agent has a higher probability to go to high 

degree vertices since Pt
ij is affected by the degree 

d(j).
3)  Two vertices in a same community tend to “see” 

all other members in the same way. When there 
is another vertex k in this community, we will 
probably conclude that ,k P Pik

t
jk
t6 -  if vertices 

i and j are in the same community.
An agglomerative approach can be used to de-

tect communities using random walks as described 
in [14]. First, the metro network is divided into n 
communities and every community includes only a 
single vertex. This is the first community partition 
Ω1={{v},v!V}. Second, computing the distance 
between all adjacent vertices. Third, repeating the 
following processes to create the next community 
partition, at each step k:
1) Choose two communities C1 and C2 in Ω1 ac-

cording to a criterion based on the distance be-
tween them.

2) Merge C1 and C2 into a new communi-
ty C3=C1,C2 and produce the new partition  
Ωk+1=(Ωk\{C1,C2}),{C3}.

3) Update the distances between communities.
The algorithm will be finished after n-1 steps and 

each step defines a community partition Ωk of the 
metro network. Then a network modularity score Q 
is used to quantify and explore which community 
partition is the best as measured by

,Q W w W
s s

C C1
ij

i
out

j
in

i j
j

n

i

n
d= -c ^m h//  (5)

where wij is the OD flows from i to j, 

,W w sij i
j

n

i

n
out= //  is the sum of the outflows 

of node i, sin
j
  is the sum of the inflows of node j; 

δ(Ci,Cj)=1 when Ci=Cj, and otherwise, δ(Ci,Cj)=0. 
The best community partition is considered to be 
the one that maximizes Q [13].

As mentioned above, the higher the shifting co-
efficient β, the greater the tendency of being an ex-
ponential distribution; and the value of β within a 
typical SPL function is normally between 1 and 100. 
Table 1 shows that all values of β are lower than 100 
and higher than 1. The values of a at 17:00~19:00 
are the highest among different time periods, which 
means the OD flow distribution of this time period 
is closer to an exponential distribution than those of 
other time periods. In contrast, the OD distributions 
at 21:00~23:00 from Monday to Thursday and Sun-
day are closest to a power law distribution due to 
their lowest values for β.

Overall, we can see that a small number of OD 
pairs in the metro system undertake the majority of 
OD flows, and the OD flow distributions can be fit-
ted by shifted power law with different exponents. 
It means that mobility behavior within the metro 
network is centralized although this network itself 
is decentralized. It can be explained by the fact that 
some metro stations (actually the surrounding areas 
of the stations) are frequently linked due to huge 
travel demand (e.g., commuting, shopping, leisure, 
and entertainment activities) between these areas, 
while other metro stations are rarely connected. It 
also indicates that the metro network is a scale-free 
network under the preferential attachment mecha-
nism. Besides, most exponents are very close and 
much around 2 (excluding 21:00~23:00). In other 
words, although there are nuances of the human 
mobility across time, the distribution of OD flows 
in the metro system in most time periods has a sim-
ilar rhythm.

4.  COMMUNITY DETECTION OF THE 
METRO NETWORK
In addition to analyzing the statistics and tem-

poral patterns of the OD flows from a space per-
spective, we also investigate community detection. 
It identifies groups based on the strength of spatial 
flow distributions between each node, which is use-
ful to reflect the OD travel demand and spatial in-
teraction.

4.1 Community detection algorithm
In order to detect the community structure of 

the metro network based on OD flows, a similari-
ty-based cluster analysis algorithm, WalkTrap, is ap-
plied [14]. WalkTrap uses a distance measure based 
on random walks and can be computed efficiently. 
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Second, it is obvious that the traffic communities 
are divided according to the spatial distribution of 
metro lines. The finding in the present study is in line 
with the previous studies. Even in a more sophisticat-
ed metro system such as Beijing Metro, the commu-
nity structure is also divided according to the line dis-
tribution. Moreover, this rhythm is feasible because 
different ratios of the total number of trips are consid-
ered (e.g. 20%, 50%, 80%). The present study further 
confirms the similarity across different time periods. 
Meanwhile, the comparison between the work of Sun 
et al. [8] and this study shows that the community 
structure of a relatively sophisticated metro system 
would display a property with more traffic line di-
vision in a metro line than that of a metro system 
with smaller magnitude. Nevertheless, both works 
indicate that the spatial partition of the community 
structure of the metro network is unlike that of the 
taxi mobility network which is usually geographical-
ly adjacent [15]. A major reason may be that relative-
ly more travel by metro concerns long-distance trips 
and two geographically adjacent metro stations of 
different lines actually involve a big detour. 

Third, the majority of stations related to the top 
5% of OD pairs is located in Metro Lines 1 and 
2. This result is in accordance with the reality that  

4.2 Community detection results
Combined with the above community detection 

algorithm, the Igraph Library for network analy-
sis is used to divide communities and find the best 
partition with high modularity [20]. The traffic com-
munity divisions of Nanjing metro network in the 
morning peak are illustrated in Figure 4 as an example 
and traffic community divisions at other time periods 
are available upon request due to space limitations. 
Meanwhile, the stations related to the top 5% of OD 
pairs accounting for about 50% of the trips are high-
lighted with the symbol “+” in the plots.

Figure 4 shows the following results: first, the com-
munity structures for the morning peak on weekdays 
(Monday to Thursday and Friday) and on weekends 
(Saturday and Sunday) are similar, with respect to 
not only the overall layout of community division but 
also the statistical properties. For the morning peaks, 
there are more traffic communities on weekdays (7 
and 6 on Monday to Thursday and Friday, respective-
ly) than on weekends (5 on both Saturday and Sun-
day). The largest traffic community for the morning 
peak is found on Saturday, which contains 47 metro 
stations on lines 1, 10, and S1, while the smallest traf-
fic community for the morning peak contains only 2 
metro stations from Monday to Thursday.

a) Monday to Thursday b) Friday c) Saturday d) Sunday

N_com:7
N_max:38
N_min:2

N_com:6
N_max:38
N_min:4

N_com:5
N_max:47
N_min:6

N_com:5
N_max:45
N_min:6

N_com – number of communities
N_max – number of stations in the largest community
N_min – number of stations in the smallest community

Figure 4 – Results of the metro network community division for the morning peak (7:00~9:00) 
Note: Different color represents different community
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4.3 Community partition comparison
In order to compare the difference between dif-

ferent within-day and between-day community 
structures, an information theoretic criterion, nor-
malized mutual information, is used [13]. It can be 
expressed as
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where CA, CB are the number of communities of A 
and B. N is a confusion matrix where the rows cor-
respond to the communities of A and the columns 
correspond to the communities of B. Nij, the element 
of N, is the number of nodes in the community i that 
also appear in community j. Ni. and N.j are the sum 
of row i and column j, respectively. The value of 
I(A,B) varies from 0 to 1. The larger the value of I, 
the greater the structural similarity between the two 
community partitions.

Based on the community partitions of the morn-
ing peak (7:00~9:00) and the community partitions 
of Monday to Thursday, we calculate the values of 
I(A,B) as examples for within- and between-day 
analysis. Table 3 shows that the biggest similarity of 
community partitions for the morning peak is be-
tween Monday to Thursday and Friday. The com-
munity partitions between Saturday and weekdays 
are quite different, because the corresponding val-
ues of I(A,B) are the lowest. The results in Table 3 

Metro Lines 1 and 2 are the two earliest metro lines 
in operation. On the one hand, they run through the 
areas with dense population and intensive commer-
cial and work places, and thus become the import-
ant inbound and outbound routes. On the other hand, 
the operation of these two lines (2005 and 2010, re-
spectively) is far earlier than that of other lines (after 
July 2014); thus, compared to other metro lines, peo-
ple are more familiar with Metro Lines 1 and 2 and 
would rather complete their trips by taking lines 1 
and 2 (considering the data in the paper was collect-
ed in April 2015). Besides, it is not surprising to find 
that most stations related to the top 5% of OD pairs 
are distributed in core districts. Figure 4 also illustrates 
that, compared to the morning peak hours on week-
days, more stations are involved in the top 5% of OD 
pairs for the morning peak hours in weekends. And 
these extra stations are mostly located in remote sub-
urbs. It indicates that OD flows are more concentrat-
ed in several key stations during the AM rush hours 
of weekdays than that during the AM rush hours of 
weekends, and the volumes of boarding/alighting 
passengers of some stations in the city center reduce 
but the ridership of tap-in and/or tap-out of stations 
in peripheral areas increases when the time changed 
from weekdays to weekends.

Moreover, based on metro network community 
division for all time, we can further identify more 
details about the difference of community struc-
tures within-day (from morning to evening) and be-
tween-day (from Monday to Sunday). For example, 
for a day, the community structure of the evening 
(21:00~23:00) usually has most communities and the 
smallest community. It is common for all four types 
of days. In the evening (after 19:00), the communi-
ty structures of Monday to Thursday and Sunday are 
similar, while that of Friday and Saturday are also 
similar. However, it is different for the morning peak 
(Figure 4).

Table 3 – Difference between community partitions for the 
morning peak (7:00~9:00)

Day Monday to 
Thursday Friday Saturday Sunday

Monday to 
Thursday 1

Friday 0.964 1
Saturday 0.857 0.853 1
Sunday 0.914 0.914 0.932 1

Table 4 – Difference between community partitions of different time periods on Monday to Thursday

Time of day 7:00~ 
9:00

9:00~1 
1:00

11:00~ 
13:00

13:00~ 
15:00

15:00~ 
17:00

17:00~ 
19:00

19:00~ 
21:00

21:00~ 
23:00

7:00~9:00 1
9:00~11:00 0.833 1

11:00~13:00 0.815 0.867 1
13:00~15:00 0.811 0.831 0.936 1
15:00~17:00 0.848 0.831 0.907 0.904 1
17:00~19:00 0.845 0.919 0.869 0.846 0.854 1
19:00~21:00 0.753 0.783 0.836 0.821 0.864 0.859 1
21:00~23:00 0.904 0.841 0.799 0.769 0.806 0.849 0.768 1
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applied. Moreover, the second part on community 
detection provides clear evidences to illustrate that 
community structures are obviously divided accord-
ing to the line distribution, which further supports 
the strategy that the integration of full-length and 
short-turn services or a combination of express and 
slower services is feasible and meaningful since the 
community structure is strongly related to travel de-
mand. The result of commuting detection also indi-
cates that the differences of community partitions 
within a day are more obvious than those between 
days. Therefore, relatively more efforts should be 
given on the daily metro system management (e.g. 
daily train timetable, an integration of full-length 
and short-turn services) to meet the complex situ-
ations in a day.

6. CONCLUSION
This study demonstrates that big spatiotemporal 

travel data collected from AFC systems offer great 
opportunities for in-depth analysis of complex hu-
man mobility and travel characteristics in public 
transit systems. It contributes not only in extending 
the research field by applying both scaling law and 
community detection methods on the mobility anal-
ysis within the metro network, but also in providing 
useful insight for urban and transportation planning 
(e.g. a majority of OD flows are concentrated to a 
few OD pairs and traffic communities are obvious-
ly divided according to the metro line distribution, 
etc.). This study is limited in the sense that only a 
single metro network is studied due to the difficulty 
of data collection. Moreover, metro trips only repre-
sent a part of urban travel and show human mobility 
characteristics from a specific perspective. Addi-
tional modes, such as bus and public bicycles, need 
to be studied in future to make further understand-
ing of urban transport properties.
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partially support the above analysis about the com-
munity partitions for the morning peak based on 
Figure 4.

5.  DISCUSSION
In this section, we highlight the key findings 

from the distributions of OD flow distributions and 
the community structures of a metro network, using 
trip datasets collected in Nanjing, China. Since edge 
weight, instead of the outflow/inflow of node (sta-
tion) or trip displacement, plays an important role in 
network properties, we use OD flows during differ-
ent time periods to strengthen the understanding of 
urban human mobility and travel regulation. 

The main findings of this study can be summa-
rized as follows: (a) the distributions of metro OD 
flows tend to follow the shifted power law, which 
reflects the fact that a few OD pairs undertake dis-
proportionately large traffic; (b) the OD flow distri-
butions over 2-hour time periods are checked, and 
then the temporally dynamic parameters are able to 
capture the dynamic changes of OD trips in a week; 
(c) the different but similar exponents indicate that 
human movement heterogeneities in terms of flow 
size do exist in within- and between-day ranges, but 
the disparities between different time periods are 
not large; (d) the paper proves that the community 
partitions of metro network over different time peri-
ods are similar but with slight difference, and com-
monly divided according to the spatial distribution 
of metro lines; (e) the difference of between-days 
community partitions is not as obvious as that of 
within-days.

In summary, the results of both scaling law and 
commuting detection show that human mobility 
within a metro system during different time peri-
ods generally has a similar pattern but with intri-
cate nuances. The first part on the scaling law of 
OD flows reveals the fact that passenger mobility 
patterns within the metro network are strongly het-
erogeneous in terms of volume and a small body of 
OD pairs undertake disproportionately large traffic. 
It indicates that the OD flows are very unevenly dis-
tributed and a few OD pairs play a dominant role 
in the linkage of metro stations. For transportation 
administrators, more attention should be paid on 
these OD pairs. Flexible and appropriate manage-
ment policies, such as an integration of full-length 
and short-turn services, or a combination of express 
services stopping only at the dominated stations and 
slower services stopping at all stations, should be 
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理解地铁网络内的出行模式：客流分布和社群
识别

摘要

本文以南京地铁采集的智能卡数据为基础，对地
铁网络中人的一天中不同时段和一周中不同日期的
客流模式进行了分析。结果表明，OD客流（起点至
终点）可以很好地采用指数在2左右的漂移幂律分
布来表征，这反映了地铁系统中少数的OD对起主导
地位并承担了大量的OD流量分布。不同的指数表明
一天中不同时段和一周中不同日期客流的移动存在
异质性。另外，我们采用基于随机游走的社群识别
方法分析了不同时段的地铁站点社群结构，进一步
从空间角度分析了客流的移动规律。基于信息论准
则的标准互信息被用来比较不同时段的社群结构差
异，结果表明地铁内部不同时段客流移动特性虽然
存在细微差别，但总体具有相似规律，而且社群结
构往往按照地铁线路布设进行划分。本文研究为理
解城市居民出行模式提供了一种基于时空视角的见

解，继而有利于交通管理实践。
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地铁；OD客流；漂移幂律分布；社群结构
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