
ABSTRACT
This paper deals with robust optimization and net-

work flows. Several robust variants of integer flow prob-
lems are considered. They assume uncertainty of network 
arc capacities as well as of arc unit costs (where appli-
cable). Uncertainty is expressed by discrete scenarios. 
Since the considered variants of the maximum flow prob-
lem are easy to solve, the paper is mostly concerned with 
NP-hard variants of the minimum-cost flow problem, 
thus proposing an approximate algorithm for their solu-
tion. The accuracy of the proposed algorithm is verified 
by experiments.

KEYWORDS
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1.	 	INTRODUCTION
Network flows [1-3] are an important modelling 

paradigm used in optimization. Models based on 
networks and flows are encountered in various ar-
eas of operation research, e.g. resource assignment, 
transportation, traffic regulation, and others. Two 
most common types of network flow problems are 
the maximum flow problem and the minimum-cost 
flow problem.

An instance of a network flow problem is spec-
ified by exact values of its parameters, such as arc 
capacities or arc unit costs. However, in real-life sit-
uations, those values are often hard to specify since 
they may depend on some unforeseen circumstanc-
es or may be too volatile for accurate measurement. 
Then, we experience uncertainty in the problem for-
mulation. Ignoring uncertainty is not recommended 
since it can easily lead to low-quality or even infea-
sible solutions.

A state-of-the-art method for dealing with the 
mentioned uncertainty is called robust optimization. 
The method has been established by a series of pa-
pers and books [4-7]. More recent surveys and some 
general results can be found in [8-11]. Among the 
above references, the most important for our pur-
poses is book [7] which provides a framework for 
robust discrete optimization.

According to the approach from [7], uncertainty 
in problem parameters should be captured by a dis-
crete (finite and explicitly given) set of scenarios. 
Each scenario specifies a consistent combination of 
parameter values. The only solutions that are taken 
into account are those that are feasible for all scenar-
ios. The behaviour of any considered solution under 
any scenario is evaluated according to some crite-
ria. Then the so-called robustly optimal solution is 
chosen as the one whose worst behaviour, measured 
over all scenarios, is the best possible one.

The framework from [7] obviously allows many 
options. Indeed, the behaviour of a solution under a 
scenario can be measured by different criteria. Also, 
the set of problem parameters that are considered 
as uncertain can be more or less extensive. Thus, 
for the same conventional (non-robust) optimiza-
tion problem one can construct several robust prob-
lem variants, which may be more or less difficult to 
solve.

It is well known that the conventional flow prob-
lems can be solved in polynomial time. This is true 
even if one insists on only integer solutions. On the 
other hand, robust variants of the same problems 
can easily become NP-hard. For that reason, design-
ing efficient algorithms for robust variants turns out 
to be an important area of research.
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The rest of this paper is organized as follows. 
Section 2 specifies three robust variants of the 
maximum integer flow problem (with uncertain 
arc capacities) and shows that all of them can be 
reduced to the conventional (non-robust) variant. 
Consequently, the considered robust maximum flow 
problem variants are skipped from the subsequent 
sections since they can be solved by well-known 
polynomial-time algorithms. Section 3 specifies 
three robust variants of the minimum-cost integer 
flow problem (with uncertain arc capacities and arc 
unit costs). It is shown that at least two of those vari-
ants are NP-hard. Section 4 presents our new ap-
proximate algorithm for solving robust variants of 
the minimum-cost integer flow problem, which is 
based on relaxation and rounding. The same section 
also explains how the new algorithm can be imple-
mented by combining general-purpose routines and 
more specific flow procedures. The next Section 5 
presents robust minimum-cost integer flow problem 
instances that are used in experiments. The instanc-
es are too large to be solved exactly, but still small 
enough to be solved in relaxed form. The same sec-
tion also describes experiments where the chosen 
problem instances have been solved repeatedly by 
the algorithm from Section 4. Experimental results 
are presented, which allow estimation of algorithm 
accuracy depending on the robust variant involved. 
The last Section 6 gives conclusions.

2.	 	VARIANTS OF THE MAXIMUM 
FLOW PROBLEM
First, the conventional (non-robust) variant of 

the maximum integer flow problem is described. 
Let G=(V, A) be a network (directed graph), where 
V={v1,v2,…,vn} is a set of n elements called verti-
ces and A1V×V is a set of ordered pairs of verti-
ces called arcs. Each arc (vi, vj) is assigned its ca-
pacity uij. We consider feasible flows that transfer 
an amount of flow F from source v1 to sink vn. A 
feasible flow is a non-negative function defined on 
arcs, which obeys the flow conservation rule in each 
vertex, as well as the capacity constraint along each 
arc. We denote the arc flow value assigned to an arc 
(vi, vj) by xij. The objective is to construct a feasible 
flow with maximal value F.

In this work it is assumed that all capacities uij 
are non-negative integers. Moreover, we restrict 
to flows that consist of integer arc values xij, thus 
producing integral values F. In this way we indeed 

There is a fair number of papers on robust net-
work flows found in literature, e.g. [5, 12-21]. How-
ever, such works are hard to compare since they use 
different definitions and concepts. Most of them 
do not fit into the framework from [7] since they 
assume infinite, but rather regular sets of scenari-
os defined, e.g. by intervals for parameter values. 
The authors of the available papers have been main-
ly concerned with complexity issues or with cus-
tom-designed solutions for special problem cases. 
There are not too many publications which could 
be regarded as useful to decision-makers in real-life 
situations. 

An interesting contribution to the considered 
topic has been given by the recently published paper 
[22]. It differs from the above cited works by try-
ing to be more practical. Indeed, it studies relative-
ly general and practically relevant robust problem 
variants and solves them by applying general-pur-
pose algorithmic paradigms. More precisely, in [22] 
the authors have considered two robust variants of 
the standard minimum-cost integer flow problem. 
The approach from [7] has been used. However, un-
certainty in problem formulation has been limited 
only to arc unit costs. Still, the authors have shown 
that even such restricted problem variants are al-
ready NP-hard. Also, they have demonstrated that 
the considered variants, although NP-hard, can be 
solved with reasonable accuracy by heuristics based 
on local search or evolutionary computing [23, 24]. 
Those heuristics include several interesting and 
original operators for flow initialization, neighbour-
hood generation, crossover or mutation.

The aim of this paper is to build upon the ideas 
and results from [22] in order to produce even more 
applicable solutions to robust integer flow problems. 
On a more abstract level, the aim is to give addi-
tional contribution to the scarce literature on useful 
robust optimization algorithms. In fact, this paper 
can be regarded as an extension and improvement 
of [22]. Extensions go in three directions. First, two 
types of network flow problems are considered in-
stead of one, i.e. the maximum integer flow problem 
in addition to the minimum-cost integer flow prob-
lem. Next, uncertainty in problem formulation now 
includes arc capacities along with arc unit costs. 
Finally, as an alternative to the heuristics, a more 
accurate approximate algorithm based on relaxation 
and rounding is now introduced and tested on large 
problem instances.
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scenarios is recorded. As the robust solution, the 
flow is chosen whose worst behaviour is the best 
(i.e. maximal) among all feasible flows. More pre-
cisely, the absolute robust variant is defined as the 
following optimization problem:
RMIF-A...
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The above robust objective function follows the 
general pattern from [7]. However, in our case the 
conventional objective function happens to achieve 
the same value F under any scenario s!S. Thus, the 
above operator min

s S!
is in fact obsolete.

The second robust variant is called robust devia-
tion [7] or min-max regret [8] variant. There, the be-
haviour of a feasible flow under scenario s is mea-
sured as deviation of the actual flow value F from 
the optimal flow value zs for that scenario. Again, 
the flow is chosen whose worst behaviour over all 
scenarios is the best among all feasible flows. Thus, 
the robust deviation variant is formally defined as 
the following optimization problem:
RMIF-D...

maxz z Fminimize

subject to the same constraints as for RMIF A
s S

s= -

-
!
" ,

	 (5)

The operator max
s S!

 in the above robust objective 
function is not obsolete. Namely, value zs can be dif-
ferent for each s!S.

The third robust variant is called relative robust 
deviation [7] or min-max relative regret [8] variant. 
There, the behaviour of a feasible flow under sce-
nario s is measured as relative deviation of the ac-
tual flow value F from the optimal flow value zs for 
that scenario. Once more, the flow is chosen whose 
worst behaviour over the whole set of scenarios is 
the best among all feasible flows. Or more formally, 
the relative robust deviation variant is defined in the 
following way:
RMIF-R...
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consider the maximum integer flow problem. The 
restriction to integers is appropriate in many appli-
cations where discrete quantities are handled.

The above maximum integer flow problem can 
be formally defined as the following integer linear 
programming (ILP) problem [3]:
MIF...
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The described maximum integer flow problem 
has obvious applications in the area of traffic and 
transportation. For instance, the whole network can 
be interpreted as a transportation system, where 
vertices represent locations (junctions) and arcs 
represent roads. Certain commodity must be contin-
uously shipped from one location (source) to anoth-
er (sink). Arc capacities determine how many units 
of commodity can travel through the correspond-
ing roads in parallel. A network flow specifies one 
possible way of shipping, i.e. it defines how many 
commodity units should be sent through particular 
roads. The restriction to integer flows makes sense 
when our commodity consists of indivisible (pack-
aged) units that cannot be split into parts. The max-
imum flow determines the most-intensive way of 
shipping the commodity from the source to the sink.

Next, we will specify three robust variants of the 
maximum integer flow problem. According to our 
adopted framework from [7], uncertainty in input 
data should be expressed through a discrete set of 
scenarios S. A particular scenario s!S comprises a 
specific set of arc capacities us

ij. It is assumed that 
the network structure is the same for all scenarios. 
Again, according to [7], we restrict to flows that 
are feasible simultaneously for all scenarios, i.e. to 
flows that satisfy

, ,x u v v A s S0 for all and allij ij
s

i j# # ! !^ h 	 (2)

or equivalently

, ,minx u v v A0 for allij
s S

ij
s

i j# # !
!

^ h .	 (3)

The first robust variant is called absolute robust 
[7] or max-min [8] variant. There, the behaviour 
of a feasible flow under a scenario is measured as 
the actual flow value F. For each feasible flow, its 
worst behaviour (i.e. minimal flow value) over all  
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maxz z z
s S

s= - )
!

	 (9)

and the optimal flow for RMIF-D must be the 
same as for MIF*. Here z* denotes the optimal 
objective function value for MIF*.

–– For the objective function of RMIF-R the fol-
lowing holds:

max maxz
z F
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This expression will be minimal if F is maxi-
mal. Thus, within RMIF-R the optimal objective 
function value is

maxz z
z1 *

s S
s= -

!

	 (11)

and the optimal flow is again the same as for 
MIF*.
Putting it all together, it turns out that an instance 

of RMIF-A or RMIF-D or RMIF-R can be solved 
by solving the corresponding instance of MIF*. In 
order to compute the exact value of the robust objec-
tive function in RMIF-D or RMIF-R it is also nec-
essary to find the values zs for all s!S, which means 
solving additional |S| instances of MIF. Thus, on the 
one hand, one robust instance is always reduced to 
one or more conventional instances. On the other 
hand, it is well known [2] that the conventional in-
stances can be solved by polynomial algorithms, 
even if only integer flows are sought. Consequently, 
there is no need to design new algorithms for solv-
ing robust maximum integer flow problem variants, 
and they will be skipped from the rest of this paper.

3.	 	VARIANTS OF THE MINIMUM-COST 
FLOW PROBLEM
Analogously as in the previous section, this sec-

tion starts with the conventional (non-robust) vari-
ant of the minimum-cost integer flow problem. As 
before, a network G=(V,A) is considered, where 
V={v1,v2,…,vn} is a set of vertices and A1V×V 
is a set of arcs. However, each arc (vi,vj) is now 
characterized not only by its capacity uij but also 
by its unit cost (cost per unit of flow) cij. Feasible 
flows are sought that transfer an amount of flow F 
from source v1 to sink vn. A feasible flow is again a 
non-negative function defined on arcs obeying the 
flow conservation rule in vertices and the capacity 
constraints along arcs. The flow value assigned to 
an arc (vi,vj) is denoted by xij as before. But now 
additionally the flow cost is computed as the sum 
of products cij xij over all arcs (vi,vj). The flow value 

It is assumed here that zs is non-zero for each 
s!S. Again, the operator max

s S!
 is not obsolete since 

zs can differ from one scenario to another.
Let us now discuss how the assumed uncertainty 

in arc capacities can be interpreted within the pre-
viously described shipping application. Uncertain 
capacity of an arc means that the throughput of the 
corresponding road can vary according to circum-
stances. For instance, the throughput can be reduced 
in case of snow or flooding. So, one scenario could 
model normal weather circumstances, another sce-
nario a snowy winter, and yet another a rainy sea-
son, etc. An additional reason for uncertainty in arc 
capacities can be utilization of the same roads by 
some other traffic that is not a part of our shipping. 
Then one scenario could model empty roads, an-
other scenario heavily congested roads, yet another 
scenario a situation where some roads are partially 
loaded with other traffic and some are empty, etc.

The above three robust variants RMIF-A, 
RMIF-D and RMIF-R have been constructed ac-
cording to the general guidelines from [7], which 
are applicable to any type of conventional opti-
mization problem. However, it is easy to see that 
in our case (the maximum flow problem) all three 
variants are in fact trivial, i.e. they are reduced to 
the conventional variant. To see this, let us consider 
an auxiliary (conventional) maximum flow problem 
defined as:
MIF*...
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Here the notation : minu u*
ij

s S
ij
s=

!
 is used. Then the 

set of feasible flows for MIF* obviously coincides 
with the set of feasible flows considered in RMIF-A, 
RMIF-D and RMIF-R, respectively. Moreover, the 
following can be observed.

–– RMIF-A is (due to obsoleteness of min
s S!

) identi-
cal to MIF*, thus their optimal flows must be the 
same, and their objective functions achieve the 
same value.

–– For the objective function of RMIF-D the fol-
lowing holds:

max maxz F z F
s S

s
s S

s- = -
! !
" , 	 (8)

The above expression will be minimal if F is 
maximal. Thus, within RMIF-D the optimal ob-
jective function value is
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together with arc capacities us
ij. The network struc-

ture and the required flow value F are assumed to 
be the same for all scenarios. Again, according to 
[7], the restriction is done to flows with value F that 
are feasible for all scenarios simultaneously, i.e. to 
flows that among other things satisfy

, ( , )minx u v v A0 for allij
s S

ij
s

i j# # !
!

	 (13)

As in the previous section, the first robust vari-
ant is the absolute robust [7] or min-max [8] vari-
ant, where the behaviour of a feasible flow under a 
scenario is measured as the actual flow cost. As the 
robust solution, the flow is chosen whose worst (i.e. 
maximal) cost, measured over all scenarios, is the 
best possible (i.e. minimal). Here follows the strict 
definition: 
GRMCIF-A...
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The second robust variant is the robust deviation 
[7] or min-max regret [8] variant. The behaviour of 
a feasible flow under scenario s is assessed as devi-
ation of its actual cost from the optimal cost zs for 
that scenario. As a robust solution, the flow is cho-
sen whose worst (i.e. largest) deviation, measured 
over all scenarios, is the best possible (i.e. the small-
est). Or more precisely:
GRMCIF-D...

maxz c x zminimize

subject to the same constraints as for GRMCIF A
,s S

ij
s

ij
s

v v Ai j

= -

-
! !^ h
' 1/
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The third robust variant is the relative robust de-
viation [7] or min-max relative regret [8] variant. 
The behaviour of a feasible flow under scenario s 
is measured as relative deviation of its actual cost 
from the optimal cost zs for that scenario. It is as-
sumed again that zs is non-zero for each s!S. As the 
robust solution, the flow is chosen whose worst (i.e. 
largest) relative deviation, measured over all sce-
narios, is the best possible (i.e. the smallest). The 
precise definition looks as follows: 
GRMCIF-R...

maxz z

c x z
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subject to the same constraints as for GRMCIF A
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F is not maximized; instead, it is given in advance. 
The objective now is to find a feasible flow with the 
required value F having minimal cost.

Analogously as in the previous section, it is as-
sumed that all input data uij, cij, F are non-negative 
integers, and that the flow itself consists of integer 
arc values xij. Thus, the minimum-cost integer flow 
problem is considered according to the following 
ILP definition:
MCIF...
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Similarly as the maximum integer flow problem, 
the described minimum-cost integer flow problem 
can also be applied in the area of traffic and trans-
portation. For instance, we can again interpret the 
network and its flows as a model for shipping, as in 
Section 2. Then the unit cost of an arc has an obvi-
ous meaning: it is the cost of transporting one unit 
of commodity along the corresponding road, mea-
sured in terms of fuel, work effort, etc. The objec-
tive is now to ship the commodity from the source 
to the sink, so that a desired intensity of shipping is 
achieved, but at minimum cost.

In real-world applications, it is very common 
that the considered commodity is produced at many 
locations and also consumed at many locations. 
Then the most appropriate model is a network with 
multiple sources and sinks, as specified in [1, 2, 25]. 
However, it is easy to see that such a network can 
easily be reduced to our single-source-single-sink 
form. Reduction is done by introducing an artifi-
cial source, an artificial sink, and some extra arcs 
with appropriate capacities. There are also some re-
al-world applications that require solving the mini-
mum-cost maximum flow problem [26]. But such 
seemingly more complicated task can be modelled 
as a combination of our two problems considered in 
the previous and in the present section, respectively.

In the next three paragraphs three robust vari-
ants of the minimum-cost integer flow problem are 
introduced. Similarly to the previous section and ac-
cording to [7], uncertainty in input data is expressed 
through a discrete set of scenarios S. But now, each 
scenario s!S specifies also the arc unit costs cs

ij  
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larger than u*
ij, cost zs computed with us

ij can be bet-
ter (smaller) than if it were computed with u*

ij. Thus, 
the objective function in GRMCIF-D is different 
than in RMCIF-D, and the corresponding robust 
solution can also be different. In our experiments 
we have encountered concrete instances where such 
difference in solutions really occurs.

Next, it can also be observed that variant GRM-
CIF-R from this paper is not equivalent to a cor-
responding variant where arc capacities are fixed 
through scenarios. The reasons are the same as for 
GRMCIF-D. The difference in solutions is again 
easily spotted in concrete instances.

Now follows a simple example that illustrates 
the introduced problem variants. We consider the 
network with fourteen vertices that is shown twice 
in Figure 1. The source is vertex v1 and the sink is 
vertex v14. The desired flow value F is equal to 2. 
There are two scenarios for arc unit costs and capac-
ities, specified by the left and right part of Figure 1, 
respectively. Within each part, unit costs are shown 
as left-hand arc labels, and capacities as right-hand 
labels. We would like to solve the conventional vari-
ant MCIF for each scenario. Also, we would like 
to solve all three robust variants, i.e. GRMCIF-A, 
GRMCIF-D and GRMCIF-R, respectively.

As can be seen from Figure 1, our network con-
sists of four separate paths connecting the source 
to the sink. In the case of Scenario 1 each of those 
paths has capacity 1. So, under Scenario 1 any fea-
sible flow with value F=2 must be a combination of 
two so-called unit flows, each of them sending one 
unit of flow through a different path. In the case of 
Scenario 2 any path has capacity 2. Thus Scenario 
2 allows four additional feasible flows, each send-
ing two units of flow through only one path. In ro-
bust problem variants we are restricted to solutions 
that are simultaneously feasible for both scenarios, 
thus again to combinations of two unit flows going 
through distinct paths.

Let us now see how the above assumed uncer-
tainty of input data can be interpreted within the 
previously described shipping application. It has al-
ready been explained why arc capacities can be un-
certain. But similar explanations are also valid for 
arc unit costs, i.e. they can also vary according to 
circumstances. For instance, costs may rise during 
the winter since driving through snow will require 
more fuel. Also, the price of fuel will rise in case 
of an economic crisis. Thus, a scenario could corre-
spond to a particular weather condition, or a partic-
ular economic situation, or a combination of both.

In the previously mentioned paper [22] the au-
thors have studied two similar but restricted robust 
variants of the minimum-cost integer flow problem, 
denoted as RMCIF-A and RMCIF-D, where sce-
narios can influence only the arc unit costs but not 
arc capacities. The above definitions GRMCIF-A, 
GRMCIF-D and GRMCIF-R are apparently more 
general, and for that reason their acronyms start 
with "G". An important question is whether the 
G-variants from this paper are really different and 
more general than their counterparts from [22].

It is easy to see that variant GRMCIF-A is in 
fact equivalent to the corresponding variant RM-
CIF-A from [22]. Indeed, for each arc (vi,vj) we 
can compute its minimal capacity .minu u*

ij
s S

ij
s=

!
In 

each scenario we can replace any capacity with the 
corresponding minimal capacity. Then we will ob-
viously obtain the same solution as with the original 
capacities. Thus, an instance of GRMCIF-A can be 
reduced to a simpler instance of RMCIF-A, where 
only arc unit costs change through scenarios while 
capacities are fixed.

On the other hand, it is also easy to notice that 
variant GRMCIF-D is not equivalent to the corre-
sponding variant RMCIF-D from [22]. Namely, al-
though all feasible flows considered in GRMCIF-D 
conform to the minimal arc capacities u*

ij, the opti-
mal cost zs for a particular scenario s is still comput-
ed with the original capacities us

ij. Since us
ij can be 

Scenario 1 Scenario 2
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1, 2
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2, 2

1, 1

2, 1

3, 1

4, 1

1, 1

2, 1

3, 1

4, 1

5, 2

4, 2

3, 2

2, 2

Figure 1 – A sample problem instance with two scenarios
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variants RMCIF-A and RMCIF-D, but with minor 
modifications they can also be applied to GRM-
CIF-A, GRMCIF-D and GRMCIF-R considered in 
this paper. Rather than recycling the old solutions, 
we now describe a different approximate algorithm, 
which is based on relaxation and rounding. It will 
turn out that our new algorithm is more advanta-
geous than the heuristics from [22] since it assures 
better accuracy.

First, let us note that GRMCIF-A, GRMCIF-D 
and GRMCIF-R are in fact ILP problems, in spite of 
their seemingly more complex min-max objective 
functions. Namely, all three problems can easily be 
transformed into an equivalent form which is obvi-
ously ILP. Transformation is done by introducing an 
additional variable, as it has been shown in [7]. Here 
follow the corresponding “linearized” problem ver-
sions denoted with GRMCIF-A', GRMCIF-D' and 
GRMCIF-R', respectively.
GRMCIF-A'...

,
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, ,

, ,
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x x
F if v v
F if v v
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GRMCIF-D'...
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GRMCIF-R', 
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Next, let us note that the above linearized prob-
lem versions can be further simplified by relaxation, 
i.e. by skipping integrality constraints for arc values 
xij. Of course, the relaxed problem versions are not 
equivalent to the original versions since their solu-
tions can be non-integral. Still, relaxation is useful 
because it provides lower bounds for integer solu-
tions. Also, relaxed problem versions, being ordi-
nary linear programming (LP) tasks, are much eas-
ier to solve.

Let us denote the uppermost path in our network 
with 1, the next uppermost path with 2, …, the lower-
most with 4. By considering all possibilities, we can 
easily check that the optimal solution under Scenar-
io 1 is the combination of unit flows going through 
paths 1 and 2 – the respective cost is 10. Similarly, the 
optimal solution under Scenario 2 is the flow sending 
two units of flow through path 4 with cost 12. On 
the other hand, the combination of unit flows through 
paths 2 and 4 gives the optimal solution according 
to the absolute robustness criterion (GRMCIF-A) 
and its cost is 16. Next, the optimum in the sense of 
robust deviation (GRMCIF-D) can be achieved in 
three ways as a combination of two unit flows: ei-
ther through paths 1 and 4, or through paths 2 and 3, 
or through paths 2 and 4 – the optimal deviation of 
cost is 6. Finally, the optimum in the sense of relative 
robust deviation (GRMCIF-R) is obtained by com-
bining the unit flows either through paths 1 and 4, or 
through paths 2 and 3 – the optimal relative deviation 
of cost is 1/2.

Our example clearly demonstrates that a robust 
solution can differ from any conventional solution 
corresponding to a particular scenario. Also, it is 
shown that the considered three criteria of robust-
ness can produce different results. Finally, the com-
parison with a similar example from [22] confirms 
that variant GRMCIF-D from this paper is indeed 
not equivalent to the restricted variant RMCIF-D 
from [22].

Let us finally give some remarks about the 
computational complexity of the considered robust 
variants of the minimum-cost integer flow prob-
lem. In [22] it has been proven that the restrict-
ed RMCIF-A and RMCIF-D are both NP-hard 
[3]. Since GRMCIF-A and GRMCIF-D are either 
equivalent or more general than their counterparts 
from [22], they must surely be NP-hard as well. An 
open question is whether GRMCIF-R is also NP-
hard. Our impression is that GRMCIF-R cannot be 
any easier to solve than GRMCIF-D. However, at 
this moment we cannot provide a rigorous proof 
for such a claim.

4.	 AN APPROXIMATE ALGORITHM
In the previously mentioned paper [22] the au-

thors have developed 13 heuristics for solving ro-
bust variants of the minimum-cost integer flow 
problem, which are based either on local search or 
on evolutionary computing. Those heuristics have 
originally been designed for the restricted problem 
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–– First, a pseudo-flow is constructed, where all 
initial (non-integer) arc flow values xij from the 
left part of Figure 2 are rounded to their near-
est integers . .x 0 5ij +6 @  It is obvious that the 
obtained pseudo-flow must obey the capacity 
constraints along arcs, thanks to the fact that all 
arc capacities are integral. Namely, if a certain 
non-integer value is below a certain integer lim-
it, then the rounded version of the same value 
cannot exceed the same limit. On the other hand, 
the pseudo-flow may violate the flow conser-
vation rule in vertices. Indeed, in our particular 
case the conservation rule is infringed in vertices 
v2 and v6 (namely, v2 receives 9 units of flow but 
sends only 3+5=8 units, while v6 receives 3+3=6 
units but sends 7 units).

–– In order to correct these violations, the round-
ing procedure next decomposes the pseudo-flow 
into unit flows (i.e. integer flows that transfer 
one unit of flow from the source to the sink). 
More precisely, the procedure extracts from the 
pseudo-flow as many unit flows as possible. The 
extracted unit flows are summed up in order to 
produce the first version of the sought rounded 
flow. It is obvious that the obtained sum must 
be a feasible integer flow: namely, it satisfies the 
flow conservation rule (since it combines unit 
flows) and it also obeys the capacity constraints 
(since its arc values cannot exceed the corre-
sponding values in the initial pseudo-flow).

–– The only obstacle with the described sum of unit 
flows is that its value F can be smaller than de-
sired. This is exactly what happens in our case, 
where only 9 unit flows can be extracted from 
the initial pseudo-flow. Thus, the first version 
of the rounded flow has value F equal to 9 in-
stead of 10. Thereby the arcs (v2,v5) and (v5,v6) 
are loaded below their capacity, i.e. with only 3 
units of flow.

–– The final part of flow rounding consists of invok-
ing the auxiliary flow augmentation procedure. It 
finds possibilities to send additional units of flow 
from the source to the sink, maybe through paths 

Now we can explain in more detail how our new 
approximate algorithm works. For a given instance 
of GRMCIF-A (or GRMCIF-D or GRMCIF-R), the 
algorithm finds a solution in two steps.
1)	 The corresponding instance of the relaxed 

GRMCIF-A' (or GRMCIF-D' or GRMCIF-R') is 
solved as an ordinary LP instance. The obtained 
solution is a flow with the required value F, but 
possibly non-integer arc values xij.

2)	 The flow obtained in Step 1 is transformed into 
an integer flow with the same value F and arc 
values xij rounded to integers. That integer flow 
is regarded as an approximate solution of the 
original problem instance.
Step 1 in our algorithm can be implemented by 

any general-purpose optimization package able to 
solve LP instances, e.g. by Simplex method [3]. In 
our experiments we have used IBM ILOG CPLEX 
Optimization Studio [27], which is a state-of-the-
art package able to solve very large LP instances.

To realize Step 2 of our algorithm, we have used 
a basic procedure called flow rounding, which in 
turn uses another basic procedure called flow aug-
mentation. Both procedures have been developed 
in [22], but here we are using them in a novel way. 
A detailed description of flow rounding, as well as 
of flow augmentation, can be found in [22]. In our 
experiments, we have implemented the two proce-
dures by our own C# program [28].

An illustration of flow rounding is given 
in Figure 2. The left part of the figure specifies a 
non-integer flow in a network. Thereby arc flow 
values xij are presented as left-hand arc labels, and 
arc capacities as right-hand labels. The overall 
flow value F equals 10. The right part of the fig-
ure shows the rounded version of the same flow 
obtained by applying the rounding procedure. We 
see that the flow value F is the same as before, i.e. 
10, and that each xij has been rounded to a nearby 
integer (either smaller or larger).

Now follows a more detailed analysis of the ex-
ample given in Figure 2. The rounding procedure is 
described step-by-step.

v1

v6v5v2 v6v5v2

v3 v7v4 v3 v7v4

v8 v8v1

1.4/2 1.4/2 3.4/4 1/2 3/4

3.4/4

3.4/4 3/4

3.4/4 4/4 4/4

3.2/4 5/6 3/4

6.6/7

5.2/6

8.6/9 9/9 7/7

1/2

Figure 2 – An example of flow rounding
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approximate solution can serve as an upper bound 
for robust cost of the exact solution. Putting it all to-
gether, although we do not know the exact solutions 
of our problem instances, we can still obtain fairly 
tight interval estimates of their robust costs by using 
the above described lower and upper bounds.

All our problem instances involve layered net-
works like those occurring in real-life applications 
of network flows. The structure of a layered net-
work is illustrated in Figure 4 in [22]. Thus, all ver-
tices except the source and the sink are grouped into 
layers. Arcs can connect only vertices between adja-
cent layers. The number of vertices within a layer is 
called layer width, and it can be fixed (the same for 
each layer) or varying. 

Essential properties of our problem instances are 
summarized in Table 1. The values shown in the table 
have been chosen by hand, and the remaining details 
not visible from the table (such as configuration of 
arcs and concrete values of us

ij or cs
ij) have been gen-

erated randomly. The complete specification of each 
problem instance can be found in our repository at 
the address http://hrzz-rodiopt.math.pmf.unizg.hr.

Regarding our problem instances, we admit that 
it would be much better if we used some standard 
benchmark data instead of modifications of data 
from [22]. However, to the best of our knowledge, 
we are not aware of any suitable benchmark col-
lection. There are some well-known repositories 
of minimum-cost flow problem instances, e.g. [29, 
30], but they cover only the conventional (non-ro-
bust) problem variant. Expanding a conventional 
benchmark instance with more scenarios would not 
make sense since it would produce a new instance 
that cannot be compared with the original one.

In our experiments, we have employed our ap-
proximate algorithm from Section 4 to solve each of 
the 30 problem instances, i.e. I-61, I-62, …, and I-90, 
according to each of the three problem variants, i.e. 
GRMCIF-A, GRMCIF-D and GRMCIF-R, respec-
tively. The whole computation has been done on a 
standard notebook computer with a 2.60 GHz Intel 
Core i5-6440HQ processor and 4 GBytes of memo-
ry. The obtained results are presented in Table 2.

As we can see, for any problem instance and any 
problem variant Table 2 reports two robust costs, the 
first one is obtained after the first step of the algo-
rithm (relaxation) and the second is obtained after 
the second step (rounding). Also, there is relative 
difference of the second cost vs. the first cost, ex-
pressed as a percentage. As already mentioned  

that have not been used by the pseudo-flow. In 
our case, the flow augmentation sends an extra 
flow unit through the uppermost path in the net-
work. In this way, the final integer flow is pro-
duced with value F equal to 10, as shown in the 
right part of Figure 2.
Note that in our example most of the original arc 

flow values xij have been rounded to their nearest 
integers . ,x 0 5ij +6 @  only the flow values for arcs 
(v2,v5) and (v5,v6) have eventually been rounded to 
their next larger integers .xij^ h

Finally, let us note that in the case of (relative) 
robust deviation, prior to running our algorithm, it is 
also necessary to compute the optimal (convention-
al) cost zs for each scenario s. Namely, those values 
must be specified within problem constraints. Com-
puting of zs can be accomplished by any algorithm 
for solving the conventional minimum-cost flow 
problem. In our experiments, we have employed 
the Malholtra-Kumar-Maheshvari algorithm for 
finding flows with given values, combined with 
the Floyd-Warshall algorithm for finding nega-
tive-length cycles in the so-called displacement net-
works [2, 25].

5.	 EXPERIMENTS
In our experiments, we have used a set of 30 

carefully constructed GRMCIF problem instances, 
denoted with I-61, I-62, …, I-90. They are in fact 
slight modifications of similar RMCIF instances 
from [22]. The instances from both sets have been 
chosen to be large enough, so that they cannot be 
solved to optimality by a general-purpose optimi-
zation package such as IBM ILOG CPLEX [27]. 
Indeed, any attempt to find their exact (i.e. opti-
mal and integral) solution by CPLEX results in an 
out-of-memory error. On the other hand, the chosen 
instances are still small enough to be solvable in a 
relaxed form. It means that CPLEX can find their 
optimal non-integer solution after the integrality 
constraints to arc flow values have been abandoned. 
It also means that our approximate algorithm from 
Section 4 can find its nearly optimal solution by 
rounding the result from CPLEX.

Note that the relaxed solution of a problem in-
stance is never worse than the exact solution. Con-
sequently, the robust cost of the relaxed solution 
can serve as a lower bound for robust cost of the 
exact solution. Note also that the approximate solu-
tion obtained by our algorithm is never better than 
the exact solution. Consequently, robust cost of the  
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than for GRMCIF-D or GRMCIF-R. We can expect 
that a solution according to the absolute robustness 
criterion will be accurate up to 1%. For the (rela-
tive) deviation robustness criteria errors could be 
slightly larger but still below 2%.

The experimental results from this paper can easi-
ly be compared with similar results from [22]. In [22] 
there is a set of 30 RMCIF instances, denoted with 
I-31, I-32, …, I-60, which are solved according to 
the RMCIF-A and RMCIF-D problem variants by 13 
heuristics. In fact, I-31, I-32, …, and I-60 are almost 
identical to I-61, I-62, …, and I-90, respectively. The 

earlier, the two reported values provide an inter-
val estimate for the unknown exact-solution robust 
cost. Therefore, the computed percentage can be in-
terpreted as an upper bound for the relative error of 
our approximate solution vs. the exact solution.

In its last row, Table 2 also comprises average 
bounds for relative errors. Averaging is done over 
the whole set of problem instances and for each 
problem variant separately. The presented averages 
indicate that our approximate algorithm is very ac-
curate. Actual approximation errors depend on the 
problem variant, and they are better for GRMCIF-A 

Table 1 – Properties of the chosen GRMCIF problem instances

Instance 
identifier

# of vertices 
|V|

# of arcs 
 |A|

# of scenarios 
|S|

Flow value 
F # of layers Layer width Range for us

ij, c
s
ij

I-61 122 696 60 215 20 6 (fixed) 0-99

I-62 122 472 60 183 30 4 (fixed) 0-99

I-63 122 357 60 96 40 3 (fixed) 0-99

I-64 122 240 60 68 60 2 (fixed) 0-99

I-65 122 2,818 60 35 7 48,40,18,5,4,3,2 0-99

I-66 102 485 60 179 20 5 (fixed) 0-99

I-67 102 200 60 60 50 2 (fixed) 0-99

I-68 102 2,041 60 115 4 61,28,9,2 0-99

I-69 162 1,232 30 329 20 8 (fixed) 0-99

I-70 162 632 30 85 40 4 (fixed) 0-99

I-71 162 320 30 17 80 2 (fixed) 0-99

I-72 162 4,466 30 321 4 68,34,52,6 0-99

I-73 152 735 30 224 30 5 (fixed) 0-99

I-74 152 447 30 147 50 3 (fixed) 0-99

I-75 152 4,404 30 161 4 100,40,7,3 0-99

I-76 222 2,321 15 457 20 11 (fixed) 0-99

I-77 222 440 15 26 110 2 (fixed) 0-99

I-78 222 7,174 15 186 5 138,40,34,4,4 0-99

I-79 212 1,435 15 145 30 7 (fixed) 0-99

I-80 212 627 15 95 70 3 (fixed) 0-99

I-81 212 5,543 15 274 7 104,32,32,30,3,4,5 0-99

I-82 252 1,235 10 15 50 5 (fixed) 0-9

I-83 252 14,138 10 53 5 87,120,29,3,11 0-9

I-84 242 2,760 10 56 20 12 (fixed) 0-9

I-85 242 1,872 10 41 30 8 (fixed) 0-9

I-86 242 1,416 10 35 40 6 (fixed) 0-9

I-87 242 952 10 26 60 4 (fixed) 0-9

I-88 242 717 10 19 80 3 (fixed) 0-9

I-89 242 480 10 6 120 2 (fixed) 0-9

I-90 242 6,680 10 20 5 168,32,26,10,4 0-9



Špoljarec M, Manger R. Solving Robust Variants of Integer Flow Problems with Uncertain Arc Capacities

Promet – Traffic&Transportation, Vol. 33, 2021, No. 1, 77-89	 87

their solutions are still comparable on the level of 
average relative errors. Namely, RMCIF-D instanc-
es can be considered as simplified GRMCIF-D in-
stances, whose solving should not be harder than for 
general GRMCIF-D instances.

The performance of 13 considered heuristics 
over the considered RMCIF instances is presented 
by Table 9 in [22]. We can see that the best results 
are produced by a hybrid of evolutionary computing 

only difference is that their arc capacities are fixed 
through scenarios. Thereby the fixed capacity of each 
arc (vi,vj) in each RMCIF instance is equal to u*

ij in 
the corresponding GRMCIF instance. As explained 
earlier, in such circumstances the RMCIF-A variant 
is equivalent to the GRMCIF-A variant, so that a di-
rect comparison of solutions (instance by instance) 
is possible. On the other hand, the RMCIF-D and 
GRMCIF-D variants are not quite equivalent, but 

Table 2 – Robust solution costs obtained with relaxation and rounding

GRMCIF-A GRMCIF-D GRMCIF-R

Instance 
identifier

Relaxed 
solution

Rounded 
relaxed 
solution

Relat. 
error  
≤ [%]

Relaxed 
solution

Rounded 
relaxed 
solution

Relat. 
error
≤ [%]

Relaxed 
solution

Rounded 
relaxed 
solution

Relat. 
error
≤ [%]

I-61 211,168 212,427 0.60 143,261 143,834 0.40 2.287610 2.300072 0.54

I-62 269,898 271,864 0.73 153,656 154,750 0.71 1.405138 1.412041 0.49

I-63 192,327 193,476 0.60 100,652 101,434 0.78 1.137112 1.154330 1.51

I-64 211,414 212,474 0.50 79,579 80,333 0.95 0.644371 0.650414 0.94

I-65 15,440 15,987 3.54 7,832 8,735 11.53 1.133585 1.205848 6.37

I-66 179,401 180,226 0.46 116,453 117,553 0.94 1.974020 1.989308 0.77

I-67 155,463 156,182 0.46 57,379 57,927 0.96 0.651568 0.658212 1.02

I-68 29,104 29,468 1.25 19,656 20,721 5.42 3.177696 3.196130 0.58

I-69 303,919 304,706 0.26 216,885 217,642 0.35 2.542881 2.548876 0.24

I-70 157,961 158,742 0.49 98,859 99,555 0.70 1.764815 1.780503 0.89

I-71 66,113 66,219 0.16 26,357 27,317 3.64 0.683370 0.709696 3.85

I-72 68,149 68,448 0.44 51,538 51,935 0.77 3.671287 3.689214 0.49

I-73 315,410 316,464 0.33 193,483 194,473 0.51 1.641403 1.651402 0.61

I-74 356,849 357,682 0.23 160,471 162,029 0.97 0.844588 0.848251 0.43

I-75 36,179 36,439 0.72 25,069 25,347 1.11 2.969617 3.002195 1.10

I-76 382,518 383,353 0.22 284,219 285,310 0.38 2.942799 2.948734 0.20

I-77 131,974 133,031 0.80 47,090 48,026 1.99 0.564684 0.574444 1.73

I-78 44,809 44,982 0.39 31,452 31,688 0.75 2.610898 2.637670 1.03

I-79 179,904 180,155 0.14 131,487 133,271 1.36 2.750578 2.752951 0.09

I-80 305,734 306,843 0.36 147,924 148,735 0.55 0.955830 0.961266 0.57

I-81 89,713 89,978 0.30 58,645 59,303 1.12 2.011219 2.020388 0.46

I-82 3,126 3,144 0.58 1,706 1,779 4.28 1.204502 1.256445 4.31

I-83 1,240 1,272 2.58 658 688 4.56 1.145100 1.158756 1.19

I-84 4,495 4,501 0.13 2,800 2,885 3.04 1.652181 1.683111 1.87

I-85 5,086 5,199 2.22 2,916 2,926 0.34 1.347415 1.401887 4.04

I-86 6,024 6,098 1.23 3,205 3,210 0.16 1.143578 1.171286 2.42

I-87 7,047 7,057 0.14 2,941 2,949 0.27 0.717120 0.719810 0.38

I-88 7,121 7,133 0.17 2,490 2,502 0.48 0.540152 0.560176 3.71

I-89 3,349 3,358 0.27 1,000 1,008 0.80 0.427695 0.431049 0.78

I-90 472 500 5.93 252 266 5.56 1.179771 1.267045 7.40

Avg. 0.87 1.85 1.67
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The present implementation of our new algo-
rithm relies on a general-purpose linear program-
ming package. This fact can be interpreted as a 
potential drawback. It implies namely, that the im-
plemented algorithm is applicable only to moder-
ately sized problem instances whose relaxed ver-
sions are still solvable by the used software. It is 
true that state-of-the-art general-purpose packages 
installed on state-of-the-art computers can accom-
modate considerably large problem instances. Still, 
extremely large instances could exceed the avail-
able resources. 

In our future research we plan to explore lim-
itations of our implemented algorithm regarding 
problem instance size. Also, we will try to develop 
a dedicated software solution that would overcome 
possible limitations of the presently used gener-
al-purpose package. An additional plan is to test 
our algorithm and software on a real-world optimi-
zation problem belonging to the area of traffic and 
transportation. It could be a shipping application, 
where road capacities and costs of transport are un-
certain. Such uncertainty can be expressed through 
scenarios that correspond to weather conditions 
and/or economic circumstances.
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RJEŠAVANJE ROBUSNIH VARIJANTI  
PROBLEMA CJELOBROJNOG TOKA  
S NESIGURNIM KAPACITETIMA LUKOVA

SAŽETAK
Ovaj rad bavi se robusnom optimizacijom i tokovi-

ma u mrežama. Promatra se nekoliko robusnih varijanti 
za probleme cjelobrojnog toka. U tim varijantama pret-
postavlja se da postoji nesigurnost u pogledu kapac-
iteta lukova u mreži te također nesigurnost jediničnih 
cijena za lukove (tamo gdje one postoje). Nesigurnost 

and local search denoted as EC-9. Thereby the ob-
tained average error bounds for the RMCIF-A and 
RMCIF-D variants are 6.30% and 12.40%, respec-
tively. These values are worse than the correspond-
ing (analogously computed) values from Table 2 in 
this paper, where instead of 6.30% and 12.40% we 
have 0.87%, and 1.85%, respectively. Thus, we can 
observe that the approximate algorithm from this 
paper assures much better accuracy than the best 
heuristic from [22].

6.	 	CONCLUSION
In this paper several robust variants of the max-

imum flow problem and the minimum-cost flow 
problem have been considered. Thereby, only in-
teger flows have been taken into account. A com-
mon property of all the considered robust problem 
variants is that they assume uncertainty of network 
arc capacities. In the case of the minimum-cost flow 
problem, arc unit costs are uncertain as well. All 
uncertainties are expressed by discrete (finite and 
explicitly given) sets of scenarios.

In the paper it has been shown that the consid-
ered robust variants of the maximum flow problem 
are easy to solve, i.e. they can be reduced to the 
non-robust variant of the same problem. On the oth-
er hand, the considered robust minimum-cost flow 
problem variants turn out to be NP-hard. In order to 
solve such NP-hard tasks, the paper has proposed 
an approximate algorithm, which is based on relax-
ation and rounding. Experiments have been present-
ed where the proposed algorithm was implemented 
and tested on appropriate problem instances.

According to the presented experiments, our new 
approximate algorithm for solving robust variants 
of the minimum-cost integer flow problem seems 
to be very accurate. Depending on the involved ro-
bustness criterion, relative errors of the obtained 
approximate solutions vs. the corresponding exact 
solutions range from 1% to 2%. Such accuracy can-
not be achieved by other relevant algorithms found 
in the literature whose relative errors are several 
times larger.

The just mentioned new algorithm can surely 
be regarded as the most important original contri-
bution of the paper. However, there are also some 
other interesting contributions that should be noted. 
For instance, the analysis of robust maximum flow 
problem variants is very useful, since it provides a 
way for solving such variants by conventional (al-
ready existing) algorithms.
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and design under demand uncertainty. Operations Re-
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network flows. Operations Research. 2013;61: 1218-
1242.

[15]	 Boginski VL, Commander CW, Turko T. Polynomial-time 
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failures. Optimization Letters. 2009;3: 461-473.

[16]	 Minoux M. On robust maximum flow with polyhedral 
uncertainty sets. Optimization Letters. 2009;3: 367-376.

[17]	 Minoux M. Robust network optimization under polyhe-
dral demand uncertainty is NP-hard. Discrete Applied 
Mathematics. 2010;158: 597-603.

[18]	 Ordoñez F, Zhao J. Robust capacity expansion of net-
work flows. Networks. 2007;50: 136-145.

[19]	 Poss M. A comparison of routing sets for robust network 
design. Optimization Letters. 2014;8: 1619-1635.

[20]	 Righetto GM, Morabito R, Alem D. A robust optimiza-
tion approach for cash flow management in stationery 
companies. Computers and Industrial Engineering. 
2016;99: 137-152.

[21]	 Rui M, Jinfu Z. Robust discrete optimization for the 
minimum cost flow problem. In: Wang C, Ye Z. (eds.) 
Proceedings of the International Workshop on Intelligent 
Systems and Applications – ISA 2009. Wuhan, China, 23-
24 May 2009. Piscataway NJ: IEEE; 2009. p. 1-4.

[22]	 Špoljarec M, Manger R. Heuristic solutions to robust 
variants of the minimum-cost integer flow problem. 
Journal of Heuristics. 2020;26: 531-559.

[23]	 Eiben AE, Smith JE. Introduction to Evolutionary Com-
puting. Second edition. Berlin: Springer; 2015.

[24]	 Talbi EG. Metaheuristics – From Design to Implementa-
tion. Hoboken NJ: Wiley; 2009.

[25]	 Korte B, Vygen J. Combinatorial Optimization – Theory 
and Algorithms. Fifth Edition. Berlin: Springer; 2012.

[26]	 Carre B. Graphs and Networks. Oxford UK: Oxford Uni-
versity Press; 1979.

[27]	 IBM Corporation. IBM ILOG CPLEX Optimization Stu-
dio, CPLEX User's Manual, Version 12, Release 8. IBM 
Knowledge Center; 2017. Available from: https://www.
ibm.com/support/knowledgecenter/SSSA5P_12.8.0 [Ac-
cessed 17 Dec 2018].

[28]	 Troelsen A, Japikse P. C# 6.0 and the .NET 4.6 Frame-
work. 7th Edition. New York NY: Apress; 2016.

[29]	 Beasley JE. OR-Library. Brunel University London; 
2018. Available from: http://people.brunel.ac.uk/~mas-
tjjb/jeb/info.html [Accessed 17 Dec 2018].

[30]	 DIMACS – Center for Discrete Mathematics and The-
oretical Computer Science. DIMACS Implementation 
Challenges. Piscataway NJ: Rutgers University; 2017. 
Available from: http://archive.dimacs.rutgers.edu/Chal-
lenges [Accessed 17 Dec 2018].

se izražava preko diskretnih scenarija. S obzirom da 
se promatrane varijante problema maksimalnog toka 
mogu lagano riješiti, rad se uglavnom koncentrira 
na NP-teške varijante problema toka s minimalnom  
cijenom te predlaže algoritam za njihovo približno 
rješavanje. Točnost predloženog algoritma provjerava se 
pomoću eksperimenata.

KLJUČNE RIJEČI
tok u mreži; cjelobrojni tok; robusna optimizacija;  
algoritam.
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