
ABSTRACT
Driver and pedestrian behaviour significantly affect 

the safety and the flow of traffic at the microscopic and 
macroscopic levels. The driver behaviour models de-
scribe the driver decisions made in different traffic flow 
conditions. Modelling the pedestrian behaviour plays an 
essential role in the analysis of pedestrian flows in the 
areas such as public transit terminals, pedestrian zones, 
evacuations, etc. Driver behaviour models, integrated 
into simulation tools, can be divided into car-following 
models and lane-changing models. The simulation tools 
are used to replicate traffic flows and infer certain regu-
larities. Particular model parameters must be appropri-
ately calibrated to approximate the realistic traffic flow 
conditions. This paper describes the existing car-fol-
lowing models, lane-changing models, and pedestrian 
behaviour models. Further, it underlines the importance 
of calibrating the parameters of microsimulation models 
to replicate realistic traffic flow conditions and sets the 
guidelines for future research related to the development 
of new models and the improvement of the existing ones. 
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1. INTRODUCTION
The main aim of the paper is to stratify the ex-

isting car-following, lane-changing, and pedestri-
an behaviour models. Spatial constraints render the 
expansion of the current road capacity impossible, 
leaving efficient traffic flow management as one of 
the methods of dealing with traffic congestion. In-
tervening in real-world traffic situations, without 
prior analysis and evaluation often results in errors 
and requires significant financial resources. Different 
simulation tools that integrate driver and pedestrian 
behaviour models are therefore used to evaluate var-
ious traffic situations and various solutions and to 

facilitate the decision-making. Simulation models 
have the ability to closely replicate actual traffic sit-
uations by modelling each vehicle and pedestrian 
in the network. The fundamental element of micro-
scopic simulation models is driver and pedestrian 
behaviour in a traffic network, i.e. Car Following 
(CF), Lane Change (LC), route choice, gap accep-
tance, and regarding pedestrians, avoiding other 
pedestrians and obstacles. Car-following models 
describe the vehicle longitudinal movement, while 
lane-changing models describe the selection of the 
target lane. Driver behaviour can be described as 
speed adjustment, acceleration/deceleration, lane 
selection, and space gap adjustment according to 
road conditions. In the last two decades, several 
review papers were written on the car-following 
[1-3], and lane-change [4-6] subject. Still, none of 
them consider the car-following and lane-change 
behaviour of Autonomous Vehicles (AV) or pedes-
trian behaviour models which have an essential role 
in traffic. This paper presents an update on the ex-
isting CF and LC models with considerations of au-
tonomous vehicles and pedestrian behaviours. 

2. CAR-FOLLOWING MODELS
Car-following models describe the processes of 

vehicles following one another in the same lane. 
The space gap between vehicles significantly af-
fects the traffic safety, capacity, and level of service. 
The car-following model is based on specific rules 
that update vehicle speed, the spatial position of 
the vehicle, and vehicle acceleration/deceleration 
over a selected period. The concept of car-follow-
ing models was first proposed by Reuschel in 1950 
and Pipes in 1953 [7, 8]. These models contained a 
safety parameter that stated that minimum bumper-
to-bumper distance is proportional to the speed. 
Using Laplace's transformation, Pipes developed a 
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decelerate to their optimal speed, and the optimal 
speed is the function of headway. The acceleration/
deceleration is calculated by:

x a V x xn n n nD= -p o^ h" ,  (4)

where xn represents the position of n-th vehicle; an 
is a constant representing the driver’s sensitivity; 
and Δxn=xn+1-xn is the headway between the lead 
vehicle and the follower. 

Treiber et al. [18] developed an Intelligent Driv-
er Model (IDM) which consists of two parts (i) 
comparing current speed v to the desired speed v0, 
and (ii) comparing the current distance s to the de-
sired distance s*. Mathematical descriptions of the 
IDM model are presented:
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where δ is the acceleration exponent; s0 is the min-
imum relative spacing between vehicles; s is the 
relative spacing between vehicles; s* is the desired 
spacing between vehicles; a is maximum accelera-
tion; b is the desired deceleration; T is the desired 
time headway; v is the current speed; and v0 is the 
desired speed. 

The model can be explained by three common 
situations: (i) when the driver accelerates from a 
standstill, the vehicle starts at maximum accelera-
tion a, the acceleration decreases with increasing 
speed and reaches zero as the speed approaches 
the desired speed v0. The acceleration exponent δ 
controls this reduction of acceleration; (ii) when 
following a leading vehicle, the distance gap is ap-
proximatively given by the safety distance s0 + vT; 
(iii) when approaching slower or stopped vehicles, 
the deceleration usually does not exceed the com-
fortable deceleration b [19].

2.2 Collision avoidance models
Collision avoidance models are based on deter-

mining a safe headway when following a vehicle 
and adjusting the driver’s behaviour to avoid a col-
lision [20]. According to Kometani and Sasaki [21], 
a collision will occur if the space gap between two 
successive vehicles is less than the required safety 
distance.

Safety distance is calculated using the following 
equation: 

( ) ( )x t T v t T v t v t bn l n n1
2 2

0a b bD - = - + + +-^ ^h h  (7)

theoretical formulation for the acceleration of the 
follower vehicle with a mathematical function de-
scribing the behaviour of the leading vehicle. He as-
sumed that the follower maintained a safe headway 
from the lead vehicle of 1.023 seconds [7].   

2.1 Gazis-Herman-Rothery/General 
motors model

The Gazis - Herman - Rothery (GHR) model 
was developed in the General Motors Laboratory, 
Michigan, Detroit in the late 1950s and early 1960s. 
The GM model is based on determining the fol-
lower vehicle acceleration based on speed, relative 
speed, space gap, and driver reaction time. Through 
the years, several generations of the model were de-
veloped [9-13], and the final equation of the GHR/
GM model is as follows:
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where xn represents the position of n-th vehicle at 
time t [s]; T is the time lag from stimulus to response 
[s], and m, l, and a are constants. To prove the above 
mathematical model, an experimental study was 
conducted using a vehicle equipped with wire. The 
car follower was equipped with a reel and a power 
unit mounted on a small platform which was fas-
tened to the front bumper of the test car. The study 
showed no statistical correlation between the space 
gap and vehicle acceleration, while a significant sta-
tistical correlation was found between the changes 
in the vehicle speed and vehicle acceleration.  

The linear model, also known as the Helly model 
[14], is an improvement to the GHR model in terms 
of adjusting the follower's acceleration in response 
to the leading vehicle deceleration. The simplified 
model is:

a C v t T C x t T D tn n1 2D D= +- - -^ ^ ^ ^h h hh  (2)

D v t T a t Tn na b c= + - + -^ ^h h  (3)

where an is an acceleration of the n-th vehicle at 
time t; Δv is the relative speed between the vehicles; 
Δx is the relative spacing between the vehicles; T is 
the driver’s reaction time; Dn is the desired follow-
ing distance C1, C2; α, β, γ are model parameters.

Xing [15] developed a model based on a combi-
nation of the linear model and the GHR model. 

The optimal velocity model was introduced by 
Newell [16] and was developed by Bando et al. 
[17]. The model assumes that drivers accelerate/
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where W is the width of the preceding vehicle; Sn is 
the spacing between the preceding and the subject 
vehicles, measured from the front edge of the sub-
ject vehicle to the rear end of the preceding vehicle.

One of the best known psychophysical driver 
behaviour models is the Wiedemann model, which 
is used in VISSIM microsimulation software [27]. 
This model uses the perceptual thresholds for dif-
ferent regimes of the driving behaviour, and the 
regimes are based on the driver’s perceptions and 
actions. There are four driving regimes: (i) free driv-
ing, (ii) approaching, (iii) following, and (iv) emer-
gency. In each of the regimes, different acceleration 
function is calculated. In the “free driving” regime, 
the follower strives to achieve and keep its desired 
speed, “approaching” regime consists of adapting 
the follower speed to its leader’s speed. While ap-
proaching, the driver decelerates to a safe distance, 
and at that point, the relative speed of two vehicles 
is zero. In the “following” regime, safety distance 
between two successive vehicles is constant, and 
in the “emergency“ regime, if the safety distance 
between two successive vehicles falls below the 
desired safety distance, the driver decelerates with 
maximum deceleration. After exceeding the percep-
tual threshold of one regime, the driver returns the 
acceleration to the value of the acceleration function 
for the existing situation and maintains the new ac-
celeration until the perception threshold is exceeded 
again [24].

Saifuzzaman and Zheng [28] consider human 
factors necessary in car-following modelling for 
a more realistic representation of the driving be-
haviour in complex driving situations. According 
to the authors, in typical and often complex driv-
ing situations, humans adopt strategies that are ad-
equate rather than optimal, because of their incom-
plete knowledge or insufficient time to evaluate all 
possible alternatives. The model parameters related 
to human factors are unobservable and, therefore, 
difficult to calibrate and validate using the general 
traffic data (i.e. traffic volume), which often leads to 
the assumptions that these parameters are constant 
when modelling the car-following behaviour.

2.4 Fuzzy logic models
Fuzzy logic-based models define fuzzy sets to 

allow variations in the driver behaviour in traffic 
flow, instead of assigning the same reaction to all 
drivers. This makes it possible to describe the differ-
ences in the drivers' perception of the environment. 

where vn represents the speed of the follower vehi-
cle [m/s]; vn-1 the speed of the leading vehicle [m/s] 
at time t; ∆x the relative spacing between the fol-
lower vehicle and the leading vehicle [m]; T driver 
reaction time; and α, β, βl, b0 calibration constants 
[22]. 

The best known collision avoidance model is the 
Gipps model [23]. The model is currently used in 
the AIMSUN modelling software. The Gipps model 
is based on the collision avoidance and consists of 
two restrictions of the follower vehicle. The speed 
of the follower must not exceed the desired speed. 
The acceleration of the follower vehicle increases 
initially as the vehicle reaches the desired speed and 
then drops to zero. At any moment, the following 
driver should leave enough safe distance in front 
so that in case the leading vehicle starts emergency 
braking, the follower has time to respond and decel-
erate to a stop behind the leading vehicle without a 
collision [23, 24].

These restrictions are represented by the follow-
ing equation:
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where an represents maximum acceleration that 
the vehicle seeks to achieve [m/s2]; bn the maxi-
mum braking force that the driver wants to achieve;  
sn-1 the length of the leading vehicle [m]; Vn the de-
sired speed at which the follower vehicle wants to 
move [m/s]; vn is the speed of vehicle n at time t; 
xn(t) the position of the follower vehicle at time t; b̂ 
follower driver’s estimate of bn-1; and T driver reac-
tion time [s].

2.3 Psychophysical models
Psychophysical models assume that the drivers 

can estimate the speed of the leading vehicle and 
respond to safety distance changes. This model was 
introduced by Michaels [25] and Wiedemann [26], 
who consider that the drivers will only react if they 
perceive that they approach a vehicle in front. The 
relative speed is perceived through the changes in 
the visual angle of the lead vehicle. Visual angle can 
be calculated by:

( ) ( ) ( )arctant S t
W

S t
W2 2n

n n
ci = b l  (9)
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results obtained from the tests, the model could 
quantify the driver propensity for traffic accidents. 
The modelling process consists of testing different 
types of fuzzy interference systems to select the one 
that generates the minimum amount of error in the 
data description. The results showed that the com-
bination of all four tests indicates the best results 
when it comes to evaluating driver behaviour.

2.5 Neural network models
Pomerleau [36, 37] applied neural networks to 

simulate autonomous vehicle movement, and Fix 
and Armstrong [38] used them to model driver 
behaviour in a simulation model. Neural network 
training data was collected from a driver operating 
a driving simulator, and the results showed that the 
model successfully replicated the driver's behaviour 
in the traffic flow. Dougherty et al. [39, 40] devel-
oped a car-following model that uses neural net-
works with a back-propagation algorithm. Panwai 
and Dia [41] developed a neural network car-follow-
ing model using data on vehicle speeds and spacing. 
Khodayari et al. [42] developed an artificial neural 
network model to predict car-following behaviour 
in the traffic flow. Reaction delay was used as a 
human effects and used as input in the car-follow-
ing model. Zhou et al. [43] used a recurrent neu-
ral network to model car-following behaviour and 
to predict traffic oscillations successfully. To train 
and test the proposed model, the authors used the 
NGSIM database. It was found that the Recurrent 
Neural Network (RNN)-based model has the ability 
to establish traffic oscillations and to recognize dif-
ferent drivers characteristics. The authors compared 
the proposed RNN-based model to the Intelligent 
Driver Model (IDM). The results have shown that 
RNN has more accurate results when it comes to 
predicting the trajectories of vehicles and predicting 
the aggressive, timid, and normal oscillations (oscil-
lation caused by drivers). Hua [44] also proposed a 
car-following model based on an RNN, which could 
describe traffic congestion while the vehicles were 
moving in the traffic flow. The traffic flow was sim-
ulated by one-dimensional discrete cells, and each 
cell represents the average length of a vehicle (5 
m). The research was conducted using a full veloc-
ity difference car-following model. To optimize the 
relative spacing between two successive vehicles in 
the RNN model, vehicle position and velocity were 
used as input parameters. The results have shown 
that when the relative velocity of two successive  

The values of different driver's subjective percep-
tions are associated with fuzzy rules through cer-
tain probability functions. Kikuchi and Chakroborty 
[29] were the first to apply fuzzy logic to car-fol-
lowing models using the GHR model. The model 
can predict the acceleration/deceleration values of 
the follower concerning the action of the leading 
vehicle. The range of possible reactions is predicted 
and expressed by the fuzzy membership function. 
They used three parameters to define fuzzy rules as 
input: (i) distance between the follower and lead ve-
hicle (relative spacing), (ii) speeds of follower and 
leading vehicle (relative speed), and (iii) leading 
vehicle's acceleration or deceleration. The mod-
el can predict the acceleration and deceleration of 
the follower based on the relative speed and accel-
eration of the leading vehicle. Several other fuzzy 
logic-based car-following models have been de-
veloped [30-32]. Hao et al. [33] developed a fuzzy 
logic-based multi-agent car-following model that 
was able to imitate human driver, and the classic 
stimulus-response framework of the CF model was 
expanded to a five-layer structure, perception - an-
ticipation - inference - strategy - action, to capture 
the driver’s decision process in the car-following 
situation. The model consists of a large number of 
parameters due to fuzzy set membership functions. 
Seven actual vehicle trajectories extracted from the 
NGSIM (Next Generation SIMulation) database 
were used as examples to evaluate the proposed 
approach. In the comparison of the simulated and 
actual data, the simulation matched the actual tra-
jectory, and the tendencies of acceleration, velocity, 
and space headway between the simulated and the 
actual were similar, which proves that the model 
was stable. Bennajeh et al. [34] developed an intel-
ligent anticipation car-following model based on a 
modified fuzzy logic approach to estimate the speed 
of the leading vehicle. To model human behaviour, 
fuzzy rules were applied, which allows modelling 
of driver behaviour. The results show that the sim-
ulated vehicle trajectories based on the new model 
correspond to the actual vehicle trajectories in terms 
of deviation and gap distance. Cubranic-Dobrodolac 
et al. [35] used four psychological tests to evalu-
ate the driver behaviour (the Barratt Impulsiveness 
Scale (BIS-11), the Aggressive Driving Behaviour 
Questionnaire (ADBQ), the Manchester Driver At-
titude Questionnaire (DAQ) and the Questionnaire 
for Self-assessment of Driving Ability). The mod-
el was developed using fuzzy logic. Based on the  
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mated Vehicles (AVs). The Lagrangian coordinates 
system was used to formulate the heterogeneous 
character of human drivers. The proposed model 
is qualified to investigate the interaction between 
AVs and HVs considering the uncertainty of human 
driving behaviour. The results show that AVs have 
a significant impact on the uncertainty and stability 
of the mixed traffic flow system. Larger AV penetra-
tion rates can reduce the uncertainty inherent in HV 
behaviour and improve the stability of the mixed 
flow substantially. Li et al. [49] conducted research 
to explore the impacts of mixed flow conditions 
(AVs and HVs). They proposed a theoretical model 
which could be able to increase road capacity with 
suitable right-of-way reallocation. The different AV 
rates and traffic demands are used, and different re-
allocations strategies are compared using SUMO 
simulation tools. To simulate the driver behaviour, 
the Gipps car-following model was used. The re-
sults show that road capacity on a two-lane road can 
be significantly improved with appropriate right-of-
way reallocation strategies at low or medium AV 
rates, compared with the do-nothing right-of-way 
strategy. Zeidler et al. [50] analysed data of two 
autonomous vehicles driven in the real world and 
compared their car-following behaviour to simula-
tions based on the Wiedemann car-following model. 
The standstill distances and the headway of auton-
omous vehicles were derived from the data. The 
simulations show that the behaviour of autonomous 
vehicles communicating with the leading vehicle is 
reproduced well in PTV VISSIM microsimulation 
software. Problems occur when simulating auton-
omous vehicles that do not communicate with their 
leader. Not too many proposed models are incorpo-
rated in the microsimulation tools.

Summary: Car-following models
The GM model is the most studied model whose 

parameters can be easily estimated. However, the 
lack of GM models is manifested in the inability to 
distinguish situations with large and small relative 
distances between vehicles in car-following mode.  
Other disadvantages of this model are in the use 
of the same value of reaction time for all drivers. 
The Optimal Velocity Model (OVM) depends on 
the space between the two successive vehicles. The 
lack of the model is evident in the production of 
unrealistic values of acceleration and deceleration. 
The reason is that the optimal velocity depends on 
the relative space gap between two successive vehi-
cles, so that traffic density plays an essential role in 

vehicles is greater, traffic congestion is more likely 
to occur, and the recurrent neural network car-fol-
lowing model can acquire a smaller safe distance.

2.6 Neuro-fuzzy models
In recent years, it has become popular to use a 

combination of fuzzy logic and neural networks 
when developing the car-following models. For ex-
ample, Khodayari et al. [45] used Locally Linear 
Neuro-Fuzzy (LLNF) model to simulate and predict 
future driver behaviour. Local Linear Model Tree 
(LOLIMOT) learning algorithm is applied to train 
the model using real traffic data (NGSIM database). 
The results showed that the LLNF model based on 
instantaneous reaction delay input outperformed 
the other car-following models. Zarringhalam and 
Ghaffari [46] used Emotional Learning Fuzzy In-
ference System (ELFIS) to simulate and predict the 
future behaviour of a driver. The velocity of the fol-
lower and the relative distance between two succes-
sive vehicles are predicted. The algorithm is used to 
generate a warning message while a safe-distance 
keeping measure is violated in order to prevent a 
collision. The proposed method can be applied, in 
real-time, for a variety of applications, including 
driver assistant and collision prevention systems as 
well as other intelligent transportation applications. 
Wang et al. [47] proposed a car-following model 
with consideration of the driver’s behaviour based 
on an Adaptive Neuro-Fuzzy Inference System 
(ANFIS). The ANFIS model fits the car-following 
data better than the traditional GM model because 
the ANFIS model can better capture the fuzzy, un-
certain, and asymmetric behaviour of the drivers.

2.7 Autonomous vehicles
In recent years, many types of research have 

been conducted on the impact of autonomous vehi-
cles on increasing road capacity and to investigate 
driver behaviour in a heterogeneous traffic flow con-
sisting of human drivers and autonomous vehicles 
(HVs and AVs). Autonomous vehicles are equipped 
with cameras, infrared sensors, radars and GPS to 
capture information from the real-world. When ex-
ploring AVs, the authors mainly use microsimula-
tion software to simulate their behaviour, and those 
simulations are based on the assumptions regarding 
the behaviour of autonomous vehicles. Zheng et al. 
[48] proposed a stochastic model for mixed traffic 
flow with Human-driven Vehicles (HVs) and Auto-
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model is challenging due to determining the per-
ceptual thresholds of all the drivers observed in the 
model. Fuzzy logic-based models allow variations 
in the driver behaviour in the traffic flow, instead 
of assigning the same parameter values to all driv-
ers. However, the most significant disadvantage of 
these models is defining fuzzy rules in the same or-
der as the driver himself. Neural network models 
can obtain better model results due to the adaptive 
structure of the network. The lack of using neural 
networks when simulating the car-following mod-
els is manifested in the wrong determination of the 
amount and type of data for neural network training. 

this model. The lack of an Intelligent Driver Mod-
el (IDM) is that it does not consider the reaction 
time of the drivers. Gipps model is one of the well-
known and used models for simulating driver be-
haviour. The main disadvantage of the model is that 
there is no difference between the maximum and the 
desired deceleration while modelling the car-fol-
lowing mode. The same reaction time is applied 
to all drivers. Psychophysical models are based on 
determining the driver’s perceptual thresholds on 
specific stimuli. The advantage of these models is 
that they take into account different behaviours of 
drivers in the traffic flow. The calibration of this 

Table  1 – Summary of existing car-following models

Car-following models Related literature Model specifics

Mathematical 
models

GHR/General 
Motors

GHR model/GM models (1959) 
[9]

The response of the following vehicle is related to 
the stimulus of the leader vehicle and response is 
the acceleration of the following vehicle

Linear model; Helly (1959) [14]

Optimal velocity; Newell (1963) 
[16]

IDM; Treiber et al. (2000) [18]

Collision 
avoidance

Pipes (1953) [7]
A vehicle travelling at a safe speed would be able to 
maintain a safe speed and distance indefinitelyKometani and Sasaki (1959) [21]

Gipps (1981) [23]

Psychophysical Michaels (1963) [25]                                     
Wiedmann (1974) [26]

Perceptual thresholds (the function of speed 
difference and spacing between lead and follower)

Fuzzy logic

Kikuchi and Chakroborty (1992) 
[29]

Fuzzy logic incorporates driving strategies for vari-
ous driving regimes into a set of simple fuzzy rules

Gao et al. (2008) [30]

Hao et al. (2016) [33]

Bennajeh et al. (2018) [34]

Cubranic-Dobrodolac et al. (2020) 
[35]

Neural network

Pomerleau (1992) [36, 37]

Neural network model can obtain better model re-
sults, but no precise mathematical formulation that 
defines the relation between input variables and the 
output variable is known

Fix and Armstrong (1990) [38]

Dougherty et al. (1993) [39, 40]

Panwai and Dia (2007) [41]

Khodayari et al. (2012) [42]

Zhou et al. (2017) [43]

Hua (2019) [44]

Neuro-fuzzy systems

Khodayari et al. (2011) [45] Neuro-fuzzy system is a combination of neural 
networks and fuzzy logic which uses membership 
input and output functions and fuzzy rules in the 
neural network

Zarringhalam and Ghaffari (2013) 
[46]

Wang et al. (2015) [47]

Autonomous vehicles

Zheng et al. (2020)  [48] Autonomous vehicles can be modelled by adjusting 
acceleration/deceleration parameters, relative spac-
ing between vehicles, and standstill distances

Li et al. (2020) [49]

Zeidler et al. (2018) [50]
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to if they performed a specific driving manoeuvre. 
The cost is calculated based on the characteristics of 
the traffic flow, the influence of the surrounding ve-
hicles and the distance from the fixed obstacles. The 
algorithm calculates the probability of performing a 
particular manoeuvre based on the total cost value. 
Webster et al. [54] developed a lane-changing de-
cision model based on a forward search algorithm. 
This algorithm generates a branching scheme of 
sequential manoeuvres for each vehicle in a specif-
ic time step. A sequence of manoeuvres leading to 
the optimum outcome, that is, the minimum trav-
el time, is selected. Webster compared this model 
to the Gipps model [55]. The results showed that 
the number of events in which the proposed lane-
change model performed better than the Gipps lane-
change model were greater.

3.2 Mathematical models 
In this model category, the driver's tactical and 

operational lane-changing decision depends on the 
traffic conditions and traffic flow features. The tac-
tical decision depends on the current and anticipat-
ed future traffic flow features, while the operational 
decision depends only on the current traffic flow 
features. 

Gipps [55] developed a model that incorporates 
the decisions a driver must make when changing 
lanes. The Gipps model is integrated in AIMSUN 
microsimulation tool. The driver's decision is based 
on the answers to the following questions: (i) is it 
possible to change the lane, (ii) is it necessary to 
change the lane, and (iii) is it desirable to change the 
lane. The answers to these questions depend on the 
distance from the driver's exit point. The model was 
developed to be used in conjunction with the Gipps 
car-following model, which had several drawbacks 
(see Equation 3). The Gipps model is based on the 
assumption that the driver will change lanes if the 
gap between the vehicles is large enough and if the 
driver deems it safe to change lanes. The above as-
sumption has several weaknesses in congested traf-
fic conditions where sufficient and safe gaps rarely 
occur. 

Wiedemann and Reiter [56] developed a theo-
retical lane-changing model to explain the driver's 
decision-making process when changing lanes in-
fluenced by the driver's perception of the traffic 
flow conditions. This model, as well as the car-fol-
lowing model, is based on the perceptual thresh-
olds of the drivers and integrated in the VISSIM  

3. LANE-CHANGING MODELS
Lane change is one of the basic vehicle move-

ments with a significant impact on traffic flow and 
safety. Changing the lane causes changes in vehicle 
speed, oscillations in traffic flow, and the occur-
rence of shock waves. According to [4], lane-chang-
ing models are divided into driving assistance and 
driving decision models with the corresponding sub 
models. Driving assistance models can be further 
divided into collision prevention models and auto-
mation models. The primary purpose of a collision 
prevention model is to assist the driver in chang-
ing lanes and to increase road safety. Automation 
models are used to adjust the steering wheel when 
changing lanes partially or entirely [51]. Driving de-
cision models are based on performing lane changes 
due to different traffic situations and different traf-
fic flow conditions. These models are integrated 
into various microsimulation tools. According to 
[52], driving decisions in the traffic flow are divid-
ed into three levels: (i) strategic, (ii) tactical, and 
(iii) operational. This classification is based on the 
time required to complete each action. The decision 
to change the lane cannot be planned and made in 
advance because the conditions of the traffic flow 
cannot be predicted, so that it can be categorized as 
tactical or operational. During tactical lane changes, 
drivers make decisions based on the current state of 
traffic flow and the anticipated future state of traffic 
flow. During operational lane changes, drivers make 
decisions based only on the current information and 
state of traffic flow. 

According to [4], the driving decision models 
can be classified into models based on a search al-
gorithm and models based on traffic characteristics. 
In the models based on the search algorithm, per-
forming a lane change is a product of a tactical and 
operational decision. Tactical decision is the result 
of the above algorithm, while the operational deci-
sion is based on the traffic flow features and condi-
tions. 

3.1 Models based on search algorithm
Schlenoff et al. [53] developed a framework con-

sisting of multiple algorithms to predict the future po-
sition of a vehicle. The algorithm creates a set of pos-
sible future vehicle positions for each future vehicle 
manoeuvre (acceleration/deceleration, lane change), 
and allocates a cost to each manoeuvre. The cost rep-
resents the danger that the driver would be exposed 
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where Pt(LC│vn)  represents the probability of ex-
ecuting MLC, DLC, and FM at time t; Xn

LC(t) the 
vector of the variable affecting the lane change; βLC 
parameter vector; vn is individual specific random 
term assumed to be distributed standard normal in 
the population; and αLC a parameter of vn. 

For merging into an adjacent lane, a gap is ac-
ceptable only when both lead and lag gaps are ac-
ceptable. The critical gap for driver n at time t is 
assumed to have the following functional form: 

expG t X t v t,
n
cr q

n
g g g

n n
gb a f= + +^ ^ ^ ^h h hh  (11)

where Gn
cr,q(t) is the critical gap for driver n at time 

t; Xn
g(t) is the vector of explanatory variables affect-

ing the critical gap; g is the gap; βg is the corre-
sponding vector of parameters; αg is parameter of vn 
for g; εn

g(t) is a generic random term. Assuming that 
the critical gap lengths are log-normally distributed, 
the conditional probability of acceptance of a gap is 
given by:
P gap acceptance v
P lead gap acceptance v P lag gap acceptance v
P G t G t v P G t G t v> >, ,

n n

n n n n

n n
lead

n
cr lead

n n n
lag

n
cr lag

n

$

$

=
=

^
^
^ ^ ^

^
_ ^ ^h

h

h
h
h h h

h
i
 (12)

Toledo [59] developed an integrated probabi-
listic lane-changing decision model that allows the 
driver to consider MLC and DLC at the same time. 
He applied the laws of discrete choice to describe 
the driver's tactical and operational lane-changing 
decisions. The model was calibrated using the Max-
imum Likelihood Estimation, MLE. This model 
proposes a two-step lane-changing process: choice 
of the target lane and acceptance of the space and 
time gap. The utility of the lane change is described 
by the following equation:

, ,
U t X t v t
lane CL RL LLi

n
lane i

n
lane i lane i lane i

n n
lane ib a f= + +

=
^ ^ ^h h h  (13)

where Un
lane i(t) represents the utility of lane i to 

driver n; Xn
lane i the vector of the variable that affects 

the usefulness of lane i; βlane i parameter vector;  
εn

lane i(t) random variable; vn is individual specific 
random term assumed to be distributed standard 
normal in the population; CL Current Lane; RL 
Right Lane; and LL Left Lane. The probability of 
selecting a lane is determined by the logistic model:

exp
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where lane i and lane j represent I={CL, RL, LL};  
Xn

lane i the vector of the variable that affects the 
usefulness of the lane; and vn

lane i random variable.  

microsimulation tool. In this model, different driv-
ers behave differently in the traffic flow, which is 
not the case in other models. These differences were 
examined while driving in the traffic flow by an-
alysing how drivers perceive and estimate the be-
haviour of the surrounding traffic in the traffic flow, 
safety requirements, desired speed and maximum 
possible acceleration and deceleration. Hidas [57] 
developed a lane-changing model that takes into 
account the driver’s courtesy during merging or 
lane-changing under congested and incident-affect-
ed traffic conditions. Lane change was classified as: 
(i) normal (unforced), (ii) forced, and (iii) coopera-
tive lane change. During standard lane change, there 
is no visible change in the gap between the vehicles 
in motion. During a forced change, the space gap 
between the vehicles is reduced before changing 
lanes and then increased. The forced lane-changing 
is based on the driver’s courtesy concept. The vehi-
cle which wants to change lane sends a ‘courtesy’ 
request to subsequent vehicles in the target lane; the 
request is evaluated by each vehicle and it is either 
refused or accepted, depending on several factors 
such as the speed, position and driver type of the 
responding vehicle. When a vehicle provides cour-
tesy to another vehicle, it reduces its acceleration to 
ensure that a free gap of sufficient length is created 
during the next few seconds for the lane-changing 
vehicle. During a cooperative lane change, as op-
posed to a forced lane change, the space gap in-
creases before the lane change and then decreases.

3.3 Discrete choice models
Ahmed et al. [58] developed a probabilistic 

lane-changing model based on discrete choice. He 
developed a three-phase model: (i) consideration of 
lane change, (ii) selection of the target lane, and (iii) 
acceptance of sufficient space gap to change lanes. 
He also defined three categories of driving ma-
noeuvres when changing lanes: (i) Mandatory Lane 
Change, MLC; (ii) Discretionary Lane Change, 
DLC; and (iii) Forced Merging, FM. The mathemat-
ical formula of this model consists of a probability 
function. The function determines the probability of 
performing a lane change. The probability that the 
driver will select one of the categories of driving 
manoeuvres at time t is:

( )
, ,

exp
P LC v

X t v
LC MLC DLC FM

1
1

t n
n
LC LC LC
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Inference System (FIS), which models the driver’s 
binary decision to or not to (1 or 0) execute a discre-
tionary lane-changing move on the freeways. The 
four input variables were used in the model: the gap 
between the subject vehicle and the preceding ve-
hicle in the original lane, the gap between the sub-
ject vehicle and the preceding vehicle in the target 
lane, the gap between the subject vehicle and the 
following vehicle in the target lane, and the distance 
between the preceding and the following vehicles in 
the target lanes. The authors compared FIS results 
with the existing TRANSMODELER’s gap accep-
tance model, and the results have shown that the FIS 
has much better accuracy. Hunt and Lyons used ar-
tificial neural networks to predict lane changes on 
motorways [64]. The training data for neural net-
works were collected using an interactive driving 
simulator. The trained neural network successfully 
mastered the basic driving manoeuvres. Dumbuya 
et al. [65] developed neural driver agents (NDA), 
a multi-layered model that uses a back-propagation 
training algorithm. The input data used to develop 
the model were: current driving direction, current 
speed, space gap between two vehicles, desired 
speed, and the current traffic lane in which the ve-
hicle is positioned. Based on the input data, out-
put data such as the new driving direction and the 
desired vehicle speed were calculated. The NDA 
model used the vehicle trajectories collected from 
a driving simulator. Ding et al. [66] proposed the 
back-propagation (BP) neural network lane-chang-
ing model for trajectory prediction and compared 
the BP neural network model with the Elman Net-
work. The BP neural network model showed better 
accuracy for predicting lane-changing trajectories 
under different path sections and generated reliable 
simulation results. Gao et al. [67] used three types 
of physiological signals from the driver to predict 
lane changes before the lane change occurs: elec-
trocardiogram (ECG), Galvanic Skin Response 
(GSR), and Respiration Rate (RR). The model was 
developed by using a deep neural network. Tang et 
al. [68] used a combination of fuzzy logic and deep 
neural network to predict lane-change behaviour. 
The authors proposed a lane-changing prediction 
model based on the fuzzy clustering algorithm and 
adaptive neural network (FCMNN). Several input 
variables were used (relative spacing between vehi-
cles, relative velocity between vehicles, movement 
direction, and acceleration) and one output variable 
(steering wheel angles). Three statistical indicators 

The disadvantage of this model is the demanding 
process of determining the utility function for dif-
ferent driving decisions.

3.4 New approaches to lane-change 
modelling

Das et al. [60] developed a fuzzy logic-based 
microscopic simulation model called Autono-
mous Agent SIMulation Package (AASIM). Das 
et al. classified lane changes as: (i) Mandatory 
Lane Changes (MLC), and (ii) Discretionary Lane 
Changes (DLC). To determine when a Mandatory 
Lane Change (MLC) takes place, fuzzy logic takes 
into account the distance to the entrance or exit 
ramp and the number of lane changes that need to be 
made. Discretionary Lane Change (DLC) is based 
on the binary decision diagrams (change lane (1), or 
not change lane (0)) that are affected by the desired 
driver speed and the level of congestion in the left 
or right lane. The authors compared the results of 
the AASIM and CORSIM microsimulation models 
to the actual observed field data. They compared the 
traffic volume and the average speed on the weaving 
section of the road. The results showed that the dif-
ference in the average speed between AASIM and 
the actual data was 4.8 [km/h], while that between 
the CORSIM microsimulation tool and actual data 
was 16.0 [km/h]. Moridpour et al. [61] developed 
fuzzy logic lane-changing decision model for heavy 
vehicle drivers on motorways. Two models were 
proposed; lane-changing to a slower lane (LCSL) 
and lane-changing to a faster lane (LCFL). The 
results showed that the LCFL model has a higher 
percentage, and the LCSL model has a lower per-
centage of accurately estimating the heavy vehicle 
driver's lane-changing decision.

Hou et al. [62] proposed a fuzzy logic-based 
lane-changing model for mandatory lane changes 
at lane closing. The genetic algorithm was used for 
optimizing the membership functions. The inputs 
to the fuzzy model were the speed of the merging 
vehicle, the relative speed between two successive 
vehicles, the relative speed between the lag vehi-
cle and the merging vehicle, the lead gap distance, 
lag gap distance, and the remaining distance to 
the end of the merge lane. The fuzzy logic model 
was compared with the Logit model in terms of 
predicting the merge and non-merge events. The 
results showed that the fuzzy logic model is more 
accurate than the logit model in the lane-chang-
ing model. Balal et al. [63] proposed the Fuzzy 
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with the lower level of automation features under  
Vehicle-to-Vehicle (V2V) and Infrastructure-to-Vehi-
cle (I2V) communication technologies. The authors 
incorporated the IDM model to VISSIM simulation 
software to model the car-following and lane-change 
behaviour of the connected vehicles. Hu and Sun [78] 
proposed an algorithm for multilane freeway merg-
ing by optimizing lane change and car-following 
trajectories in the connected environment. Vechione 
et al. [79] compared a mandatory and discretionary 
lane-change behaviour on freeways using NGSIM 
database and model in AIMSUN microscopic soft-
ware. The results suggested that the authors should 
develop MLC and DLC separately when modelling 
the lane-change behaviour. The above statement is 
especially evident in modelling the autonomous and 
connected vehicles. 

Summary: Lane-changing models
The Gipps model imposes some limitations on 

the driver’s braking rate to have a safe speed with 
respect to the preceding vehicle. The disadvantages 
of this model were related to the deceleration values 
for the follower vehicle; i.e. there is no difference 
between the maximum and the desired deceleration; 
only one value is applied. The same applies to the 
drivers’ reaction time. Like car-following models, 
the psychophysical lane-change model is based on 
determining the perceptual thresholds of each driver 
in the network. The advantage of these models is 
evident in capturing different driver behaviours in 
the lane-change process. Still, the main disadvan-
tage is calibrating these models and determining the 
perceptual thresholds accurately. Discrete models 
use a logit or probit model to model the decision to 
change lanes. In each phase, the utility for all alter-
natives in the process of changing lanes is calculat-
ed. The disadvantage of these models is that they 
do not consider the different characteristics of the 
driver behaviour in the traffic flow when deciding 
to change lanes. Fuzzy logic-based lane-changing 
models consider different driver behaviour in the 
traffic flow using fuzzy rules and fuzzy sets. The 
main disadvantage of these lane-change models 
is the same as for the car-following models. Neu-
ral network models have the training and testing 
phases, and this type of model can obtain better re-
sults, but it is not known what is happening in the 
background. The main disadvantage of these lane-
change models is the same as for the car-following 
models. Regarding the game theory lane-chang-
ing models, this type of model is not frequently  

were used to evaluate the prediction performance: 
Mean Absolute Error (MAE), Mean Absolute Per-
centage Error (MAPE) and the Root Mean Square 
Error (RMSE). The prediction results indicate the 
effectiveness and stability of the proposed model. 
Zhang et al. [69] used deep learning to model the in-
tegrated car-following and lane-change behaviour.

Several studies used game-theory approach to 
model the lane-changing behaviour (Kita et al. [70], 
Wang et al. [71], Ali et al. [72]). The game theory 
is based on the interaction between the drivers (or 
agents), and the drivers can choose either to coop-
erate or not, to maximize their utility. More of the 
game theory can be found in Ji and Levinson [73].   

Regarding cellular automata lane-change mod-
els, these models consists of four components: the 
environment, the cell states, the cell neighbour-
hoods, and the transition rules. The physical envi-
ronment of applying cellular automata for traffic 
flow modelling is in the road segment of interest, 
which consists of a one-dimensional grid for a sin-
gle-lane road. The grid and the time are discretized 
into equal-length cells typically equal to the vehicle 
length and the driver’s average reaction time, re-
spectively. This model is based on desirability and 
necessity of lane change and gap acceptance. Liu 
and Shi [74] combined cellular automata and neural 
networks to develop the traffic flow model for the 
lane-change decision. More about the cellular au-
tomata models can be found in Zheng [6]. 

Recently, many types of studies have been con-
ducted to model the autonomous and connected 
vehicles lane-change behaviour. Lane change is 
a vital component of autonomous and connected 
driving behaviour. Choi and Yeo [75] proposed a 
framework for simulation-based lane-change con-
trol for autonomous vehicles. The authors used the 
lane-specific cell transmission to model and predict 
the future traffic flow and a genetic algorithm to op-
timize the total time delay function. Cao et al. [76] 
proposed a model to execute mandatory lane change 
of autonomous vehicles. The optimization model 
consists of determining the position at which an 
automotive navigation system should instruct AV. 
The model was validated using the VISSIM simu-
lation software. The results showed that the model 
could determine the optimal position for the lane 
change and accurate estimate average travel time in 
the lane before the instruction to change the lane 
occurs. Rahman et al. [77] conducted safety im-
pact of connected vehicles and connected vehicles 
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4. PEDESTRIAN BEHAVIOUR MODELS 
Compared to motorized driver behaviour mod-

els, non-motorized traffic has been much less stud-
ied in the traffic science. In recent years, increased 
awareness of the environmental issues and the needs 
of the residents for greater mobility have encour-
aged the decision-makers and transport profession-
als to better manage the pedestrian traffic. Accord-
ing to [80], the pedestrian flow research is divided 

reviewed. The main disadvantage is evident in es-
timating the payoff function that tells us the payoff 
that each player (in this case each driver) gets as a 
function of the strategies chosen by all drivers. The 
lack of cellular automata lane-changing model is 
represented in the duration of lane-changing, usual-
ly as the length of the defined time step, which is no 
longer than 1 sec, which creates unrealistic observa-
tions and results.
Table  2 – Summary of the existing lane-changing models

Lane-change models Related literature Model specifics

Search algorithm
Schlenoff et al. (2006) [53] The model uses multiple algorithms to predict future 

vehicle position

Webster et al. (2007) [54] Branching scheme is generated for each manoeuvre 
that tries to find the minimum travel time

Mathematical 
models

Stimulus-response
Gipps (1986) [55]

The model is based on the assumption that the driver 
will change lanes if the gap between the vehicles is 
large enough and if the driver deems it safe to change 
lanes

Hidas (2002) [57] This model is based on the  drivers courtesy during 
lane changing

Psychophysical Wiedemann and Reiter 
(1992) [56]

Perceptual thresholds (the function of speed  
difference and spacing between lead and follower)

Discrete

Ahmed et al. (1996) [58] The probability model is based on discrete theory. 
Toledo developed integrated driving behaviour mod-
el that incorporates concepts of a short-term goal to 
propose short-term plan 

Toledo (2002) [59]

New  
approaches to 
lane-change 
modelling

Fuzzy logic

Das et al. (1999) [60]

Fuzzy logic incorporates driving strategies for vari-
ous driving regimes into a set of simple fuzzy rules

Moridpour et al. (2012) [61]

Hou et al. (2012) [62]

Balal et al. (2016) [63]

Neural network

Hunt and Lyons (1994) [64]
The neural network model can obtain better model 
results, but no precise mathematical formulation that 
defines the relation between the input variables and 
the output variable is known. The neural network 
can change structure during the training and testing 
procedure. Input parameters (speed, acceleration/ 
deceleration) must be set to model driver behaviour.

Dumbuya et al. (2009) [65]

Ding et al. (2013) [66]

Gao et al. (2018) [67]

Tang et al. (2019) [68]

Zhang et al. (2019) [69]

Game theory

Kita (1999) [70] The drivers maximize their respective payoffs to 
achieve better outcomes under specific strategies of 
opponents

Wang et al. (2015) [71]

Ali et al. (2019) [72]

Cellular automata Liu and Shi (2018) [74] The model consists of four components: environ-
ment, cell states, cell neighbourhoods, and local rules

Autonomous vehicles

Choi and Yeo (2017) [75] Autonomous lane-change behaviour is similar to 
human driving lane change (strategic, tactical, 
operational). AV uses cameras, LIDAR, and sensors 
to obtain information from the environment. Some 
authors used human driving trajectories data to make 
the assumptions regarding AV lane-change behaviour

Cao et al. (2017) [76]

Rahman et al. (2019) [77]

Hu and Sun (2019) [77]

Vechione et al. (2018) [79]



Babojelić K, Novačko L. Modelling of Driver and Pedestrian Behaviour – A Historical Review

738 Promet – Traffic&Transportation, Vol. 32, 2020, No. 5, 727-745

angle between the pedestrian's desired path and the 
selected path; and β the angle between the desired 
path and the area occupied by the pedestrian. The 
sum of the forces from journey destinations, obsta-
cles and other pedestrians affects the observed pe-
destrians in the network and determines their speed 
of movement over a period of time. The average 
speed, density and flow of pedestrians vary depend-
ing on the current situation. 

Helbing and Molnar [85] developed a social 
force model, one of the most prominent pedestrian 
behaviour models. The social force model is inte-
grated in PTV VISSWALK simulation software for 
simulating the pedestrian behaviour and interaction 
between pedestrians and vehicles and pedestrians 
and public transport. The model consists of forces 
that propel pedestrians and maintain adequate dis-
tance from other pedestrians and obstacles. Individ-
ual pedestrian movement results from the sum of 
the forces acting on the pedestrian, including the pe-
destrian's movement force, other pedestrians' move-
ment forces and the force of the fixed obstacles.

The change in pedestrian speed can be expressed 
by:

m dt
dv t f f fi

i
i
self

ij iw i
wj i

p= + + +
!

^ h //  (16)

where mi represents the mass of pedestrian i [kg]; 
vi current pedestrian speed; ξi force deviations; fij 
force between pedestrian i and pedestrian j interac-
tions; and fiw force of the obstacles and walls affect-
ing pedestrian i. 

The force acting on the pedestrians and their 
movement can be expressed as:

f m v t v t
i
self

i i
i i
0

x= -^ ^h h  (17)

where vi
0 represents the desired pedestrian speed 

[m/s]; vi current pedestrian speed [m/s]; and τi the 
observed time period. 

The desired pedestrian speed represents the 
speed that the pedestrian seeks to attain, while the 
current speed represents the speed at which the pe-
destrian actually moves [86]. 

Antonini et al. [87] proposed a discrete choice 
framework for pedestrian dynamics, modelling 
short-term behaviour of individuals as a response 
to the presence of other pedestrians. The authors de-
veloped a model which can predict the next step of 
the walking pedestrian. The model was calibrated 
using pedestrian movements from the video foot-
age. 

into two categories with respective subcategories: 
(i) data collection, and (ii) pedestrian flow analysis. 
Data collection is subdivided into macroscopic data 
collection and pedestrian movement monitoring, 
while pedestrian flow analysis is subdivided into 
macroscopic analysis and microscopic analysis. 
This paper focuses on the microscopic pedestrian 
behaviour. Pedestrian behaviour models that use mi-
croscopic analysis can adopt a simulation approach 
or an analytical approach. The simulation-based 
analysis of pedestrian flows includes cellular mod-
els, physical force models and queuing network 
models. Cellular models are based on modelling pe-
destrians as entities in cells. Pedestrian traffic sur-
faces are represented as a grid and the pedestrians 
as circles occupying the grid surface. The second 
phase involves the assignment of speed based on 
the available space gap and the ability to advance 
through the network based on speed [81]. Gipps and 
Marksjö [82] developed a cost-benefit model. This 
model shows the pedestrian as a particle in a cell. 
The pedestrian surface is divided into 0.5m2x0.5m2 
cells that can only be occupied by a single pedestri-
an. They introduced a cell scoring system based on 
pedestrian proximity. The scoring system is based 
on the repulsive effect of nearby pedestrians and the 
positive effect of approaching the destination of the 
journey. The disadvantage of this model is the de-
velopment of a precise scoring system and the cali-
bration of data based on that scoring system. Xu et 
al. [83] proposed an indoor pedestrian tracking al-
gorithm to improve the localization of a WiFi-based 
system. The indoor environment was divided into a 
grid to detect environmental constraints. The track-
ing algorithm subdivides the indoor space into grid 
cells and computes the position probability of the 
cells over time.

The magnetic force model was developed by 
Okazaki and Matsushita [84]. This model is based 
on the Coulomb's law and the assumption that the 
pedestrians and various obstacles are positively 
charged particles, while their destinations are nega-
tively charged particles that attract them. The move-
ment of each pedestrian was simulated by attraction 
between positively and negatively charged parti-
cles. Avoiding collisions between pedestrians acts 
as an accelerating force, calculated by:

cos tana V a $$ b=  (15)

where a represents pedestrian acceleration to ad-
just their trajectory and avoid collision with other 
pedestrian [m/s2]; V pedestrian speed [m/s]; α the 
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queuing network models are used in modelling the 
pedestrian dynamics during the building evacuation. 
Modelling of pedestrian dynamics during an evacu-
ation is very challenging due to the large number of 
pedestrians involved in the process, psychological 
factors that influence the pedestrian behaviour, and 
layout of the facility. 

5. DISCUSSION
In recent years, various car-following, 

lane-changing, and pedestrian behaviour models 
have been developed. These models are divided into 
several previously mentioned categories. Car-fol-
lowing models based on mathematical expressions 
derive their parameter estimations from a single val-
ue for each parameter not taking into account the 
variations in the driver behaviour. These parame-
ters are related to speed, acceleration / deceleration, 
space gap, time interval, and driver reaction time. 
Most of these models were developed on the basis 
of data collected on motorways. To improve the ex-
isting models and develop new ones, it is necessary 
to collect and analyse data on driver behaviour in 
urban and rural areas (city avenues, streets, inter-
sections, etc.). It is in these areas that variations in 
driver behaviour are most pronounced. Also, the 
geometry of the road (longitudinal grade, road lane 
width, etc.) was not taken into account when devel-
oping these models. Starting a vehicle uphill can be 
challenging for some drivers, and by this action, it 
takes longer to achieve the desired speed. The above 
applies especially to heavy goods vehicles when 
starting and driving uphill. From a driver’s psycho-
logical view, wider road lanes allow higher desired 
speeds. 

The queuing network model [88] is used to sim-
ulate pedestrian behaviour during building evacua-
tion. It is based on a Monte Carlo simulation where 
each room represents a node and the doors between 
the rooms represent links. Each pedestrian starts 
from one node, waits in line and reaches the next 
node. Pedestrians move from one node to another in 
search of an exit door. Each pedestrian tries to reach 
the exit as safely and quickly as possible. When 
a pedestrian reaches a node, they make a weight-
ed-random choice to determine the next link to use 
on their route. The weight parameters depend on the 
density of pedestrians in the room. If the link cannot 
be used, the pedestrian will wait or find a new route. 

Summary: Pedestrian behaviour models
In cellular-based models, the network is rep-

resented as a grid, and pedestrians are represent-
ed as entities in the cell. The advantage of these 
models is that they are simple and easy to use, and 
computation time is lower in comparison to other 
models. The lack of these models are represented 
in discretization effects (space is discretized into 
square or cell, and time in the time step) and wall 
penetration (when pedestrians move around a cor-
ner). Social Force Models (SFM) are the most used 
models when simulating pedestrian behaviour. The 
main limitation of SFM is evident when pedestrians 
approach an obstacle. In the model, the higher the 
pedestrian speed, the greater will be the repulsive 
force of the obstacle. In reality, the pedestrian is 
aware of the obstacle, and will slow down much ear-
lier. Regarding discrete pedestrian models that are 
based on utility maximization, the main limitation 
of these models is evident in defining variables of 
the utility function and the number of alternatives, 
which significantly affect the computation time. The  

Table  3 – Summary of existing pedestrian behaviour models

Pedestrian models Related literature Model specifics

Simulation

Cellular-based

Blue and Adler (1998) [81]
The network is represented as a grid, and pedestrians are 
represented as entities in the cellGipps and Marksjö (1985) [82]

Xu et al. (2018) [83]

Physical 
force-based

Okazaki and Matsushita (1993) [84] The model consists of a forward force of pedestrian and 
repulsive force from other pedestrians and obstaclesHelbing and Molnar (1995) [85]

Discrete Antonini et al. (2006) [87] The model is based on utility maximization and num-
bers of alternatives

Queuing Lovas (1994) [88]
The models are used to simulate pedestrian behaviour 
during evacuation, and each pedestrian is treated as a 
separate flow object
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Although a large number of driver and pedestri-
an behaviour models have been analysed, what is 
to be expected in the future is that models integrat-
ed into the most common simulation tools such as 
Vissim and Aimsun will be used more often. Pri-
marily, the focus should be on upgrading them and 
calibrating specific parameters in different traffic 
flow conditions. In particular, today's technolog-
ical capabilities make it possible to test different 
patterns of driver and pedestrian behaviour in lab-
oratory conditions using a driving simulator. 

Although there has been some research con-
ducted on modelling AV behaviour, additional re-
search needs to be undertaken to develop autono-
mous vehicle models and integrate them into the 
existing simulation tools. 

Driving and pedestrian behaviour models are 
used in the area of traffic safety. Safety surrogate 
measures [101] are commonly used to analyse 
potential vehicle and pedestrian conflicts by ex-
tracting trajectories of each entity. To examine the 
potential conflicts, the authors should use one of 
many existing behaviour models, accurately cal-
ibrate the specific parameters to local conditions, 
extract trajectories, and evaluate the results.

6. CONCLUSION
The main goal of this paper was to analyse the 

existing car-following, lane-changing, and pedes-
trian behaviour models, and to highlight the im-
portance of applying accurately calibrated models 
in the simulation tools. An overview of the histor-
ical development of these models, their stratifica-
tion, and the advantages and disadvantages have 
been given. The contribution of this review paper 
is in updating the existing review papers regard-
ing car-following and lane-changing models and 
further analysis of their application in the field of 
autonomous vehicles and pedestrian behaviour.  
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MODELIRANJE PONAŠANJA VOZAČA I 
PJEŠAKA – POVIJESNI PREGLED

Ponašanje vozača i pješaka značajno utječe na sig-
urnost prometa i prometni tok na mikroskopskoj i mak-
roskopskoj razini. Modeli ponašanja vozača opisuju 

Most car-following and lane-changing mod-
els have been developed by analysing passenger 
cars only. Some authors [89, 90] have compared 
the behaviour of heavy goods vehicle drivers and 
passenger cars, but without developing a separate 
model for heavy goods vehicle driver behaviour. 
Aghabayk et al. [91] developed a heavy goods ve-
hicle-following model using local linear models. 
However, it has not been integrated into any mi-
crosimulation tools to be tested in different traffic 
situations. 

When developing the driver and pedestrian be-
haviour models, the authors used the traffic flow 
data available to them, and the parameters ob-
tained were derived from these data. To eliminate 
the possibility of misinterpreting the model results, 
different traffic flow conditions must be taken into 
account depending on the observed location and 
the type of traffic flow (homogeneity and hetero-
geneity of the traffic flow). 

Microsimulation models must be properly cal-
ibrated before making evaluations or conclusions 
as driver behaviour varies significantly depend-
ing on the location (driver behaviour varies from 
one city, region, etc. to another). With inadequate 
model parameter calibration, it is impossible to 
obtain realistic data from the simulation model, 
which may lead to erroneous conclusions. It is im-
perative that the authors of new car-following and 
lane-changing models provide parameter calibra-
tion methodology to enable the model to be ad-
justed for local conditions. Among various ways 
of calibrating driver behaviour model parameters 
those that stand out are: (i) parameter calibration 
by analysing vehicle trajectories obtained from 
video data or GPS [92-95], and (ii) parameter cali-
bration by analysing traffic flow data (speed, traffic 
volume, density, etc.) [96, 97]. In recent years, the 
authors have used artificial intelligence to calibrate 
the model parameters. For example, Istoka-Otkov-
ic used a neural network to calibrate the car-fol-
lowing model [98], and the genetic algorithm [99].

With more researches conducted to model pe-
destrian-vehicle conflicts and validate the mod-
els using simulation tools, it is crucial to dedicate 
more time and studies on the calibration of pedes-
trian-vehicle interaction. For example, Feliciani 
et al. [100] developed a simulation model for pre-
dicting pedestrian fatalities at unsignalised cross-
walks. 
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Österreichisches Ingenieur-Archiv. 1950;4: 193-215.
[9] Chandler RE, Herman R, Montroll EW. Traffic dynam-

ics: Studies in car following. Operations Research. 
1959;6: 165-184.

[10] Herman R, Montroll EW, Potts RB, Rothery RW. Traf-
fic dynamics: Analysis of stability in car following. Op-
erations Research. 1959;7: 86-106.

[11] Gazis DC, Herman R, Potts RB. Car following theory of 
steady state traffic flow. Operations Research. 1959;7: 
499-505.

[12] Gazis DC, Herman R, Rothery RW. Nonlinear follow 
the leader models of traffic flow. Operations Research. 
1961;9: 545-567.

[13] Bevrani K, Chung E, Miska M. Evaluation of the GHR 
car following model for traffic safety studies. Proceed-
ings of the 25th ARRB Conference, ARRB Group Ltd, 
Perth, W. A., Australia; 2012. p. 1-11.

[14] Helly W. Simulation of Bottlenecks in Single Lane 
Traffic Flow. Proceedings of the Symposium on Theory 
of Traffic Flow. Research Laboratories, General Mo-
tors, New York: Elsevier; 1959. p. 207-238.

[15] Xing J. A parameter identification of a car following 
model. Proceedings of the Second World Congress on 
ATT. 9-11 Nov. 1995, Yokohama, Japan; 1995. p. 1739-
1745.

[16] Newell GF. Instability in dense highway traffic: A re-
view. Proceedings of the Second International Sympo-
sium on the Theory of Traffic Flow, London; 1963. p. 
73-83.

[17] Bando M, Hasebe K, Nakayama A, Shibata A, Sugi-
yama Y. Dynamical model of traffic congestion and 
numerical simulation. Physical Review E. 1995;51(2): 
1035-1042.

[18] Treiber M, Hennecke A, Helbing D. Congested traffic 
states in empirical observations and microscopic simu-
lations. Physical Review. 2000;62(2): 1805-1824. Avail-
able from: https://journals.aps.org/pre/abstract/10.1103/
PhysRevE.62.1805 [Accessed 15th March 2019].

[19] Treiber M, Kesting M. Traffic Flow Dynamics: Data, 
Models and Simulation. 1st ed. Springer-Verlag Berlin 
Heidelberg; 2013.

[20] Ciuffo B, Punzo V, Montanino M. Thirty Years of 
Gipps' Car-Following Model. Transportation Research 
Record Journal of the Transportation Research Board. 
2012;2315: 89-99. Available from: doi:10.3141/2315-
10 [Accessed 25th March 2019].

[21] Kometani E, Sasaki T. Dynamic behaviour of traffic 
with a nonlinear spacing-speed relationship. Proceed-
ings of the Symposium on Theory of Traffic Flow. Re-
search Laboratories, General Motors, New York: Else-
vier; 1959. p. 105-119.

[22] Panwai S, Dia H. Comparative Evaluation of Micro-
scopic Car-Following Behaviour. IEEE Transactions 
on Intelligent Transportation Systems. 2005;6(3): 314-
325. Available from: doi:10.1109/TITS.2005.853705 
[Accessed 17th April 2019].

[23] Gipps PG. A behavioural car following model for com-
puter simulation. Transportation Research Part B: 
Methodological. 1981;15(2): 105-111.

[24] Elefteriadou, L. An Introduction to Traffic Flow Theory. 

vozačeve odluke donesene u različitim uvjetima promet-
noga toka. Modeliranje ponašanja pješaka ima ključnu 
ulogu u analizi pješačkih tokova u područjima kao što 
su: putnički terminali, pješačke zone, evakuacije i slič-
no. Modeli ponašanja vozača, integrirani u simulacijske 
alate, mogu biti podijeljeni u modele slijeđenje vozila i 
modele promjene prometnog traka. Simulacijski se ala-
ti koriste za oponašanje stvarnih prometnih tokova te 
donošenje zaključaka o pojedinim zakonitostima u njima. 
Pojedinačni parametri modela moraju biti adekvatno 
kalibrirani kako bi opisivali stvarne uvjete prometnoga 
toka. Ovaj rad opisuje postojeće modele slijeđenja vozila, 
modele promjene prometnoga traka i modele ponašanja 
pješaka. Nadalje, naglašava važnost kalibracije parame-
tara mikrosimulacijskih modela kako bi replicirali realne 
uvjete prometnog toka te postavlja smjernice budućih is-
traživanja, a koji se odnose na razvoj novih modela te 
poboljšanje postojećih.

KLJUČNE RIJEČI
modeli ponašanja vozača i pješaka; slijeđenje vozila;  
promjena prometnoga traka; kalibracija;
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