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ABSTRACT
The characterization of complex patterns arising 

from electroencephalogram (EEG) is an important prob-
lem with significant applications in identifying different 
mental states. Based on the operational EEG of drivers, 
a method is proposed to characterize and distinguish dif-
ferent EEG patterns. The EEG measurements from seven 
professional taxi drivers were collected under different 
states. The phase characterization method was used to 
calculate the instantaneous phase from the EEG mea-
surements. Then, the optimization of drivers’ EEG was 
realized through performing common spatial pattern 
analysis. The structures and scaling components of the 
brain networks from optimized EEG measurements are 
sensitive to the EEG patterns. The effectiveness of the 
method is demonstrated, and its applicability is articu-
lated.

KEY WORDS
electroencephalogram (EEG); weighted brain  
networks; driver fatigue;

1. INTRODUCTION
Electroencephalogram (EEG) is capable of direct 

measurement of brain activity [1-3]. The information 
from EEG is one of the most predictive and reliable 
indicators for evaluating human cognition and the 
study of human state discrimination [4, 5]. Unfortu-
nately, EEG recordings are generated from the cortex 
and collected from the scalp. In EEG measurements 
there always appear complex and non-linear char-
acteristics [6-10]. Understanding the non-linear and 

complex dynamics underlying EEG measurements 
is a significant and challenging problem [11]. In this 
regard, a primary task is to characterize and quantify 
different EEG patterns without the influence of the 
non-linear and complex dynamics underlying EEG. 
Generally speaking, a common practice is to examine 
the phase fluctuation properties containing all rele-
vant or discriminatory information needed to solve 
the state discrimination problem. Driving is a cog-
nitively effortful task requiring a mental capacity of 
organizing and processing a great deal of information 
simultaneously [12-14]. The driver’s state is reported 
as one of the principal factors in driving safety [15]. 
For taxi drivers or long-haul bus drivers, fatigue re-
duces their ability to operate vehicles safely and re-
duces their situation alertness [16]. Therefore, char-
acterizing EEG patterns to infer brain intentions and 
brain states is important and has wide applications.

The purpose of this paper is to introduce an in-
stantaneous phase-based method to characterize typ-
ical patterns from experimental EEG measurements. 
Our idea is that the phase fluctuations associated 
with time series are caused by the intrinsic dynam-
ics and can therefore yield important information 
about the underlying differences that the existing, 
non-phase-based methods are incapable of revealing. 
In particular, given a set of experimental EEG mea-
surements, we first use the empirical mode decom-
position (EMD) method pioneered by Huang et al. 
[17] to extract the phase fluctuations. To uncover any 
robust scaling behaviour hidden in the phase fluctua-
tions, the scaling analysis by brain networks of EEG 
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means the driver is in the taxi with his eyes closed. 
After relaxing another three minutes the data were 
recorded, which is regarded as post-relax. The ex-
periment protocol is given in Figure 1.

The Emotiv EEG recorder was used for recording 
these EEGs in both fatigue and post-relax situations. 
The location of electrodes in the International 10-20 
System of Emotiv is shown in Figure 1. The channels 
used were AF3, F7, F3, FC5, P7, O1, O2, P8, FC6, 
F4, F8, and AF4. The sample rate was 128 Hz.

3. PHASE CHARACTERIZATION OF 
EEG MEASUREMENTS

To see the phase characterization of EEG mea-
surements, analytic signal y(t) can be constructed 
from the EEG data sequence x(t) by the Hilbert 
transform,
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where P indicates the Cauchy principal value for in-
tegral; A(t) represents the instantaneous amplitude, 
and φ(t) represents the instantaneous phase.

Figure 2 shows trajectories of the analytic signal 
in its complex plane for a signal and the extract-
ed intrinsic modes from the EEG measurement. As 

measurements is used. Our main finding is that the 
relationship between the structure and the function 
is an integration problem. And for each of two dis-
tinct patterns arising typically in the driving state 
EEG measurements, a scaling exponent can be ex-
trapolated from the phase fluctuations. For different 
EEG patterns, the degree distributions are distinct, 
indicating the effectiveness of the combined EMD 
and functional brain network method to character-
ize and distinguish complex EEG patterns. 

2. EXPERIMENTS AND DATA 
ACQUISITION FOR DRIVERS’ EEG 
MEASUREMENTS
Seven professional taxi drivers (male, ages 30-

40) were recruited on their voluntary basis in this 
study. The time of the experiment was settled at 
approximately 3 p.m. The taxi drivers should have 
already worked for more than 5 hours during that 
experiment day. The participants were asked to stop 
driving to cooperate with the EEG signal collection. 
After the experiment, they received a certain com-
pensation for participating. The drivers admitted 
that they were in fatigue condition after long-time 
driving, so the first recorded data which lasted for 
three minutes should be labelled as fatigue, then 
ten minutes were given to the drivers to rest. “Rest” 

Figure 1 – Setup of experiment and study protocol
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where Aj(t) represents the j-th amplitude function 
and φj(t) represents the j-th phase function. They 
can be obtained from the analytic signal of the j-th 
intrinsic mode function. And the expected rotation 
frequencies can be written as,
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d t

j
j
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{

=^ ^h h  (4)

The phase function of different intrinsic mode 
functions and time-frequency domain description 
for EEG measurements, has been analysed. The re-
sults can be seen in Figure 2. In this three-by-four 
figure matrix, the first row shows time-domain 
description of the original signal and its principal 
IMFs. The second row shows the original signal and 
its IMFs Trajectory in the complex plane. The third 
row of this figure matrix gives the frequency-time 
distribution for the corresponding signals in the first 
column. The fact is obtained that although the orig-
inal EEG measurements are complex, its phase con-
sists of only a small number of non-trivial proper 
rotations. 

The frequency distribution of the second IMF is 
within the proper frequency range of beta band (13-
30 Hz) of EEG signal; the third IMF is of 8-13 Hz 
within the frequency range of alpha-band; the other 
IMFs with lower and narrower frequency distribution 

shown in Figure 2a, due to multiple centres of rota-
tion in the original signal, a properly defined phase 
variable cannot be obtained from the analytic signal.

A proper phase can be defined based on the fol-
lowing two conditions in its complex plane [18, 19]: 
(1) there is a preferred direction of rotation; and (2) 
the rotation can be defined with respect to a unique 
centre. The final proper phase can be obtained from 
the complex conjugate pair. 

However, the signal collected in real condition is 
always too complicated to satisfy these two condi-
tions. Thus, it is necessary to decompose the orig-
inal signal into a number of modes whose analytic 
signals correspond to proper rotations with the em-
pirical mode decomposition (EMD) method. EMD 
method can decompose signal x(t) into a finite sum 
of Intrinsic Mode Function (IMF), which is to iden-
tify the innate undulations belonging to different 
time scales and sift them out to obtain one intrinsic 
mode at a time [16, 17]. When the sifting process is 
stopped, the signal is shown as,

x t c t r tj n
j

n
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=
^ ^ ^h h h/  (2)

where the intrinsic modes cj(t) are nearly orthogo-
nal to each other, and residue rn(t) is a monotonic 
function. By using the Hilbert transformation, each 
mode cj(t) generates a proper rotation in the com-
plex plane of its analytic signal,
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Figure 2 – Time-domain description, trajectory in the complex plane of the analytic signal from EEG, and frequency-time 
distribution for the original signal and its principal IMFs



Fu R, et al. Phase Fluctuation Analysis in Functional Brain Networks of Scaling EEG for Driver Fatigue Detection

490 Promet – Traffic & Transportation, Vol. 32, 2020, No. 4, 487-495

P k N
nk=^ h  (6)

The two subfigures in the last column of Figures 
3d and 3h show that the node degree with the highest 
occurrence rate is seven for driver state after long-
time driving, and the node degree with the highest 
occurrence rate is eleven for driver state after rest, 
which is marked with “*” in Figure 3. The nodes de-
gree distribution increase during the fatigue level 
variation, the probability distribution of nodes de-
gree moves from smaller degree values to larger 
degree values. Because the nodes degree represents 
the number of connectivity belonging to the nodes, 
the connectivity of the whole weighted brain net-
work increases when the driver recovered from fa-
tigue by some time rest.

5. DISCUSSION
The scaling analysis results are shown here for 

other participants of the driving tasks by function-
al brain network to explore the consistence among 
other participants. From the adjacent matrix to the 
weighted brain networks, the analysis results of the 
driving task for the other six participants can be il-
lustrated in Figure 4. For most of these six partici-
pants, the connectivity of brain networks increases 
as the driver fatigue relieves after rest. The brain 
network under fatigue state has a structure with 
lower connectivity between different pairs of nodes. 
The node degree distributions are used to quantify 
the structural connectivity quantification between 
two distinct driver states, as illustrated in Figure 5. 
From Figure 5, the distinct driver states can be re-
flected in node degree distributions clearly.

The subfigures with horizontal bars in Figure 5 
show the node degree with the highest occurrence 
rate marked with “*”. In this six-by-four figure ma-
trix, subfigures in each row are for the same driver, 
the subfigures in the first two columns are for the 
driver state just after long-time driving, the last two 
columns represent the node degree distributions for 
the state after rest. During this fatigue level varia-
tion, the nodes degree distribution increases for most 
participants; the probability distribution of nodes 
degree moves from smaller degree values to larger 
degree values as illustrated in Figure 5. Because the 
nodes degree represents the number of connectiv-
ity belonging to the nodes, the connectivity of the 
whole weighted brain network increases when the 
driver recovers from fatigue by some time rest.

contain low-frequency noise reasoning from breath 
and body movement. Therefore, the third IMF is cho-
sen as alpha band for the following analysis.

4. SCALING ANALYSIS BY BRAIN 
NETWORKS FOR DRIVING TASKS
The adjacent matrix is obtained by computing 

the magnitude squared coherence between signals 
from two different channels [20, 21]. The mag-
nitude squared coherence Cxy is a function of the 
power spectral densities Pxx(f) and Pyy(f) of x and y  
[7, 22], and the cross power spectral density Pxy(f) 
of x and y,

C f f fP P
P f

xy
xx yy

xy
2

=^ ^
^
^h h
h
h  (5)

Therefore, by using Equation 5, the adjacent ma-
trix can be computed, as shown in Figure 3. The brain 
networks under different states have different struc-
tural information as the connectivity between dif-
ferent pairs of nodes [22]. In order to give a flavour 
about the distribution of spatial patterns, Figure 3 
provides the weighted functional brain network, in 
which the spatial topographic distribution obtained 
a noticeable difference to driver’s different states. 
The fluctuations associated with different driver 
states can be reflected in the network organization, 
as shown in Figure 3. The subfigures in the upper 
line of Figures 3a-3d are configured by EEG mea-
surements from the states after long-time driving, 
and the driver can feel fatigued clearly in this re-
gard. And the subfigures in the lower line of Figures  
3e-3h are configured by EEG measurements from the 
states after rest, and the driver fatigue is relieved 
a lot in this state. From Figure 3, the distinct driver 
states can be reflected in weighted brain networks 
(Figures 3b and 3f) and node degree distributions (Fig-
ures 3c and 3g). When the driver fatigue relieves after 
rest, the weighted brain network is composed of a 
set of highly connected nodes, and this can be con-
sidered as an atlas of connectivity. The brain net-
work under fatigue state has a structure with lower 
connectivity between different pairs of nodes. The 
node degree distributions are used to quantify the 
structural connectivity quantification between two 
distinct driver states.

The degree distribution P(k) of a network is de-
fined to be the fraction of nodes in the network with 
degree k [23-25]. If there are N nodes in total in a 
network and nk of them have degree k, the degree 
distribution can be given by:



Fu R, et al. Phase Fluctuation Analysis in Functional Brain Networks of Scaling EEG for Driver Fatigue Detection

Promet – Traffic & Transportation, Vol. 32, 2020, No. 4, 487-495 491

State after long time driving

State after rest

State after rest

State after long-time driving

Figure 3 – The weighted brain networks and degree distributions for driver states: a), e) adjacent matrix; 
b), f) weighted brain network; c), g) bar plot of nodes degree; d), h) bar plot of probability of nodes degree
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Figure 4 – Weighted brain network of six drivers during driving state variations
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Figure 5 – Nodes degree distribution of six drivers during driving state



Fu R, et al. Phase Fluctuation Analysis in Functional Brain Networks of Scaling EEG for Driver Fatigue Detection

Promet – Traffic & Transportation, Vol. 32, 2020, No. 4, 487-495 493

classifying distinct EEG patterns. The other novelty 
of this work lies in the fact that the graph theory was 
employed to gain more understanding of the reorga-
nization of brain networks under different cognitive 
states: mental fatigue/relax. The weighted brain net-
works show significant differences under different 
states among the participants in both cognitive tasks 
as discussed above.

In the driving task, the current finding of in-
creased functional connectivity among the entire 
brain when the driver states varied from fatigue to 
resting, suggests when the driver is in the fatigue 
state, and the dysfunctional interactions among 
different brain regions that may lead to deficits in 
cognitive processes that rely on such connectivity. 
After prolonged driving, induced mental fatigue can 
impair the cognitive skills. This consistent phenom-
enon has been reported previously. Therefore, the 
relationship between structure and function is an 
integration problem. And for each of two distinct 
patterns arising typically in the driving state EEG 
measurements, a scaling exponent can be extrapo-
lated from the phase fluctuations.

It was investigated further how the brain func-
tional network topology property was associated 
with the cognition process as the driving fatigue. 
The brain network related to the driving tasks ex-
hibited lower node degree distribution than this 
property after rest. We found that the node degree 
distribution of the best bands combination of the 
EEG had network property that was significantly 
higher during the mental fatigue state than the rest 
state. For different EEG patterns, the degree distri-
butions are distinct, indicating the effectiveness of 
the combined EMD and functional brain network 
method to characterize and distinguish the complex 
EEG patterns.

6. CONCLUSION
The message from the current research on driv-

ing tasks is that the phase fluctuation information 
can help reveal the brain state involving the weight-
ed brain network. Despite task changes in our ex-
periments, the node distribution of different partic-
ipants’ brains can reveal distinct brain states. For 
the driver fatigue task, the nodes degree distribu-
tion increases for most participants, the probabili-
ty distribution of node degree moves from smaller 
degree values to larger degree values when recov-
ering from fatigue. Therefore, the brain network 
under fatigue has low node degree distribution.  

The variation of degree distribution can be ob-
tained from Figure 6 for all these seven drivers by bar 
plot of the average value of node degrees with an 
error bar. This variation trend can be found in most 
drivers, except drivers E and F; they may have had 
not enough rest for this experiment. However, the 
average degree value increases for the other drivers. 
This means that the number of functional connec-
tivity increases as well.
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Figure 6 – Nodes degree distribution of seven drivers during 
driving state variation

The current study explored the whole-brain 
functional connectivity of the driving fatigue tasks 
based on an instantaneous phase-based method. 
Our idea was inspired by previous studies [15, 
26], which suggests that the phase fluctuations of 
non-linear signals such as EEG measurements are 
sensitive to changes in human cognition behaviours. 
These phase fluctuations associated with time series 
are caused by the intrinsic dynamics and can there-
fore yield important information about the underly-
ing information that the existing, non-phase-based 
methods are incapable of revealing. These are val-
idated by the discriminant of different states in hu-
man cognition-related tasks: driving fatigue.

To uncover any robust behaviour hidden in the 
phase fluctuations, the weighted brain networks of 
EEG measurements processed by EMD were used. 
EMD as a processing method is widely used in re-
ducing artefact involving EEG measurements. Dis-
tinguishing from the conventional EMD-based anal-
ysis, the novelty of this work is that the EMD method 
is used as an instantaneous phase-based method to 
obtain robust behaviour of phase fluctuations for 
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用于驾驶员疲劳检测的标度脑电功能脑网络相
位波动分析

摘要：

脑电复杂模式的表征是识别在重要应用领域中
不同心理状态的重要问题。本文基于驾驶员脑电提
出了一种方法来表征和区分不同的脑电模式。采集
了七名职业出租车司机在不同状态下的脑电。利用
相位特征法计算脑电信号的瞬时相位，通过共空间
模式算法对驾驶员的脑电信号进行分析，实现脑电
信号的优化。由优化后的脑电得到的脑网络结构和
尺度分量对脑电模式敏感，证明了所提方法的有效
性，并阐明了其适用性。

关键词：

脑电；加权脑网络；驾驶员疲劳
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