
Promet – Traffic&Transportation, Vol. 32, 2020, No. 1, 25-38 25

Carić T, Fosin J. Using Congestion Zones for Solving the Time Dependent Vehicle Routing Problem

Intelligent Transport Systems (ITS) 
Original Scientific Paper 
Submitted: 19 June 2019 
Accepted: 21 Nov. 2019

ABSTRACT
This paper provides a framework for solving the Time 

Dependent Vehicle Routing Problem (TDVRP) by us-
ing historical data. The data are used to predict travel 
times during certain times of the day and derive zones of 
congestion that can be used by optimization algorithms. 
A combination of well-known algorithms was adapted 
to the time dependent setting and used to solve the re-
al-world problems. The adapted algorithm outperforms 
the best-known results for TDVRP benchmarks. The pro-
posed framework was applied to a real-world problem 
and results show a reduction in time delays in serving 
customers compared to the time independent case.
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1. INTRODUCTION
When attempting to minimize the resourc-

es needed for delivery by a fleet of vehicles, it is 
necessary to have some measure of travel cost and 
time needed to optimally traverse from one delivery 
point to another. Travel times depend significantly 
on external factors, mostly periodic congestion, but 
also weather, possible accidents occurring within 
the network, roadworks, etc. Due to the dynamic 
nature of traffic, using a constant travel speed for all 
periods of the day or for any day of the week gives a 
poor prediction of actual conditions. The problem is 
that most of these conditions are irregular and there-
fore cannot be used in a static environment where 
the conditions have to be known in advance in order 
to plan the routes.

In urban settings, congestion is a regular phe-
nomenon and this regularity makes it possible to use 
historical data to compute congestion parameters, 
such as the time of occurrence and the intensity, and 
automatically predict areas where congestion will 
occur. It is possible to reduce 99% of delays when 
serving customers if one uses historical data on con-
gestion [1]. While it is obvious that any potential 
travel planner would benefit from such data, it is 
still rarely used, both in planning the shortest routes 
and when dealing with fleet management [2]. One 
of the reasons is that a substantial amount of histor-
ical data is required to predict travel times precisely, 
while another is the rising complexity of algorithms 
needed to account for changing travel times.

This paper focuses on solving the Time Depen-
dent Vehicle Routing Problem (TDVRP). Solutions 
to this problem involve working with information 
about changes in travel times due to congestion. 
These changes can be calculated by computing ac-
tual travel times, which depend on the vehicle de-
parture time, or by computing coefficients to repre-
sent the slowdown intensity.

The main contribution of this paper is a frame-
work for solving the TDVRP by using historical 
data that include predictions of travel times during 
certain times of day and from which zones of con-
gestion  for use in optimization algorithms can be 
derived. Our framework was applied to a real-world 
problem. Results showed a reduction in time delays 
in serving customers in comparison to a case where 
a standard industry solution was used. An algorithm 
capable of dealing with vehicle routing in a time 
dependent setting is proposed. To achieve this, two 
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Although the literature on the VRP is consid-
erable, only a small portion refers to the vehicle 
routing problem with time dependent travel times 
[1]. For an exhaustive list of current state-of-the-art 
work on the broader scope of time dependent prob-
lems, the reader is referred to [2]. Some of the most 
important studies in this area are described below.

In 2003, Ichoua, Gendreau and Potvin pro-
posed a stepwise speed model called (IGP model) 
[6]. They did not assume a constant speed over the 
entire length of a link, which is very important for 
solving TDVRP because the model guarantees that 
if a vehicle leaves customer i for customer j at a 
given time, any identical vehicle leaving a customer 
i for customer j at a later time will arrive later at 
customer j (i.e., the no-passing or first-in-first-out 
[FIFO] property). In the same paper Ichoua et al. 
[6] presented a parallel taboo search algorithm that 
penalizes late arrivals. Another interesting solu-
tion for TDVRP was described by Fleischmann et 
al. [7] who presented a general framework for the 
implementation of time-varying travel times in var-
ious vehicle-routing algorithms as well as TDVRP. 
A step forward was taken by Hashimoto et al. [8] 
who proposed an iterated local search algorithm that 
took into account both time dependent travel times 
and time dependent service times, as well as trav-
el costs. It is also worth mentioning that there is a 
modern approach to solving TDVRP, using an ant 
colony algorithm, presented by Donati et al. [9]. 

Ehmke et al. [10] presented an interesting paper 
dealing with congestion and routing in which they 
focused on the adaptation of a TSP and VRPTW al-
gorithm to a time dependent setting. In addition, Le-
cluyse et al. [11] noticed a correlation between time 
and spatial propagation of congestion; they devised 
a test with 32 customers and used circles with time 
dependent sizes to denote the spread of congestion 
time and the spatial propagation of congestion.

The VRPTW problem is a well-studied problem 
and Solomon benchmarks are commonly used for 
comparing algorithms. In [12] the well-known Sol-
omon benchmarks are described. The benchmark 
consists of 56 problems, grouped into three cate-
gories by customer grouping (random, clustered, 
or a combination of both) and two categories by 
time-window length and customer demand. Later, 
Gehring and Homberger [13] described the general-
ization of Solomon benchmarks with 200, 400, 600, 
800, and 1,000 customers, grouped by the same cri-
teria.

methods of travel time computation are compared 
with the best available estimates. This comparison 
shows that it is possible to reduce the amount of 
computation without notably sacrificing precision. 
The proposed algorithm fares well in a time depen-
dent setting and improves upon the best published 
benchmark results on time dependent benchmark 
instances.

This paper is organized as follows. First, the pa-
per provides an overview of previous research and 
then defines the problem. Next, algorithms used in 
this research are described, and a method of speed-
ing up the pre-processing time of distance and trav-
el time matrices is outlined. It is shown that this 
method performs well without sacrificing the qual-
ity of the results obtained. Finally, it is shown that 
two-phase heuristic adapted from [3] performs well 
even in a time dependent setting, improving pub-
lished benchmark results. The proposed heuristics is 
used to solve a real-world problem. In conclusion, 
possible research directions for future studies are 
described.

2. LITERATURE REVIEW
This section provides an overview of the liter-

ature regarding solutions to the Time Dependent 
Vehicle Routing Problem (TDVRP) and conges-
tion in the urban environment. First, an overview of 
relevant Vehicle Routing Problem (VRP) topics is 
given. Later in the section, literature concerning the 
time dependent variant is reviewed. 

The VRP is a generalization of the well-known 
Travelling Salesman Problem (TSP) and is therefore 
also NP-hard. It was first formulated as the "truck 
dispatching problem" in [3]. Typically, the goal is 
to reduce the number of vehicles, the total distance 
covered by vehicles, the travel time, or some com-
bination of these goals, although some alternative 
goals (such as achieving a uniform number of cus-
tomers per vehicle) are not uncommon.

The VRP is an extensively studied problem 
with many well-defined sub-problems and variants  
[4, 5]. The most common variants of the problem are 
the Capacitated Vehicle Routing Problem (CVRP) 
and the Vehicle Routing Problem with Time Win-
dows (VRPTW). The CVRP includes demands on 
the quantity of goods to be delivered to each cus-
tomer and adds a limit to the amount of goods a ve-
hicle can transport. The VRPTW usually includes 
the CVRP and adds time windows to each customer, 
defining when they are available for service.
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vehicle travels to a set of customers (vertices) to de-
liver their cargo and returns to the warehouse when 
finished. Every customer is served only once with 
only one vehicle [4]. The set of vehicles is denot-
ed as K and the set of customers as C={v1,…,vn}. 
There are constraints on the vehicles that have to 
be respected in order for the route to be considered 
feasible. First, the vehicles have a limited capacity 
qmax for k=1,...,K, while each customer has a fixed 
demand qi for i=1,...,n, which in turn means a sin-
gle vehicle can only deliver to a limited number of 
customers [3]. Furthermore, each customer i has a 
time window [ei, li] associated with it (ei and li being 
early and late time, respectively) and service time 
si. The arrival time of the vehicle at the i-th custom-
er on its route is denoted by ai. If a vehicle arrives 
too early (before the time window of the customer 
opens), it has to wait for the time window to open. 
The departure time from customer i is denoted by 
bi. Every customer has to be visited exactly once 
in total, but the depot is visited twice by each ve-
hicle (once at the start and once at the end of the 
route). The distance between two customers ci and 
cj is denoted by dij and the corresponding travel time 
is denoted by tij. If a vehicle arrives at a customer, it 
must also depart from that customer [5]. Each vehi-
cle leaves [7] from and returns to the depot exactly 
once [8]. Customer service times must satisfy time 
window start [9] and ending times [10]. Travel time 
between customers must include customer service 
time. [11].

The Time Dependent Vehicle Routing Problem 
can be described as a constraint solving problem, 
see for example [14]. The TDVRP is formulated as 
follows. The primary objective is to minimize the 
number of routes (1). 

Minimize x j
j Ck K

k
0

!!

/ /  (1)

The secondary objective (2) is the minimization 
of the total time or distance where cd and ct stand 
for costs per distance travelled/route duration. The 
yij

k stands for real number decision variable which 
indicates service start time for customer i served by 
vehicle k [13].

Minimize c d x c y y x
( , ) ,

d ij
k

ij
k

i j Ak K
t n

k k
j

k

j Ck K
1 0 0+ -

!! !!
+_ i// //  (2)

The constraints are:

,q x q k Kmaxi ij
k

j Vi C
6 !#

!!

//  (3)

,x i C1ij
k

j Vk K
6 !=

!!

//  (4)

Finally, in [14] the time dependent variants of 
the Solomon benchmarks are provided. These 
benchmarks add 12 groups of coefficients to each 
problem, making a total of 672 benchmark prob-
lems, varying according to the time and intensity 
of speed drops, as well as time windows and the 
geographical distribution of customers. The article 
also provides route construction and improvement 
heuristics to provide initial benchmark results for 
comparison.

To solve the real-world problems, a method for 
computing the quickest or shortest paths between 
customers is also required. Finding the shortest 
path on the road network is achieved by solving the 
Shortest Path Problem (SPP) on the corresponding 
graph. The solution to the problem is a path with 
a minimal sum of edge weights. This problem was 
researched in depth and there are various methods 
for generating solutions [15, 16].

When solving a TDVRP, the expected vehi-
cle speeds change based on the vehicle departure 
time from a customer, meaning a single weight per 
edge is not sufficient, as it is in the VRPTW variant. 
The variant of SPP which allows variation in edge 
weights based on time is called a Time Dependent 
SPP (TDSPP). Research regarding TDSPP does ex-
ist, e.g. [17], but it is scarce.

The added complexity of computing time depen-
dent travel times notably increases the amount of 
resources needed to solve the real-world TDVRP 
problems, which has resulted in a smaller number 
of papers on TDVRP, as mentioned previously in 
this section.

3. PROBLEM DEFINITION
In this section, a simple Vehicle Routing Prob-

lem with Time Windows (VRPTW) is described 
first, and then some properties of the time depen-
dent variant (TDVRP) are discussed.

Transport networks are commonly represent-
ed as mathematical graphs G=(V,A), where the set 
of vertices V={v0,…,vn+1} represents n customers 
(v1,…,vn) and one depot, which is represented with 
two vertices (v0,vn+1) for the beginning and ending 
of each route [6]. The binary decision variable xij

k 
indicates whether vehicle k travels between cus-
tomers i and j [12]. Set A={(vi,vj):i≠j ˄ i,j!V} is 
a set of edges. Each edge (vi,vj) is associated with 
distance dij≥0 and travel time tij(bi)≥0 where bi is 
the departure time from customer i. A fleet of vehi-
cles starts their routes at a single warehouse. Each  
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When dealing with real problems, in addition to 
the travel time changing, the route itself can also 
change. This would mean that distance dij is a func-
tion of time as well. In this research the distance be-
tween two customers is considered to be a constant.

4. PROBLEM SOLUTION
In this section a solution for the TDVRP is pro-

posed. The solution was tested on both benchmark 
problems described by Figliozzi [14] and real-world 
delivery problems on the road network in Croatia.

The primary objective when solving the VRP is 
to find a solution that uses a minimal number of ve-
hicles/routes (1). The secondary objective is to find 
a solution where vehicles travel a minimal distance 
or a minimal amount of time (2). For that reason, 
modern state-of-the-art algorithms use a two-phase 
approach, consisting of one dedicated heuristic for 
each objective.

To generate an initial solution, constructive heu-
ristics are usually used. A review of constructive 
methods for the VRPTW can be found in [18]. In 
this paper the initial solution was generated by us-
ing the Solomon I1 heuristic. A method to solve both 
VRPTW and TDVRP were proposed. In both cases 
the distance and travel time matrices were comput-
ed in a pre-processing procedure in order to speed 
up the execution of the algorithm. The algorithm it-
self is a two-phase heuristic, based on general idea 
of the Ejection Pool (EP) algorithm for reducing the 
number of vehicles and an Iterative Local Search 
(ILS) heuristic for route optimization.

Constructive heuristics are usually used to gen-
erate an initial solution. Our implementation was 
based on the idea of the Solomon I1 heuristic which 
initializes a new route with a seed customer and in-
serts unrouted customers into the current route as 
long as a customer can be feasibly inserted. A route 
is considered feasible if each constraint is satisfied, 
e.g. all customers are served within their time win-
dow. If unrouted customers exist, a new vehicle is 
initialized, and customers are iteratively added to 
its route. A seed customer is selected as the furthest 
one from the depot or the one that has to be served 
earliest. Since this heuristic is not computationally 
intensive, both variants are calculated, and the bet-
ter one is set as initial solution. Further details about 
the cost function and parameters can be found in 
[12].
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There are two ways of handling the case of a 
vehicle arriving at a customer location before the 
time window opens or after it closes. The VRPTW 
with soft time windows penalizes arrivals outside 
the time window in the cost function and raises the 
cost of such routes. On the other hand, the VRPTW 
with hard time windows allows early arrivals, but 
disallows late arrivals and considers such routes as 
infeasible, disregarding them completely as possi-
ble solutions. If a vehicle route satisfies the capac-
ity and the time window constraints, then the route 
is feasible; otherwise, if one of the constraints is 
not met, the route is infeasible. In this paper, the 
VRPTW with hard time windows is considered.

In the time independent case, travel times tij are 
constant, as the travel time does not change when 
the departure time changes. In the time dependent 
case, the time window of the depot is called the time 
horizon. The time horizon is split uniformly into a 
number of smaller intervals T1,...,Tp, each with an 
assigned travel time matrix C(Tk), k=1,...,p. The 
travel times are then functions of time intervals,  
tij(Tk), or alternatively of departure times tij(bi) 
where bi is the departure time from customer ci that 
belongs to some interval Tk.

Since distance dij and travel times tij are known 
in advance, the speed when driving from custom-
er ci to cj at interval Tk is defined to be the ratio  
vij(Tk)=dij/tij(Tk). 

Since travel times are dependent on departure 
times, a change in the departure time from a custom-
er on the route can affect arrival times at subsequent 
customers, and with that the feasibility of the route. 
This makes it more computationally expensive to 
perform feasibility checks during computation.
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unable to remove all customers from the pool in the 
allotted time, the last feasible solution is restored. 
If the pool is successfully emptied, the procedure 
starts from the beginning using the newly generated 
solution as a starting point. When removing the cus-
tomers, minimizing the penalty sum of the removed 
customers ensures that customers who are difficult 
to insert feasibly are not often in the ejection pool. 

After the EP method finishes, the feasible solu-
tion with the lowest number of vehicles is used as a 
starting point for the second phase of the algorithm. 
The total distance or total time is reduced by the 
iterative local search (ILS) method (Algorithm 2). The 
ILS tries to escape from local optima by using an es-
cape procedure (Algorithm 2, line 3) and by finding a 
new solution with local search operators (Algorithm 2, 
line 4). The operators interchange one or more cus-
tomers between two routes or change the order of 
customers inside one route. A total of five operators 
is used. One operator changes the position of one 
customer inside a single route (Relocate operator) 
and four operators work on two routes: Relocate, 
Exchange, 2-opt*, and Cross-exchange. For details 
on local search operators, refer to [18].

The original EP algorithm was proposed by 
Nagata and Braysy [19]. Algorithm 1 is an EP algo-
rithm modified to account for time dependent trav-
el speeds. The "squeeze" part of the algorithm was 
not included for simplicity and lower execution 
times. The procedure is briefly described here. The 
algorithm derives its name from the ejection pool, 
a stack (LIFO structure) of customers that at some 
point are not served by any vehicles. The algorithm 
works as follows: the vehicle serving the least num-
ber of customers is removed and its customers are 
added to the ejection pool (Algorithm 1, lines 1-2). 
One by one, the customers are removed from the 
top of the ejection pool (Algorithm 1, line 5) and an 
attempt is made to insert them where feasible into 
other routes (Algorithm 1, line 6). If the attempt is suc-
cessful, the process continues with the next custom-
er in the stack.

Each customer has an associated penalty num-
ber (Algorithm 1, line 3) that represents how difficult 
it is to insert that customer feasibly. If the feasible 
insertion attempt fails, the penalty for the customer 
being inserted is incremented (Algorithm 1, line 10). 
The algorithm continues by adding the customer 
into a route disregarding the feasibility of the result-
ing route (Algorithm 1, lines 11-13). The attempt to 
restore feasibility is then made by removing the cus-
tomers around the newly inserted customer. When 
removing the customers, certain criteria have to be 
met: the resulting route is feasible and the sum of 
penalties of the removed customers is minimal.

The removed customers are pushed to the top of 
the ejection pool and the procedure continues iter-
atively until the pool is empty. If the algorithm is 

Algorithm 1 – Ejection pool algorithm

Algorithm 2 – Iterative local search
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not violate the latest optimistic arrival time of a 
customer, the time window constraints of the subse-
quent customers still need to be checked.

5. TRAVEL TIMES
In this section, a method for generating speed 

profiles and ways of incorporating them into an 
algorithm for solving TDVRP problems is briefly 
described. In this research, speed profiles are func-
tions mapping a road segment, time of day, and day 
of week to the expected speed of vehicles on that 
segment at the specified time. They are typically de-
rived from historical data and show typical traffic 
behaviour [22]. Next, we describe the profiles them-
selves, give an overview of a method for automat-
ically determining congestion zones, and explain 
their use in optimization algorithms. 

5.1 Speed profiles
The speed profiles used in this research were 

created using historical data from roughly 4,900 ve-
hicles on the Croatian roads during a five-year pe-
riod (2009–2014). The profiles were generated for 
each road link, where a link is simply a segment of 
road between two intersections. The digital map of 
the Republic of Croatia contains a total number of 
448,393 links with median link length of 88 metres. 
The GPS data set was relatively sparse so vehicle 
speeds recorded by GPS devices were unusable 
(the time span between consecutive records could 
be as long as five minutes). In order to extrapolate 
the speeds from the dataset, each route made by a 
vehicle was examined. For each link in the route, 
the time difference between the first GPS record 
appearing on that link and the first record on the 
next link in the same route was computed. As link 
lengths were known in advance, it was then possible 
to compute the speed. Finally, the mean speed was 
calculated using all speeds in the same five-min-
ute interval on that link [23]. In order to solve the 
time dependent SPP, the time dependent Dijkstra 
algorithm was used. The resulting profiles were 
smoothed and clustered into 4,096 clusters. The 
clustering was done because the number of profiles 
significantly impacted the computation time [24]. 

5.2 Pre-processing
When using speed profiles to compute the dis-

tance for use in optimization algorithms, there are 
two possible approaches: using an SPP algorithm 

When local search gets stuck in local optima, 
a perturbation mechanism is applied so that a fur-
ther local search can potentially find an overall 
better solution. The Ruin-and-Recreate method of 
Schrimpf et al. described in [20] is used to alter a 
large part of the current solution. Customers are 
randomly selected and removed from the solution 
and then reinserted by a heuristic procedure. Two 
insertion heuristics are used: greedy and regret. The 
greedy heuristic inserts unrouted customers into the 
current solution so that the route length is extend-
ed minimally. This approach often results in sub-
optimal results, because of its short-sighted nature 
of looking just one step ahead. A better approach 
is to look at further steps, which is the main idea 
of the Regret heuristic by Pisinger and Ropke [21]. 
It calculates the cost of insertion of other unrouted 
customers and adds customers who will be regret-
ted most if not added to the solution now. For de-
tails, readers may refer to the original paper [21]. 
Although the Regret heuristic yields better results 
than the greedy approach, the greedy approach is 
still used because of its fast execution time.

Both computation phases are terminated after a 
defined period of time elapses. Some changes are 
required to adapt a time independent algorithm to a 
time dependent setting. TDVRP differs most from 
VRPTW in the pre-processing phase when distance 
and travel time matrices become significantly more 
complex to calculate. The algorithm itself is not par-
ticularly different, but the time needs to be calcu-
lated differently. Most notably, the route feasibility 
checking becomes harder to perform. A common 
way to speed up feasibility checking in VRPTW is 
to compute the latest possible arrival time for each 
customer in a route, such that arriving before the 
computed time does not impact the route feasibili-
ty. This is not directly usable in TDVRP due to the 
fact that a change in one part of the route affects the 
travel time for every subsequent customer.

Instead, the maximum driving speed between 
each customer pair was computed. This was used to 
compute "the latest optimistic arrival time" for each 
customer which denotes the latest time of arrival at 
a customer such that the route remains feasible in 
the hypothetical case when the vehicle drives the 
rest of the route at its maximum speed. A violation 
of the latest optimistic arrival time would certainly 
result in an infeasible route. The inverse, however, 
does not hold, and if the vehicle's arrival time does 
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speed drop for each zone and the corresponding 
time interval [25]. A single reference route can then 
be used for each customer pair, with travel time 
multiplied by a single coefficient corresponding 
to the zone and route start time. As the congestion 
zones are computed for a large area, only a single 
distance matrix is used for both distance and travel 
time. Minimal pre-processing is needed when the 
problem changes (i.e. a customer is added) or when 
computing a completely different problem within 
the same area because only a single distance and 
travel time matrix have to be updated. Moreover, 
there is no need to re-compute congestion zone co-
efficients.

By using speed profiles, as described earlier, it 
was possible to devise such zones. The process be-
gan by dividing the digital map of Croatia into a 
square grid, each square having a width and height 
of 500 metres. The whole map was covered by 
36,161 squares in total. For each square a slowdown 
coefficient was computed based on the speed drops 
appearing in it. Once each square had an associat-
ed slowdown coefficient, the squares were grouped 
spatially using image processing algorithms like 
morphological closing [26]. By using this technique, 
explained in more detail in [24], eight slowdown 
zones were automatically identified in Croatia, in-
cluding Croatia's four largest cities (Zagreb, Split, 
Rijeka, and Osijek). The Zagreb zone is shown in 
Figure 1. Each square is coloured based on the max-
imum slowdown appearing on the links inside the 
square. The green squares show areas of no conges-
tion during the day, while the red squares indicate 
significant congestion appearing on the links inside 
the squares at one point in the day. The outlined 
polygon represents the overall congestion zone. The 
zone outline was determined by connecting many 

every time a TDVRP algorithm needs information 
about the travel time or distance or precomputing 
optimal routes for each pair of customers and each 
time interval and storing the results. Solving the SPP 
directly while running the TDVRP algorithm is not 
feasible in practice as the shortest path algorithms 
typically run in times of the order of milliseconds 
and are typically called in the order of a billion times 
per run. The computing time also increases with the 
distance between the start and end points. Therefore, 
storing distance and travel time matrices is unavoid-
able; however, this can be done in different ways.

For pre-processing, the Time-Dependent Con-
traction Hierarchies algorithm [24], developed by 
Mireo d.d., was used. The algorithm itself was im-
plemented in the C++ programing language for best 
performance. The digital road map was produced and 
provided by the same industry partner.

The simplest way is to compute the travel times 
for each pair of customers and each time interval ap-
pearing in the time window of the depot. For exam-
ple, if the speed profile resolution is five minutes (as 
it was in this research), 84 travel time and distance 
matrices are needed for a seven-hour workday. Each 
matrix holds the minimal time required to traverse 
from one customer to another. This can create sig-
nificant resource requirements even when solving 
problems of medium size. Moreover, the precomput-
ing time for these problems can be huge. For exam-
ple, pre-processing distances and travel times for the 
problem presented in this research, consisting of 187 
customers in an area around Zagreb, took 297 hours 
of processor time. The shortest path computed three 
million times with an average computing time of 350 
milliseconds, due to the relatively large spatial dis-
persion of the customers.

Furthermore, when introducing a new problem, 
the whole problem needs to be pre-processed from 
scratch. Even when adding a single customer to an 
existing problem, the distances between that custom-
er and all the other customers have to be computed in 
all time intervals. Obviously, the simplest way is also 
the most resource demanding one. Next, an alterna-
tive approach to pre-processing travel times while re-
taining information on congestions is presented.

5.3 Congestion zones
The resource demands in pre-processing can 

be made by isolating a series of zones where ma-
jor speed drops are expected and then finding times 
when congestion appears, as well as an average Figure 1 – An example of a developed congestion zone
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6. RESULTS
The results were obtained by solving three types 

of problems: time independent benchmark instanc-
es, time dependent benchmark instances, and a re-
al-world delivery problem in Zagreb, the capital of 
Croatia. The same algorithm was used to solve the 
problems in all instances, as described in Section 4, 
with the only difference between benchmarks and 
the real-world problem being travel time computa-
tions, as described in Section 5. The goal function 
was always the same, primarily minimizing the 
number of vehicles and then minimizing the travel 
times. The results were computed on a single core 
of an Intel Xeon E5-2620v3 processor, compiled 
with the Visual C++ 11.0 compiler. The computa-
tion times were set to 15 minutes for EP and 5 min-
utes for ILS.

6.1 Benchmark problems
In this section, the EP_ILS algorithm is com-

pared with the Iterative Route Construction and Im-
provement algorithm (IRCI) presented in [14].

The benchmark problems presented here were 
first presented by Figliozzi [14]. The research us-
ing the Figliozzi benchmark is scarce; however, it is 
crucial for the community dealing with similar prob-
lems to be able to compare the results on well-de-
fined problems. To the authors' best knowledge, the 
original article [14] and papers [27] and [28] are the 
only studies which tested a procedure on all of the 
benchmark instances and reported some results. Be-
cause of that, a comparison of the EP_ILS method 
with other methods was first made on the time inde-
pendent instances to better gauge its quality. The 56 
Solomon VRPTW benchmark instances were used 
for comparison. The cumulative results are given in 
Table 2. The R, C, and RC columns stand for Random, 
Clustered, and Random-Clustered problem classes, 
respectively. The number after the class designation 

smaller zones that appeared close to each other into 
a single large one. The outline roughly corresponds 
to the city limits.

Once the zones had been identified, the goal was 
to find the expected slowdowns inside the zones de-
pending on the time of day. Random routes were 
generated with start and end points inside the zone. 
The departure times were randomly chosen from 
each of the 198 five-minute intervals, which were 
derived from the 990-minute daytime period (05:30 
till 22:00). The midnight route duration was chosen 
as the referent route time. The intensity of slow-
downs at a certain interval was expressed as a ratio 
of the travel time of the route at that interval and the 
travel time of the referent route. Finally, the slow-
downs were grouped based on intensity and the time 
of appearance [25]. In total, seven daytime intervals 
and corresponding slowdown coefficients were de-
veloped for Zagreb. The intervals and intensities are 
given in Table 1.

Table 1 – Slowdown intervals and corresponding coefficients 
in Zagreb

Interval Slowdown
05:30 – 06:45 0.9910
06:45 – 07:25 1.1790
07:25 – 08:20 1.3166
08:20 – 15:30 1.1808
15:30 – 17:05 1.3158
17:05 – 19:00 1.1624
19:00 – 22:00 1.0142

There is a possibility that a part of the shortest 
path between two customers lies outside the zone. 
This, however, does not invalidate the procedure, 
as such paths were included in calculations for the 
time and coefficients of intensity of congestion. The 
only fact we are interested in is the duration of the 
shortest path when two customers are inside the 
zone, not the path itself.
Table 2 – Comparison of Solomon benchmark results

R1 R2 C1 C2 RC1 RC2 CNV/CTD

Best published
Vehicle no. 11.92 2.73 10.00 3.00 11.50 3.25 405
Distance 1,210 952 828 590 1,384 1,119 57,187

Figliozzi
Vehicle no. 12.58 3.00 10.00 3.00 12.12 3.38 422
Distance 1,248 1,124 841 626 1,466 1,308 62,109

Rincon-Garcia et al.
Vehicle no. 12.00 2.80 10.00 3.00 11.60 3.25 408
Distance 1,232 970 829 590 1,404 1,160 n/a

EP_ILS
Vehicle no. 12.00 2.91 10.00 3.00 11.50 3.25 408
Distance 1,243 985 828 600 1,451 1,188 59,120
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the beginning of the workday and the congestion 
builds up towards the end of the workday, while 
group D describes the opposite. Each group also has 
three levels of intensity. As an example, the coeffi-
cients from group D for all three intensity levels are 
listed below:
D1 = [1.00, 1.00, 1.05, 1.60, 1.60]
D2 = [1.00, 1.00, 1.50, 2.00, 2.00]
D3 = [1.00, 1.00, 1.75, 2.50, 2.50]

The similarity between the congestion zone co-
efficients presented in Section 5 and the coefficients 
used in the presented benchmarks is now obvious. 
While in [14] Figliozzi used speed-up coefficients, 
the congestion zone coefficients described here 
present slowdown coefficients. Computing travel 
times using the IGP model requires travel speeds. 
However, this does not present a significant change 
as the slowdown coefficients are directly inversely 
proportional to speed coefficients. The only other 
difference is the use of Euclidean distances to de-
termine the congestion zone impact, as shown in 
Section 5.3.

The results were generated for the 56 problems 
and for each of the 12 groups of coefficients (672 in-
stances in total). The results per problem type, com-
pared to those from Figliozzi [14] and Rincon-Gar-
cia [28], denoted as Fig and R-G respectively, are 
given in Table 3. The EP_ILS algorithm is denoted 
as EP_ILS. The primary objective of VRP variants 
is to minimize the total number of vehicles and this 
is the focus when considering the performance of 

indicates the type of problem: type 1 uses smaller 
time windows and larger capacity constraints and 
type 2 larger time-windows and smaller capacity, 
resulting in the solutions of type 2 problems having 
much longer routes on average. The CNV/CTD col-
umn stands for Cumulative Number of Vehicles and 
Cumulative Travel Distance. The column shows the 
sum of vehicles and distances for all the solutions of 
the 56 problem instances.

The EP_ILS algorithm gives a total of 408 ve-
hicles, whereas the best published results [29] give 
a total of 405. The IRCI procedure gives 422 ve-
hicles, a difference of 3.4% compared to EP_ILS. 
This shows that the IRCI procedure has an inferior 
ability to reduce the number of vehicles in a time 
independent setting when compared to EP_ILS.

The time dependent problem instances used in 
[14] are an adaptation of Solomon benchmarks. 
The time horizon is split into five time intervals,  
[0, 0.2l0), [0.2l0, 0.4l0), [0.4l0, 0.6l0), [0.6l0, 0.8l0), 
[0.8l0, l0), where l0 is the upper limit of the depot 
time window. Each interval is given a coefficient to 
represent travel speeds at certain times of the day. 
A speed value of 1.00 is the same as used in time 
independent Solomon benchmarks. It should be not-
ed that the coefficients always increase the speed so 
that the problem remains feasible.

The coefficients are grouped into four catego-
ries, each category representing a different traffic 
scenario. For example, coefficients in group C de-
scribe the situation when there is no congestion at 

Table 3 – Comparison of results with Figliozzi [14] and Rincon-Garcia [28]

Fig. R-G EP_ILS Fig. R-G EP_ILS Fig. R-G EP_ILS
A1 A2 A3

Vehicle no. 402 387 385 378 361 360 360 348 348
Distance 64,875 57,439 58,780 64,580 57,106 57,969 64,667 57,359 58,447
Travel tm. 53,643 46,703 47,322 45,847 39,505 39,573 41,198 35,105 34,984

B1 B2 B3
Vehicle no. 420 403 399 398 378 380 393 370 373
Distance 65,044 57,950 59,101 64,925 59,179 59,746 65,781 59,018 60,809
Travel tm. 54,053 47,892 48,293 46,773 41,878 41,441 42,837 37,480 37,195

C1 C2 C3
Vehicle no. 402 387 387 380 360 359 365 350 350
Distance 65,304 57,842 58,529 64,921 57,794 58,524 64,791 57,317 58,108
Travel tm. 53,346 47,051 47,318 45,583 40,599 40,548 40,985 36,005 35,780

D1 D2 D3
Vehicle no. 417 401 403 399 387 382 388 375 377
Distance 64,858 57,639 58,057 64,304 57,318 58,476 65,084 58,369 58,253
Travel tm. 54,930 48,841 49,071 47,905 42,466 43,074 44,466 39,473 39,392
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6.2 Real-world problem
The following problem comes from a large de-

livery company in Croatia, focusing on the capi-
tal (Zagreb) and its surrounding area. The depot is 
located in Ivanić Grad, a town located roughly 35 
km from the centre of Zagreb. The problem con-
sists of 156 customers, 53 of which are inside the 
zone defined by the procedure described in Section 
5. The time windows are relatively wide, around six 
hours on average, allowing for many different ap-
proaches. The average service time for customers 
is 12 minutes. The time horizon lasts from 07:00 to 
14:00, seven hours in total. The problem was solved 
using the algorithm described in Section 4, with two 
variants of travel time computation, using nighttime 
travel times and slowdown zones. The EP_ILS al-
gorithm produced a solution with 7 vehicles in ev-
ery run and every mode of travel time computation. 
Looking at the slowdown intervals in Table 1, it can 
be observed that the vehicles can travel inside the 
slowdown zone during three time intervals:
07:00 – 07:25 with slowdown coefficient 1.1790
07:25 – 08:20 with slowdown coefficient 1.3166
08:20 – 14:00 with slowdown coefficient 1.1808

It is obvious that the second interval results in 
the slowest driving times and the biggest difference 
in travel times between the two modes of travel time 
computation. Consequently, there are two ways a 
congestion-aware vehicle could decrease the time 
spent in the congestion zone: by driving before the 
second interval starts or after it ends.

Figure 2 shows the problem and two different 
solutions. The black circles in the images represent 
customers. All vehicles started their routes in the red 
circle representing the depot. The route of each ve-
hicle is shown in a different colour. A polygon that 
represents the congestion zone is represented by a 
dashed black line. Both images show estimations of 
vehicle positions and routes driven after two hours 
(at 9:00).

The upper image shows a solution obtained by 
solving the time independent variant (VRPTW) us-
ing nighttime speeds, while the lower image shows 
a solution obtained by using zone coefficients for 
travel time computations (TDVRPc). The imag-

algorithms. Cumulative distance or travel time can 
be compared only if the number of vehicles is the 
same. When designing the algorithm, we chose to 
minimize the travel time instead of distance because 
our intention was to solve real-world problems.

Both algorithms, R-G and EP_ILS, obtained sig-
nificantly better results than those originally pub-
lished by Figliozzi. The differences are the greatest 
in relation to the travel time, and smallest in relation 
to the number of vehicles used. It is obvious that 
the two algorithms outperform the Figliozzi algo-
rithm that was the first one to solve the benchmarks 
selected. A comparison between R-G and EP_ILS 
is more interesting, and the winner is not obvious. 
Considering just the primary objective, vehicle min-
imization, EP_ILS obtains better results in more 
benchmark groups: A1, A2, B1, C2, and D2. The 
R-G algorithm finds solutions with a lower num-
ber of vehicles for B2, B3, D1, and D3. For other 
groups (A3, C1, and C3), both algorithms find solu-
tions with the same number of vehicles. Just those 
three groups are sufficient to compare the relative 
performance of the algorithms in respect of the sec-
ond objective, distance/travel time minimization. 
For cumulative distance, it is easy to find a winner: 
the R-G algorithm outperforms the EP_ILS in all 
groups of three benchmarks with the same number 
of vehicles. However, if the cumulative travel times 
are compared, EP_ILS obtains lower travel time 
in two groups (A3 and C3). As stated earlier, the 
EP_ILS algorithm was designed to minimize the 
travel time before distance, which could explain the 
observed results.

When analysing the results, it can be concluded 
that the EP_ILS algorithm performs slightly better 
in vehicle reduction and the R-G algorithm per-
forms better in distance reduction. This is further 
highlighted in Table 4.

These results, coupled with the results against 
the Solomon benchmarks, indicate that our two-
phase heuristic, which does well in a time indepen-
dent setting, can work well even in a time dependent 
setting, if the cost function and the travel time com-
putations are correspondingly modified.

Table 4 – Comparison of total results with Figliozzi [14] and Rincon-Garcia [28]

EP_ILS Figliozzi Rincon-Garcia et al.
Vehicle no. 4,503 4,702 (4.42%) 4,507 (0.09%)
Distance 704,800 779,134 (10.55%) 694,329 (-1.51%)
Travel tm. 503,989 571,566 (13.41%) 502,999 (-0.2%)
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consider the speed profiles as a basis or "ground 
truth", their validity needs to be established. This 
was done in [25] showing an average relative error 
of less than 5%.

Figure 3 depicts the vehicle arrival times on a sin-
gle route. The x axis shows the number of the cus-
tomer (position) in the route, and the y axis shows 
the arrival time at that customer. The graph shows 
absolute differences (errors) when comparing vari-
ous methods of travel time estimation. The ZC trav-
el times (blue) give the best estimations, with a dif-

es show differences in approaching the slowdown 
zone when using the two travel time computation 
methods. The VRPTW generates solutions which 
disregard the congestion zone and therefore, many 
vehicles enter the congestion zone during the most 
congested period. On the other hand, TDVRPc at-
tempts to avoid the zone, routing vehicles inside 
only after the problematic period has ended.

Once the solutions were obtained, each resulting 
route was interpreted in four different ways. First, 
the travel times were computed using the most pre-
cise method, that is, solving the TDSPP directly for 
each customer pair by using the developed speed 
profiles. Second, travel times were estimated using 
the nighttime speeds and congestion zone coeffi-
cients described in Section 5. Third, only nighttime 
speeds were used. Finally, speeds currently used by 
industrial digital map providers were used. The re-
sults of the latter three methods were compared with 
the first in order to measure the error in travel time 
estimation and to quantify the degree of lateness in-
curred.

TDSPP, ZC, NT and IN were used to stand for 
profile, zone coefficient, nighttime, and industri-
al travel time estimations, respectively. In order to 

a) VRPTW

b) TDVRPc

Figure 2 – Two approach solutions at 8:30
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The method to speed up pre-processing of distance 
and travel time matrices, which is an unavoidable part 
of solving the real-world TDVRP problems, uses auto-
matically generated zones to determine the slowdown 
periods and their intensities to determine the penal-
ty the vehicle pays when driving along the congested 
routes. It was shown that this method largely reduces 
the time needed to pre-process the problems and com-
pute distances between customers but at the same time 
minimally sacrifices the precision when compared to 
full pre-processing. We proposed TDVRP algorithms 
capable of dealing with vehicle routing in a time depen-
dent setting. We showed that the proposed algorithm 
fares well in a time dependent setting, improving on 
the current best published results against time depen-
dent benchmark instances. By solving the benchmark 
problems, it was shown that the quality of a heuristic 
when solving time independent problems determines its 
quality on time dependent problems to a large degree. 
The most interesting result that was achieved is that the 
combined Ejection Pool (EP) and Iterative Local Search 
(ILS) algorithms, in a real-world problem, avoid the 
congestion zones in peak hours, routing vehicles inside 
only after the problematic periods have ended. 

Future work should include methods of speeding up 
the feasibility checks in a time dependent environment. 
The VRPTW solution quality suggests that better solu-
tions can be found. Heuristics which explicitly account 
for changing travel times should also be considered.
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ference of 185 seconds on average from times obtained 
from "ground truth" (TDSPP with speed profiles). The 
NT times (green) offer worse predictions (449 seconds 
difference on average); however, even the simplest 
method offered far better results than the industrial 
navigation (red), which gave a prediction with 1,705 
seconds average difference. This suggests that even the 
simplest method based on historical data can outmatch 
the current time independent navigation methods when 
it comes to estimation precision.

Another way to compare the quality of solutions 
computed using the two methods is to compare the total 
average time the vehicles spend inside the zone for both 
methods. It is important to note that even in the best-
case scenario, the vehicle has to spend some amount of 
time serving the customers inside the zone. To put the 
computed differences into a perspective, a lower bound 
had to be estimated. For this estimation the nighttime 
speeds and travel times were used and the lowest val-
ue out of 20 runs was used. The lower bound was es-
timated to be 14,164 seconds. This roughly means that 
spending more time in the congestion zone than the 
lower bound is in theory an unnecessary waste of time. 
Thus, the lower bound was used as a baseline to com-
pare the two methods. When using congestion zone co-
efficients, the average time that the vehicles spent inside 
the congestion zone was 17,703.8 seconds, compared 
to the 18,996.19 seconds when using nighttime speeds. 
Regarding the lower bound, these amounted to differ-
ences of 3,539.8 and 4,832.19 seconds, respectively, a 
difference of 26.75%

7. CONCLUSION

Recurrent congestion is a regular phenomenon and 
the time of occurrence, as well as intensity, can be pre-
dicted. It is obvious that any fleet management planner 
would benefit from recurrent congestion prediction, but 
it is still rarely used because a large amount of histor-
ical data is required to predict such travel times, and 
the complexity of the algorithms needed to account for 
changing travel times is continually increasing. To re-
duce time delays in serving customers, algorithms for 
solving Time Dependent Vehicle Routing Problems 
(TDVRP) in the real-world logistics industry need in-
formation about variations in travel time due to conges-
tion. 
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RJEŠAVANJE PROBLEMA VREMENESKI 
OVISNOG USMJERAVANJA VOZILA  
KORIŠTENJEM ZONA ZAGUŠENJA

SAŽETAK
U ovom radu prikazan je sustav za rješavanje vre-

menski ovisnog problema usmjeravanja vozila korišten-
jem povijesnih podatka. Podaci se koriste za predviđanja 
vremena putovanja u kritičnim vremenskim periodima 
dana kao i za određivanje zona zagušenja pripremljenih 
za uporabu u optimizacijskim algoritmima. Kombinaci-
ja dobro poznatih algoritama je prilagođena vremenski 
ovisnom modelu usmjeravanja vozila u svrhu rješavanja 
problema u praksi. Prilagođeni algoritmi daju bolje re-
zultate od trenutno najboljih za TDVRP ispitne zadatke. 
Predloženi sustav je primijenjen na stvarnim problemi-
ma, gdje pokazuje smanjenje kašnjenje pri posluživanju 
korisnika u odnosu na sustav koji ne uzima u obzir vre-
mensku ovisnost trajanja putovanja o trenutku početka 
putovanja.

KLJUČNE RIJEČI
vremenski ovisan problem usmjeravanja vozila;  
zagušenja; logistika u gradovima;
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