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ABSTRACT

Bike-and-Ride (B&R) has long been considered as an ef-
fective way to deal with urbanization-related issues such as 
traffic congestion, emissions, equality, etc. Although there 
are some studies focused on the B&R demand forecast, the 
influencing factors from previous studies have been exclud-
ed from those forecasting methods. To fill this gap, this pa-
per proposes a new B&R demand forecast model consider-
ing the influencing factors as dynamic rather than fixed ones 
to reach higher forecasting accuracy. This model is tested in 
a theoretical network to validate the feasibility and effective-
ness and the results show that the generalised cost does 
have an effect on the demand for the B&R system.
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1. INTRODUCTION
The high level of personal motorisation brings 

pressure not only to urban traffic but also to the en-
vironment and energy [1]. In the past decades, many 
countries have taken measures to mitigate the pres-
sure, such as developing bike-sharing systems, pub-
lic transit systems, Park-and-Ride (P&R) systems and 
Bike-and-Ride (B&R) systems [2]. 

Among those environmentally friendly transporta-
tion systems, B&R system turns out to be faster, more 
convenient and with a lower cost [3]. As one part of 
the B&R system, public transport has long been re-
garded as an effective way of alleviating urban traffic 

problems for its advantages because of big capacity, 
low pollution, low energy consumption, and high traffic 
efficiency. However, the public transport also has its 
drawbacks, such as its poor flexibility and low ability to 
provide door-to-door service [4-7]. As the other part of 
a B&R system, bicycle is substantially faster than walk-
ing and more flexible than public transport, but it is 
not efficient for long-distance trips [8]. Therefore, the 
B&R system, which combines these two travel modes, 
provides a way to utilize their advantages and to alle-
viate the drawbacks from either single system [9-11]. 
Encouraging people to choose B&R system will have a 
positive effect in releasing urban transport pressure, 
reducing traffic pollution, energy consumption and 
land resource occupation [12, 13].

2. LITERATURE REVIEW
Because of its significant effect on alleviating ur-

ban traffic pressure, B&R has attracted a lot of atten-
tion. The existing research focused on B&R can be 
summarized into three main aspects: (1) the analysis 
of factors affecting the mode choice of B&R and rider 
behaviour; (2) policies and programs for facility and 
configuration optimization; (3) demand forecast.  

Many studies focused on analysing factors af-
fecting mode choice of B&R. R. Kager, Bertolini [14] 
provided suggestions on combining bicycle and pub-
lic transport in a broader perspective, such as higher 
speed for the bicycle lane and higher public transport 
capacity. Puello [15] incorporated latent variables and  
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conducted by Pucher and Buehler [39] found that even 
though the temperature is much lower in Canada than 
in America, the usage frequency of bicycles in Canada 
is higher. Safer biking conditions, and more extensive 
biking facilities and training programs in Canada may 
account for this.

A macroscopic forecast method was employed by 
Zhang [40] to study the situation of bicycle transfer in 
Beijing and successfully predicted bicycle transfer de-
mand of parking the bike. Caulfield [41] used stated 
preference survey to do some research on B&R. Re-
cently, with the dramatic increase of sharing bike and 
rental bike programs in cities, there are many studies 
focused on demand prediction [42, 43]. For instance, 
a binary logit model of public bicycles was established 
by Wu [44] and Chen [45] to predict the demand of 
public bicycles of the rail transit station. Wardman 
[46] developed a choice model to identify the factors 
influencing the rate of cycling to work in the UK and 
the authors used this model to forecast future trends 
in urban commuting mode share. Mi [47] considered 
two factors (travel time and travel cost) in a utility func-
tion to build a logit model to get the possibility of bike 
transfer. 

Previous research mentioned above suggested 
that even though a lot of work has been done in the 
B&R topic, current research is limited to analysing the 
factors affecting the traveller’s choice and the poli-
cies of promoting the B&R system. Although there are 
some studies focused on the B&R demand forecast, 
the influencing factors from previous studies are ex-
cluded from those forecasting methods. Specifically, 
the obtained demand was fixed in previous forecasting 
studies without considering those influencing factors. 
However, with the change of these influencing factors, 
the traveller’s choice of whether to choose B&R travel 
mode also varies. In other words, the travel demand 
of B&R mode changes dynamically rather than being 
fixed. Thus, there is still a gap in the demand forecast 
for the B&R system with taking the influencing factors 
into consideration.

To fill this gap, this paper proposes a new demand 
forecast model considering the demand of B&R mode 
as dynamic rather than fixed to reach a higher fore-
casting accuracy. With specific analysis factors that 
lead to changes in demand, the entire B&R travel 
chain was divided into three main processes, and the 
factors in each process are converted into generalised 
costs. In this way, the generalised cost is a compre-
hensive indicator which leads to dynamic changing in 
demand. The UE model and the adaptive Frank-Wolf 
algorithm are employed to distribute the dynamic de-
mand of B&R in the network. The proposed non-fixed 
travel demand in the forecast can provide more real-
istic prediction and help rational configuration of the 
B&R facilities (bus stops and bicycle parking lots, etc.) 
and increase the efficiency of the system.

psychometric data to capture relatively intangible 
factors that influence the mode choice. Krizek and 
Stonebraker [16] analysed factors influencing the in-
tegration of bicycle and transit, such as transit mode, 
access, egress distance, and trip purpose. Chen 
[17] considered the factors affecting the B&R mode 
choice from three angles: socio-economic characters, 
trip features and residents’ perceptions for the ser-
vice level of B&R mode. Previous studies also found 
that bicycle facility is the main factor that influences 
the mode choice between bicycle and other modes  
[18-20]. Some researchers explored and found that the 
weather is also an important factor in the mode choice  
[21-23]; for instance, the bicycle users may be more 
sensitive to the rainfall and temperature than other 
mode users; however, bicycle-friendly facilities can 
attract riders back to riding. Heinen [24] conducted 
further exploratory research and found that residents 
always emphasise the convenience level, the cost and 
health benefits when deciding on the transportation 
mode. 

Regarding mode choice analysis, Taylor [25] em-
ployed a stated preference survey to explore the res-
idents’ choice preferences among private cars, P&R 
mode and the B&R mode. Wardman [26] adopted a 
multinomial logit model based on the revealed prefer-
ence and stated preference data, and found that pro-
tected non-motorised road or a completely segregated 
bike path, may encourage more residents to choose 
the bicycle. There were also some studies that em-
ployed the social equilibrium models and mathemat-
ical network models [27-29] to explore the B&R mode 
in terms of bicycle parking locations, bicycle network, 
route choice, bicycle activity patterns, etc. Yang [30] 
presented a mode choice model for B&R. Aziz [31] es-
timated a random parameter (mixed) logit model for 
active transportation (walking and bicycle) choices for 
work trips in the New York City. Chan [32] used a Struc-
tural Equation Model (SEM) to formulate the relation-
ship between the individual’s behavioural intention of 
using a public bicycle and its influencing factors. 

For improving the B&R system, researchers sug-
gested strategies to enhance the ratio of using B&R 
mode, such as ensuring the parking safety and conve-
nience at the public transport sites, taking the bicycle 
into public transport management system, giving the 
bicyclists more right-of-way [33, 34]. Pucher [35] point-
ed out that the key factors to improve the using rate of 
B&R are the service level of bicycle transfer facilities 
and the safety of bicycle parking. Chen [36] explored 
the correlation between the level of traffic stress (LTS) 
and bicycle crash by a mixed logit framework and they 
found that LTS has an effect on injury severity. Pucher 
[35], Lumsdon [37], and Martens [38] proposed new 
policies for authorities to improve the use of bicycles, 
such as infrastructure provisions, supportive land use 
planning, and restrictions on car use. Another study 
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3.2 Generalised cost

Factors influencing the decision making are usually 
translated into path impedance or utility. In this study, 
the generalised cost (negative effect) is used to de-
scribe the path impedance. Consequently, the dynam-
ic demand of B&R can be expressed as the response 
of B&R demand to generalised cost.

From the perspective of a complete B&R travel 
chain, the entire process can be divided into three 
main parts: the sub-process of public transport (tak-
ing conventional bus as an example), the sub-process 
of the bicycle, and the sub-process of the transfer be-
tween public transport and bicycle. The generalised 
cost of B&R mode will be analysed from these three 
sub-processes, respectively. The total generalised cost 
of the B&R travel is the sum of generalised costs in 
each stage.

The sub-process of the conventional bus
The generalised cost of the conventional bus con-

sists of the travel time in the bus, waiting time at the 
bus stop, the impedance for the crowded ride environ-
ment and the bus fare. In the algorithm, it can be ex-
pressed as follows:

u T W up
b

T
b

p
b

W
b

p
b

o
ba a= + +  (1)

where up
b is the generalised cost of a conventional bus 

on route p; aT
b is the cost of travel time on the bus;  

aW
b is the cost of the waiting time for a conventional 

bus; Tp
b is the travel time for the conventional bus on 

route p; Wp
b is the waiting time for the conventional bus 

on route p; uo
b is the fare for the conventional bus for all 

routes; up
b is the generalised cost for the conventional 

bus on route p.
For the network description, the Bureau of Public 

Roads (BPR) function [48], which is set by the U.S. 
Federal Highway Administration, is often used as an 
impedance of the road segment. This function can 
also be used in the B&R research. In general, the road  

The following part of this paper is organized as 
follows: Section 3 explains how to represent the dy-
namic demand of B&R in the model and introduces 
the UE model and adaptive Frank-Wolfe algorithm to 
distribute the dynamic demand of B&R in the network. 
In Section 4, a theoretical B&R network was designed 
to validate the feasibility and effectiveness of the pro-
posed framework. Finally, the concluding remarks and 
limitations are discussed in Section 5.

3. METHODOLOGY

3.1 Combined network of B&R 

Public transport and bicycles play different roles 
in urban transportation due to the difference in their 
capacity and accessibility. Their roles in urban trans-
portation are shown in Figure 1. These two transport 
modes supplement and collaborate with each other in 
urban transportation and form the B&R mode. Based 
on their different functions, the B&R network can be 
defined as a combined network composed of the pub-
lic transport network and the bicycle network.
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Conventional 
bus

Public 
bicycle

Small capacity
Short travel distance
High coverage density Medium capacity

Long travel distance
High coverage density

Capacity

Figure 1 – Different roles in urban transportation 

In order to provide a widely applicable model, the 
conventional bus network and bicycle network were 
chosen as representatives of the public transport net-
work and the transfer network. The transfer network is 
an abstract network which mainly reflects the mobility 
of travellers from the start location of the trip to the 
bus stop (or from the bus stop to the travel destina-
tion). A bicycle and public transport combined network 
(Figure 2) was simulated as G (N, A), in which N is a col-
lection of nodes and A is a collection of network edges. 
The nodes consist of conventional bus stop N1 and 
transfer site N2. The transfer site is where a traveller 
changes their travel mode from bicycle to public trans-
port. The public transport network edge A1, transfer 
network edge A2 are included in the network edges. 
The public transport network and the transfer network 
are connected via transfer sites.

Bus stop + transfer
site

Start/End
point
Transfer 
network

Public
transport network

Figure 2 – Bicycle and public transportation network 
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The consumption of physical energy can be esti-
mated according to its relationship with the travel time. 
As the travel time increases, the physical consumption 
also increases. The physical fatigue parameter can be 
expressed as a function of the travel time. In this paper, 
the Binomial function studied by Gong [51] is employed:

Y f T T Tp
pb

p
pb

p
pb

p
pb

1 2
2

x x= = +_ _i i  (6)

where Yp
pb is the consumption of physical energy; x1 

and x2 are parameters of the function and can be de-
termined according to a specific situation. It can be 
seen from the function that the physical consumption 
value increases with the increase of the distance. This 
can explain why bicycles are not suitable for long-dis-
tance trips.

The sub-process of transfer
In the transfer stage, the transfer time includes 

the walking time, the waiting time and the delay. The 
waiting time has been considered in the above two 
sub-processes. The walking time and the delay are two 
main factors that need to be discussed in this sub-pro-
cess. The walking time refers to the consumption of 
time in the process of completing the transfer between 
the bicycle and the public transport on foot. The delay 
represents the uncertainty that may be caused by the 
mode conversion and the subjective reluctance of the 
traveller, which is the inherently general cost of the 
transfer. The generalised cost for transfer is:

u Z up
t

z
t

p
t t

0a= +  (7) 

where up
t is the generalised cost; az

t is the unit time val-
ue; Zp

t is the walking time during the transfer process; 
u0

t is the inherent generalised cost of transfer between 
bicycle and bus; up

t is the generalised cost for transfer 
on route p.

The assignment method for this study is based on 
the route rather than the road segments. A variety of 
public transportation modes can be included in one 
route. This paper only selects the conventional bus as 
a generalised research object. The function of the gen-
eralised cost of route p for an arbitrary Origin Destina-
tion pair (OD) (r, s) is:

( , )u p a up
rs

a
a A At d

d=
,!

/  (8)

where up
rs is the generalised cost of route p for an ar-

bitrary OD pair r and s; when the road segment a is on 
route p which is between OD pairs r and s, d(p,a)=1, 
otherwise, d(p,a)=0; ua is the generalised cost for road 
augment; At represents the public transport network 
and Ad is the bicycle network.

3.3 Model description

The forecast and assignment of B&R demand are 
the basis for optimizing the configuration of the B&R 
system. The generalised cost of B&R will affect the 

traffic condition and the passenger flow are the two 
main factors related to the conventional bus travel 
time. Therefore, it can be shown as:

,T t
K

v v i S1
'

p
b

p
b
l

il il0
1 !a= + +d n< F  (2)

where Tp
b is the travel time for the conventional bus on 

route p; i is a random bus station on route p; tp
0 is the 

initial travel time of conventional bus which is affected 
by the road condition, and it can be obtained from the 
actual GPS data of public transportation vehicles; vil is 
the number of passengers who get on the bus before 
bus stop i and get off the bus after bus stop i; v'il is the 
number of passengers who get on the bus after bus 
stop i; Kb

l is the capacity of the conventional bus line l; 
a1 and b1 are the travel time parameters of the bus. S 
is the set of bus stations.

According to the Welding model [49, 50], when the 
passenger arrives at the bus stop randomly, the pas-
senger's expected waiting time is the sum of the half 
of the bus headway and the coefficient of variation of 
the bus headway. The waiting time at the bus stop can 
be shown as:

.W f CV0 5 1'p
b

s
l

2= + ^ h  (3)

where Wp
b is the waiting time at the bus stop; fs

'l is the 
departure frequency of line l at station s. CV is the 
headway variation coefficient. The headway time vari-
ation coefficient CV can be obtained by calculating 
the sample mean and biased deviation based on the 
actual headway distribution. CV can be predicted by 
assuming a distribution function.

The sub-process of the bicycle
Compared to the conventional buses, bicycles can 

serve immediately but need to consume some phys-
ical strength. Considering the factors that mainly af-
fect the traveller’s bicycle choice, such as cycling time, 
rental expenses and physical energy consumption, the 
generalised cost of bicycle travel on route p can be ex-
pressed as:

u T Y up
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t p
pb

y
pb

p
pb pbpb

0a a= + +  (4)

where up
pb is the generalised cost of bicycle travel on 

route p; at
pb is the cycling cost; Tp

pb is the travel time on 
a bicycle on route p; ay

pb is the parameter of physical 
energy consumption; Yp

pb is the parameter of fatigue 
caused by cycling on route p; u0

pb is the fee for renting 
a bicycle for all routes.

Travel time (Tp
pb) can be obtained from the length of 

route and the riding speed: 

T
V
L

p
pb

p
pb
p=  (5)

where Tp
pb is the travel time of riding on route p; Lp 

is the length of riding on route p; Vp
pb is the average 

speed of riding on route p.



Zhang S, Yu S, Deng S, Nie Q, Zhang P, Chen C. Dynamic Demand Forecast and Assignment Model for Bike-and-Ride System

Promet – Traffic & Transportation, Vol. 31, 2019, No. 6, 621-632 625

The relationship between the travel demand of a 
pair of OD points and the route impedance can be de-
scribed by a function:

,q D u r srs rs rs
min 6= ^ h  (10)

where Drs is a demand function with urs
min as a variable; 

urs
min is the minimum impedance from r to s; qrs is the 

travel demand between r and s.
Generally speaking, the demand function between 

all OD pairs has a substantially consistent form, except 
that the specific parameters of the heterogeneous 
pairs are different. These parameters are determined 
by the size of the population, their income, and car 
ownership in a specific trip generation zone, as well 
as the employment status, the ability to attract activ-
ities such as shopping and tourism. According to the 
dynamic demand analysis in the previous section, the 
travel demand function takes the form of a negative 
index:

expq Q a urs rs rs
min$ $= -^ h  (11)

where Qrs is a potential demand function, and param-
eter, a is related to the traffic analysis zone and used 
to characterise land use characteristics. Additionally, 
the demand function should be bounded because the 
amount of population and vehicles in a zone are limit-
ed. There is a constraint for this function:

q Q0 rs rs# #  (12)

Similar to the normal equilibrium model, the UE 
problem of dynamic demand can be described by the 
following model:
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where xa is the traffic flow on section a; ua(w) is the 
function of impedance; qrs is the travel demand be-
tween r and s; Drs

-1(w) is the inverse function of travel 
demand; Qrs is a potential demand function; fk

rs is the 
traffic flow on the k-th path between r and s; da,k

rs is a 
section path-related variable.

3.4 Adopted Frank-Wolfe algorithm

Frank-Wolfe algorithm is employed to optimise the 
solution in the model as described by Cho et al. [53]. 
Firstly, the objective function of the model is changed 
into another form with the route flow as a variable. 
The algorithm is also assumed to have been iterated 

travel demand of B&R mode and make the travel flow 
shift in the transportation network. Therefore, the dy-
namics of the travel demand is directly related to the 
generalised cost. In order to optimize B&R network 
configuration and improve traffic efficiency, it is very 
necessary to build a dynamic traffic assignment mod-
el with taking the generalised cost into consideration. 
The UE model which is based on the Wardrop’s first 
principle [52] has been used in the traffic network 
analysis. In the traditional traffic assignment issue, 
the travel demand is always assumed to be known and 
fixed. However, it is difficult to accurately describe the 
actual demand in the network. In this paper, the UE 
model is employed as the basic model and takes the 
generalised cost as a dynamic factor to build a more 
accurate demand forecast model for the B&R system.

Based on the analysis of the generalised cost, the 
change of the generalised cost is the change of imped-
ance. With the increase of impedance, the probability 
that the traveller chooses to travel by bicycles and pub-
lic transportation becomes smaller. Conversely, with 
the reduction of impedance, the travellers are more 
inclined to choose the B&R mode, so the demand for 
B&R becomes larger. Consequently, the form of a neg-
ative exponential function was used to represent this 
feature.

Q Q er $= an-  (9)

where Q is the maximum potential travel demand; Qr 
is the actual travel demand under a certain gener-
alised travel cost; n is the generalised cost in a trip; 
a is a dynamic demand parameter, which reflects the 
sensitivity of the traveller to the generalised cost; the 
specific value of a parameter can generally be deter-
mined through investigation.

A higher traffic demand brings busy traffic and busy 
traffic means higher route impedance. When the route 
impedance increases, the traveller may cancel some 
of the originally planned trips or change their destina-
tion, so the traffic demand between the original OD 
pairs will be reduced accordingly. The travel demand 
and the route impedance interact with each other, and 
eventually, they will reach an equilibrium state. 

In this issue, the amount of travel between two 
OD pairs, (r,s), is actually related to the impedance 
between the two points. The reason may be that the 
traveller with a travel plan changes their plan or can-
cels the plan directly, due to the fact that the available 
attraction points are all difficult to reach. Consequent-
ly, it not only affects the assignment of travel demand, 
but also the generation of travel. For the basic UE mod-
el, it is assumed that the amount of travelling between 
each pair of the OD pairs is fixed. In other words, it 
would not be affected by the impedance. In contrast, 
the UE model with considering of generalised cost 
treats that demand as a variable.
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q q p qrs
n

rs
n

rs rs
n n1 m= + -+ ^ h  (16)

The algorithm for solving the user equilibrium mod-
el of the B&R network under dynamic demand is as 
follows and the process is shown in Figure 3:
1) Initialization. In this step, we initialize n=1. Firstly, 

the network is extended to a combined network 
of bus networks and bicycle networks. Then, a 
set of road segment traffic flow, {xa

0, 6a}, and 
OD demand, {qrs

1, 6a, s}, that satisfy the con-
straints of the model need to be set. For example,  
{xa

0=0, 6a} was assumed in this paper, then, de-
termine qrs

1 based on the maximum OD travel de-

mand .Q q
Q
2e.g.rs rs

rs1 =b l  Finally, according to All 
or Nothing (AON) algorithm, qrs

1 is assigned on the 
network with a road segment traffic flow {xa

0, 6a}.
2) Update the impedance for each edge of the net-

work. Calculate the value of Drs
-1(qrs

n), based on the 
function ua

n=ua(xa
n)6a. 

3) Next iteration. Calculate the shortest path and 
minimum impedance crs

n between OD pairs (r, s) 
based on {ua(xa

n): 6a}, and consider the following 

n times. Corresponding to the traffic flow of route fn, 
the traffic flow of road segments and travel demand 
are xn and qn, respectively. In order to obtain the it-
eration direction of the objective function, the model 
was decomposed into multiple independent sub-prob-
lems corresponding to each OD point pair. When all 
sub-problems are solved, the corresponding road seg-
ment flow and the OD demand are generated. Optimal 
iteration step value m can be obtained based by dichot-
omy based on the traffic flow of the road segment and 
OD demand:

: ( ) ( ) ( )min Z u w dw D w dw
(

a rs

q p q

rs

x y x

a

1

00

rs
n

rs
n

rs
n

a
n

a
n

a
n

m = -
mm

-
+ -+ -^ ^h h

// ##  (14)

where parameter m meets the restriction: 0≤m≤1; xa
n 

is road segment flow after n times iteration; ya
n is addi-

tional traffic after n times iteration; qrs
n is travel demand 

after n times iteration; prs
n is additional demand after n 

times iteration.
The updated traffic flow of the road segment and 

OD demand can be obtained by:

x x y xa
n

a
n

a a
nn1 m= + -+ ^ h  (15)

Figure 3 – Process of algorithmic solution
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edges, and 8 OD pairs. The bus lanes in this network 
are all bidirectional. The square node is the starting 
point, and the round node is the bus stop.  To simplify 
the structure of the network and the process of calcu-
lation, this paper makes some assumptions as follows:
i) The distance between the bicycle parking lot and the 

bus stop (starting/end point) is 0.
ii) The capacity of the road between the two bus stops 

is 700 persons/hour and the capacity of the trans-
fer road (the road between the start point/end 
point and the bus stop) is 3,000 persons/hour. 

iii) The initial impedance of roads between bus stops is 
assumed in Table 1.

iv) The potential travel demand between each OD pair 
and the dynamic demand parameter a for the func-
tion of dynamic demand, ( ),expQ Q a tr $ $= -  is also 
assumed in Table 2.

4.2 Simulation

Based on the analysis in the previous chapter, the 
model can be executed in the following steps.

As shown in Figure 4, the original OD points are the 
nodes that coincide with the bus stop. Therefore, it is 
necessary to extend those nodes to obtain new OD 
points and make assumptions about whether the trav-
eller would use a bicycle as a transfer vehicle at these 
new OD points (Table 3).

Based on the extended nodes, the impedance and 
capacity assumed previously, the extended adjacency 
matrix can be obtained (Table 4).

situation to determine the additional traffic: (i)  
cm

rsn≤Drs
-1(qrs

n): let prs
n=Qrs -1 and assign prs

n to the 
shortest path with All or Nothing (AON) algorithm 
and correspondingly increase the additional traffic 
za

n  of each road segment on the shortest path; (ii)  
cm

rsn> Drs
-1(qrs

n): let prs
n=0 and, consequently, the addi-

tional traffic of each road segment on the shortest 
path is unchanged.

4) Determine the step value for iteration. Use the di-
chotomy to find the optimal value m.

5) Determine the new iteration starting point with 
the following function: xa

n+1=xa
n+m(za

n-xa
n), qrs

n+1=qrs
n+ 

m(prs
n -qrs

n).
6) Test convergence. If the result meets the following 

restriction, the calculation would be stopped; else 
return to Step 2 and let n=n+1.
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where f is a predetermined small positive 
number.

7) End of the algorithm.

4. MODEL SIMULATION

4.1 The description of simulated B&R network 

In this simulation, a simulated B&R network was 
constructed. Based on the simplified public transport 
network, a B&R network was constructed as shown in 
Figure 4. The example network consists of 17 nodes, 20 

Table 1 – Initial impedance of roads between bus stops

Node 1 2 3 4 5 6 7 8 9
1 0 2 — 2 — — — — —
2 1 0 4 — 3 — — — —
3 — 3 0 — — 2 — — —
4 3 — — 0 1 — 4 — —
5 — 2 — 2 0 2 — 1 —
6 — — 3 — 3 0 — — —
7 — — — 3 — — 0 5 —
8 — — — — 2 — 4 0 2
9 — — — — — 3 — 2 0

Table 2 – Assumed parameters in this model

Start point 1 2 3 4 6 7 8 9
End point 9 8 7 6 4 3 2 1
Potential demand 1,000 900 800 950 880 920 700 960
Dynamic demand parameter (a) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table 3 – Original OD point and extended node

Original OD point 1 2 3 4 6 7 8 9
Extended node 10 11 12 13 14 15 16 17
Bicycle 1 0 1 1 0 1 1 0
Impedance 1 3 1 1 3 1 1 3
Capacity 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000

Note: The value for the bicycle is defined in that if a traveler uses bicycle as transfer vehicle, its value is 1, otherwise, its value is 0.
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According to the extended adjacency ma-
trix and extended capacity matrix, together 
with the function of impedance and traffic flow, 

. ,t W C
X X1 0 15 0
max

1
1

4
$ $= + =b b ^l l h  the impedance 

matrix of road segment can be obtained (Table 4). 
Based on the impedance matrix of the road seg-

ment, OD points and Dijkstra's algorithm, the shortest 
path and the smallest impedance can be obtained 
(Table 5). 

Based on the dynamic demand function,
( ),expQ Q a tr $ $= -  where a is the dynamic demand 

parameter, t is the smallest impedance, the actual 
travel demand can be obtained (Table 6).

Then, the All or Nothing (AON) algorithm was em-
ployed to assign the actual demand to the shortest 
path. Then, the assigned travel flow after the first as-
signment process can be obtained (Table 7).

The next job is updating the impedance of each 
segment to find the following iteration direction, and 
determining the addition flow based on different con-
straints. The iteration step size is determined by using 
the dichotomy. Following these, the new iteration start 
point can be obtained.

Finally, with the end of the iterations and conver-
gence test, the final assignment result can be ob-
tained (Tables 8-10). The traffic demand of B&R with 
considering the generalised cost can be assigned as 
shown in Figure 5.

11
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171615

Figure 4 – Combined network of bus and bicycle

Table 4 – Extended adjacency matrix

Node 1 2 3 4 5 6 7 8 9 10 11 12 13
1 0 2 0 2 0 0 0 0 0 1 0 0 0
2 1 0 4 0 3 0 0 0 0 0 3 0 0
3 0 3 0 0 0 2 0 0 0 0 0 1 0
4 3 0 0 0 1 0 4 0 0 0 0 0 1
5 0 2 0 2 0 2 0 1 0 0 0 0 0
6 0 0 3 0 3 0 0 0 2 0 0 0 0
7 0 0 0 3 0 0 0 5 0 0 0 0 0
8 0 0 0 0 2 0 4 0 2 0 0 0 0
9 0 0 0 0 0 3 0 2 0 0 0 0 0

10 1 0 0 0 0 0 0 0 0 0 0 0 0
11 0 3 0 0 0 0 0 0 0 0 0 0 0
12 0 0 1 0 0 0 0 0 0 0 0 0 0
13 0 0 0 1 0 0 0 0 0 0 0 0 0

Note: Some nodes have been omitted due to layout reasons

Table 5 – The shortest path and smallest impedance

r s The shortest path The smallest 
impedance

10 17 10-1-4-5-8-9-17 10
11 16 11-2-5-8-16 8
12 15 12-3-6-9-8-7-15 12
13 14 13-4-5-6-14 7
14 13 14-6-5-4-13 9
15 12 15-7-4-5-6-3-12 11
16 11 16-8-5-2-11 8
17 10 17-9-8-5-2-1-10 11

Table 6 – Result of dynamic demand

Start point – end point 10-17 11-16 12-15 13-14 14-13 15-12 16-11 17-10
Q 1,000 900 800 950 880 920 700 960
Smallest impedance (t) 10 8 12 7 9 11 8 11
Dynamic demand parameter (a) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Qr 904.8 830.8 709.5 885.8 804.3 824.2 646.2 860.0

Note: A unified value for a is assumed as 0.01.
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5. CONCLUSION 
This study proposes a dynamic demand forecast 

and assignment model to predict the demand of the 
B&R system more accurately, help rationally configure 
the B&R facilities (bus stops and bicycle parking lots, 
etc.) and increase the efficiency of the system. In this 
paper the B&R process has been divided into three 
main sub-processes and the effective factors in each 
sub-process have been transferred into the generalised 
cost so that the change of the B&R demand was reflect-
ed by the change of generalised cost. For modelling this 
process, this paper introduced a UE model that adopt-
ed the Frank-Wolfe algorithm to optimize the solution 
in the model. Finally, the proposed method was verified 
by a simulation on a theoretical network. The research 
framework reflects the response of the B&R demand 
to generalised cost more realistically by the non-fixed 
demand forecasting process, which could help decision 
makers and engineers to design the B&R facilities with-
out unnecessary losses.
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Figure 5 – Optimized traffic flow assignment

Table 7 – Assigned travel flow of the first assignment process

Node 1 2 3 4 5 6 7 8 9 10 11
1 0 0 0 904.8 0 0 0 0 0 860.0 0
2 860.0 0 0 0 830.8 0 0 0 0 0 646.2
3 0 0 0 0 0 709.5 0 0 0 0 0
4 0 0 0 0 2,614.8 0 0 0 0 0 0
5 0 1,506.2 0 804.3 0 1,709.9 0 1,735.6 0 0 0
6 0 0 824.2 0 804.3 0 0 0 709.5 0 0
7 0 0 0 824.2 0 0 0 0 0 0 0
8 0 0 0 0 1,506.2 0 709.5 0 904.8 0 0
9 0 0 0 0 0 0 0 1,569.5 0 0 0

10 904.8 0 0 0 0 0 0 0 0 0 0
11 0 830.8 0 0 0 0 0 0 0 0 0

Note: Some nodes have been omitted due to layout reasons

Table 8 – Final assignment of traffic flow of road segment

Node 1 2 3 4 5 6 7 8 9 10 11
1 0 182.5 0 665.3 0 0 0 0 0 588.1 0
2 820.2 0 96.1 0 654.9 0 0 0 0 0 342.9
3 0 256.8 0 0 0 243.1 0 0 0 0 0
4 78.4 0 0 0 1,358.4 0 241.2 0 0 0 0
5 0 923.6 0 614.4 0 916.9 0 1,086.6 0 0 0
6 0 0 449.1 0 612.9 0 0 0 235.6 0 0
7 0 0 0 520.2 0 0 0 0 0 0 0
8 0 0 0 0 915.3 0 233.7 0 534.4 0 0
9 0 0 0 0 0 15.6 0 805.2 0 0 0

10 537.2 0 0 0 0 0 0 0 0 0 0
11 0 551.3 0 0 0 0 0 0 0 0 0

Table 9 – Final OD demand

Start Point 10 11 12 13 14 15 16 17
End Point 17 16 15 14 13 12 11 10
Demand 877.29 821.73 706.76 861.39 801.497 800.19 635.69 839.77

Table 10 – Final minimum impedance

Start Point 10 11 12 13 14 15 16 17
End Point 17 16 15 14 13 12 11 10
Minimum Impedance 13.224 9.187 12.516 9.888 9.436 14.094 9.733 13.516
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There are also some limitations in this work, (1) it 
only considers the conventional buses as representa-
tive public transport in the B&R system that is com-
posed of many kinds of traffic modes in reality; (2) it 
does not consider all the factors that have an impact 
on the generalised costs, other important factors such 
as distance from origin to bus stop, delay and frequen-
cy of public transport that can also make difference to 
the generalised cost. Future studies can extend to the 
dynamic demand of the B&R focus on those domains.
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自行车和公共交通联合出行动态需求预测和分配模
型

摘要：

自行车和公共交通联合出行(B&R)一直以来都被认为
是解决诸如城市交通拥堵、尾气排放、出行公平等问题的
有效途径。尽管许多学者在B&R的需求预测方面进行了大
量的研究，但是所用的需求预测模型中缺少对影响出行者
B&R方式选择的影响因素的考虑。为了提高需求预测的准
确性，在分析影响出行者B&R方式选择因素的基础上，本
文将B&R的需求视为动态变化的而非固定的量，提出了一
个新的B&R动态需求预测和分配模型。为验证模型的可行
性和有效性，本文将该模型在抽象网络中进行了测试，结
果表明广义成本确实对B&R方式的需求产生了影响。

关键词：自行车与公共交通联合出行；动态交通需
求；广义费用；用户均衡模型；FRANK-WOLFE算
法；
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