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ABSTRACT

Most of the microscopic traffic simulation programs 
used today incorporate car-following and lane-change mod-
els to simulate driving behaviour across a given area. The 
main goal of this study has been to develop an automatic 
calibration process for the parameters of driving behaviour 
models using metaheuristic algorithms. Genetic Algorithm 
(GA), Particle Swarm Optimization (PSO), and a combination 
of GA and PSO (i.e. hybrid GAPSO and hybrid PSOGA) were 
used during the optimization stage. In order to verify our 
proposed methodology, a suitable study area with high bus 
volume on-ramp from the O-1 Highway in Istanbul has been 
modelled in VISSIM. Traffic data have been gathered through 
detectors. The calibration procedure has been coded using 
MATLAB and implemented via the VISSIM-MATLAB COM 
interface. Using the proposed methodology, the results of 
the calibrated model showed that hybrid GAPSO and hybrid 
PSOGA techniques outperformed the GA-only and PSO-only 
techniques during the calibration process. Thus, both are 
recommended for use in the calibration of microsimulation 
traffic models, rather than GA-only and PSO-only techniques.

KEY WORDS
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1. INTRODUCTION
In recent years, advances in computing hardware 

technology and new traffic engineering applications 
have led to greater use of traffic simulations in the 

analysis of complex interactions between various traf-
fic components [1]. Microscopic traffic models are 
those based on the principle of the movement of each 
individual vehicle or pedestrian included in the traffic, 
taking account of actions and decisions such as ac-
celeration, deceleration, and lane/trajectory changes 
in response to the surrounding conditions [2]. A wide 
variety of traffic simulation software is either commer-
cially or freely available on the market. Some exam-
ples of this microsimulation software include VISSIM, 
AIMSUN, CORSIM, PARAMICS, MITSimLab, FRESIM, 
DRACULA, and SUMO. Although a wealth of microscop-
ic traffic simulation software is available, traffic simu-
lation studies still lack a unified perspective in terms 
of mimicking the real-world conditions. Having a fine-
tuned and best-matched simulation model which rep-
resents the real-life behaviour of drivers, is of pivotal 
importance to traffic engineers. Thus, before any anal-
ysis can take place, models need to be calibrated to be 
able to represent real-life conditions. The calibration 
process has the objective of finding the statistically 
significant values of model parameters based on data 
collected from the field [3]. From these samples, the 
performance of a traffic model can be determined by 
employing statistical analysis with respect to various 
measures [4, 5]. 

The validity of the model can be done simply in 
terms of the probability that the difference between 
the observed and simulated output is of less than a 
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highway in Istanbul, Turkey. Section 5 discusses the 
results of the calibration and optimization process in 
detail, followed by our conclusion and suggestions for 
future research.

2. BACKGROUND
In this section, VISSIM driver behaviour models in-

cluding car-following, lane-change, their parameters’ 
description, and optimization methods are discussed 
briefly.

2.1 VISSIM Car-following and Lane-change 
models description

Many studies opt to use default car-following and 
lane-changing parameters. However, the traffic com-
position, network geometry, vehicle ages, engine size, 
and (most of all) driver behaviour vary significantly in 
different parts of the world. Thus, the default param-
eters of the simulation software should be carefully 
examined in order to obtain reliable results. As an ex-
ample, it has been noted that lane-changing is a high-
ly strong characteristic of Istanbul traffic and drivers 
are frequent and aggressive in cutting and overtaking, 
taking every opportunity to change lanes at the slight-
est opening [17]. As explained in [12], the two mod-
els of driving behaviour parameters are Wiedemann 
74 (W74) and Wiedemann 99 (W99). The W74 model, 
generally, has been used for urban arterials and merg-
ing areas. The W99 has been utilized in modelling 
freeways and diverging areas. Tables 1-4 outline the 
general parameters, lane-changing, W74, and W99 
models parameters respectively. The first column con-
tains the ID of each parameter used by VISSIM during 
COM interface, along with the parameter description, 
their range, and default values in other columns.

2.2 Evolutionary Algorithms

Generally, all EAs consist of a number of common 
steps, including initialization, variables/parameters 
definition, objective function definition, iteration steps, 
stopping criteria. There is a small difference in the 
procedure required for various types of EA. The two 
most frequently used EA algorithms are GA and PSO. 

delineated tolerable difference [2]. Various optimiza-
tion methods have been employed to minimize the dif-
ference between the observed and simulated outputs. 
These include GA [6–8], SPSA [9], PSO [10], OQMS [4], 
and a combination/comparison of various of these [5, 
11]. The aforementioned studies show that GA is the 
optimization method most favoured by researchers 
because of its ease-of-implementation. However, no 
information exchange is taking place between individ-
uals during the GA process. For instance, in the selec-
tion stage, the members of the initial population have 
no direct competition to being selected and neither do 
parents in the crossover stage experience any informa-
tion exchange with each other or that of the offspring 
created by them. On the other hand, when a mutation 
occurs, this mutant lacks the right direction. These are 
the reasons for lower performance of GA compared to 
other techniques. 

This study outlines an automatic calibration pro-
cess for driving behaviour model parameters using 
metaheuristic algorithms. The Genetic Algorithm (GA), 
Particle Swarm Optimization (PSO), and a combination 
of GA and PSO (i.e. hybrid GA and hybrid PSO) were 
utilized for optimization purposes. A case study of an 
urban highway section is presented within the micro-
simulation environment of VISSIM [12]. The main con-
tribution provided by the proposed methodology is a 
hybrid method for overcoming the limitation of single 
optimization algorithms in order to yield better results 
in a fully automatic way. Four optimization algorithms 
– namely, GA, PSO, GAPSO, and PSOGA – were coded 
in MATLAB and the results compared in order to find 
the most suitable to be used in the VISSIM calibration 
process. The Component Object Model (COM) ability 
of VISSIM was employed to provide a bridge for the 
exchange of information between MATLAB and VIS-
SIM and an automated calibration process. Although 
hybrid PSO and hybrid GA are used in other fields of 
study [13–16], this study is the first that implemented 
a combination for the calibration of traffic microsimu-
lation parameters.

Other sections of the study deal with a brief liter-
ature review of the driving behaviour models, param-
eters, and optimization algorithms. The proposed 
calibration methodology is described in Section 3. 
This is followed by a real-world application of the pro-
posed calibration methodology as tested on an urban  

Table 1 – General Parameters

IDrivingBehavior Parameter description Range Default

LookBackDistMax Max. look back distance [m] 50 ~ 200 150

LookAheadDistMax Max. look ahead distance [m] 100 ~ 300 250

ObsrvdVehs No. of observed preceding vehicles [veh] 1.00 ~ 5.00 2.00

StandDist Standstill distance in front of static obstacles [m]     0.00 ~ 3.00 0.50
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each stage, GA selects initial population (generation) 
randomly, selects parents from among the current 
population, and combines selected parents to pro-
duce offspring (children) for the next generation during 
the crossover process using various methods such as 
single-, double-point crossover, or uniform crossover. 
There are several tuning elements which are involved 
in GA, including the number of initial population, max-
imum iteration number, crossover percentage, mu-
tation percentage, mutation rate, etc. Detailed infor-
mation concerning how sensitivity analysis of tuning 
elements influences the GA is described in Section 5 

Evolutionary algorithms differ from a classical, deriv-
ative-based, optimization algorithm in two main ways, 
as summarized in Table 5.

Genetic Algorithm
GA [18] is one of the best-known population-based 

(biological) example among EAs. It has been used 
for both binary and continuous forms in single and 
multi-objective optimization processes. All GA forms 
generally possess common rules including selection, 
crossover, and mutation, at each step creating new 
chromosomes (generation) from the existing ones. At 

Table 2 – Lane-changing model parameters

IDrivingBehavior Parameter description Range Default
DecelRedDistOwn Reduction rate for leading (own) vehicle [m] 100 ~ 200 200
AccDecelOwn Accepted deceleration for leading (own) vehicle [m/s2] -3.00 ~ 0.50 -1.00
MinHdwy Min. spacing (headway) [m] 0.50 ~ 3.50 0.50
SafDistFactLnChg Safety distance reduction factor 0.10 ~ 0.60 0.60
CoopDecel Max. deceleration for cooperative lane-change/braking [m/s2] -6.00 ~ 3.00 -3.00

CoopLnChgSpeedDiff Max. speed difference for cooperative lane-change/braking 
[m/s] 5.00 ~ 20.00 10.80

MaxDecelOwn Max. deceleration for leading (own) vehicle [m/s2] N.A -4.00
MaxDecelTrail Max. deceleration for following (trailing) vehicle [m/s2] N.A -3.00
DecelRedDistTrail Reduction rate for following (trailing) vehicle [m] N.A 200
AccDecelTrail Accepted deceleration for following (trailing) vehicle [m/s2] N.A -0.50

Table 3  – Wiedemann 74 car-following model parameters

IDrivingBehavior Parameter description Range Default
W74ax Average standstill distance 0.50 ~ 2.50 2.00
W74bxAdd Additive factor for security distance 0.70 ~ 4.70 2.00
W74bxMult Multiplicative factor for security distance 1.00 ~ 8.00 3.00

Table 4  – Wiedemann 99 car-following model parameters

IDrivingBehavior Parameter description Range Default
W99CC0 Desired distance between lead and following vehicle [m] 0.60 ~ 3.05 1.50

W99CC1DISTR Headway Time [s]
Desired time between lead and following vehicle 0.50 ~ 1.50 0.90

W99CC2 Following Variation [m]
Additional distance over safety distance that a vehicle requires 1.52 ~ 6.10 4.00

W99CC3
Threshold for Entering ‘Following’ State [s]
Time in seconds before a vehicle starts to decelerate to reach safety 
distance (negative)

-15.00 ~ -4.00 -8.00

W99CC4 Negative "Following Threshold" [m/s]
Specifies variation in speed between lead and following vehicle -0.61 ~ 0.03 -0.35

W99CC5 Positive "Following Threshold" [m/s]
Specifies variation in speed between lead and following vehicle 0.03 ~ 0.61 0.35

W99CC6 Speed dependency of oscillation [1/ms] 7.00 ~ 15.00 11.44

W99CC7 Oscillation Acceleration: Acceleration during the oscillation process 
[m/s2] 0.15 ~ 0.46 0.25

W99CC8 Standstill Acceleration [m/s2] 2.50 ~ 5.00 3.50
W99CC9 Acceleration with 80 km/h [m/s2] 0.50 ~ 2.50 1.50
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There are several stopping criteria for both GA and 
PSO, including Max Stall Iterations, Function Toler-
ance, Max Iterations, OutputFcn or PlotFcn, Objective 
Limit, and Max Stall Time. However, we use only Max 
Number of Iterations (MaxIt) as stopping criteria for 
the proposed method because we wanted to let all the 
methods perform a similar number of function evalu-
ations.

3. PROPOSED CALIBRATION 
METHODOLOGY
There exist two types of methods for Driving Be-

haviour Parameters (DBP) calibration; (1) calibration 
of DBP using trajectory data (lane-changing, accelera-
tion, deceleration, etc.) extracted from video files using 
image-processing techniques [22–24]; (2) calibration 
of DBP using traffic flow measurement data (volume, 
speed, etc.) collected by detectors [6, 25, 26]. As we 
do not possess the capabilities for automatic image 
processing, we used the latter approach. Figure 1 illus-
trates the whole picture of the proposed methodolo-
gy. Each part of the flowchart is described in detail in 
the following sections. As noted in Section 2.2, all EAs  
consist of a number of common steps (top of the opti-
mization flow) while each algorithm has its own opera-
tor (bottom of the optimization flow).

3.1 Objective (i.e. error) function definition

As noted in the background, there are many sin-
gle and multi-objective functions used to minimize  

the error of simulated and observed data. The  Root 

of [19]. We use uniform random selection for initial 
population, an arithmetic crossover (a kind of uniform 
crossover), create and add noise (random number) 
using Normal Distribution (with mean=0 and vari-
ance=sigma) for improving selected offspring during 
the mutation stage, and following settings for the GA 
elements given in Table 6.

Particle Swarm Optimization
PSO, firstly introduced by [20], is also a popula-

tion-based algorithm but it uses particle swarms of 
intelligence ability; for instance, the behaviour of fish 
when they are confronted with a shark. PSO is an al-
gorithm for continuous variables, but with some mod-
ification it can be used in discontinuous optimization 
problems, too [21]. PSO begins with a determination 
of the position and velocity of each individual (parti-
cle) and proceeds with a calculation of the objective 
function based on that particle's location. Then, the 
objective function values are to be compared with 
global objective function values, with the better one 
assigned as a global objective value. The new velocity 
and position of the particles are calculated based on 
the best particle information. The main advantage of 
PSO is that an information flow exists between all par-
ticles at each moment. This means that all particles 
use other information to find the best solutions. This 
capacity of PSO is used for solving GA limitation is-
sues, particularly during the selection, crossover, and 
mutation stages. 

Table 6 – GA operator settings for the current proposed methodology

Table 7 – PSO operator settings for the current proposed methodology

Table 5 – Classical and evolutionary algorithm differences

Classical algorithm Evolutionary algorithm
Generates a single point at each iteration. The sequence 
of points approaches an optimal solution. 

Generates a population of points at each iteration. The best 
point in the population approaches an optimal solution.

Selects the next point in the sequence by a deterministic 
computation.

Selects the next population by computation which uses  
random number generators.
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Z       – general form of objective function (here 

        based on speed and traffic volume); 

the error of simulated and observed data. The Root 
Mean Square Error (RMSE) [5, 27, 28] and the Mean 
Absolute Normalized Error (MANE) [4, 11, 29, 30] fall 
among several multi-objective functions used in pre-
vious studies for the calibration of VISSIM simulation 
model parameters and are widely used around the 
world. The developed code, here, can perform the opti-
mization process based on both single (e.g. speed-on-
ly, volume-only, and occupancy rate) and multi-objec-
tive functions. In this study, we tried to minimize the 
error between simulated and observed data utilizing 
MANE and RMSE objective functions formula:

Create simulation 
model in VISSIM 

using collected data

Data
collection
via RTMS

Study
 area selection

Define 
optimization 

indicators

Generate initial 
population of parameters

RUN
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Evaluate objective 
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Figure 1 – Flowchart of the proposed methodology
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or decreasing the number of MaxSubItGA and Max-
SubItPSO. The order of the operation of the GA op-
erator and the PSO operator is related to the hybrid 
type used for the calibration. As seen below for in-
stance, in hybrid GA-PSO, initial position and velocity 
of particles (here driving behaviour parameters) are 
determined randomly over the search space. Then, 
the crossover and mutation operators of GA are ap-
plied for each particle in swarm separately to improve 
the diversity of the population and find better sets 
of parameters. The information (position, velocity) of 
each particle was calculated and compared with their 
previous information and also with the global best. If 
new information is better than the previous person-
al best and global bests both of them were updated 
based on new information. The solutions obtained by 
the GA operator are given as initial population of the 
PSO; PSO operator starts to search within the search 
space around the best particle by introducing swarm 
intelligence as explained in Section 2.2. It attracts 
the particles toward the actual best position while 
maintaining the parameters diversity to gain the new 
best in every iteration compared to the previous itera-
tion. The proposed Pseudo code of GAPSO algorithm 
for VISSIM calibration is presented below.

Xi      – vector of continues parameters (e.g. W74  
        or W99 Car-following models  
        + Lane-change model parameters);
LbXi, UbXi – lower and upper value of parameter Xi  
        (e.g. CC1: Lbcc1= 0.5 and Ubcc1=1.5 s);
Vobsj, Sobsj – observed traffic volume and speed  
        collected by detectors; 
Vsimj, Ssimj – simulated traffic volume and speed by  
        VISSIM; 
N      – total number of data collection  
        intervals (e.g. for one hour observation  
        (3,600 sec) with two minutes intervals  
        (120 sec), it is equal: N=3,600/120=30).

3.2 Programming of the optimization process

Implementation of the iteration step of the pro-
posed flowchart in Figure 1 needs to be programmed 
using the aforementioned required information on GA 
and PSO algorithms. MATLAB was used to develop a 
code for the fully-automatic calibration procedure. To 
this end, the COM interface features between VISSIM 
and MATLAB are studied to integrate the code writ-
ten in MATLAB with microscopic model simulated in 
VISSIM. For the optimization process, during the cali-
bration procedure, one of GA, PSO, or a combination 
of both can be used. We coded our own algorithm 
structures for GA, PSO, and hybrid without utilizing 
the optimization toolbox of MATLAB. This increased 
the flexibility of our proposed methodology and gave 
us the opportunity to extend/improve the code for 
further studies noted in the conclusion part. Possible 
options for the optimization process in the proposed 
methodology were as follows: GA-only, PSO-only, 
PSOGA (called hybrid PSO), GAPSO (called hybrid GA).

There are several possible combinations of GA 
and PSO for the hybrid method used in other fields 
of studies [14, 31, 32]. All try to use the advantages 
of local search capability of GA and social thinking 
ability of PSO as both algorithms have strengths and 
weaknesses. They concluded that the combination of 
standard PSO and standard GA resulted in better per-
formance compared to the use of single algorithms. 
Some of them used only one or more operators of GA 
such as using crossover and mutation operators in 
the PSO for improving and balancing PSO’s explora-
tion and exploitation ability [14]. Others use the abil-
ity of PSO in saving and updating the personal and 
global best in GA [33]. In the proposed methodology, 
as seen in the optimization process flow of Figure 1, 
the initial population of PSO is created and assigned 
by the GA operator. The total numbers of iterations 
are equally shared by GA and PSO, if MaxSubItGA and 
MaxSubItPSO are set to 1. In other words, in every 
iteration, the code runs one GA and one PSO oper-
ator. A user can also modify the share of using the 
GA and PSO operators in every iteration by increasing 
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just considered the flows in the European to Asian-
side direction. There are two Remote Traffic Micro-
wave Sensor (RTMS) devices installed in the upstream 
(No. 303) and downstream (No. 60) of the bottleneck 
area which provide presence indication and accurate 
measurements of volume, occupancy, and speed with 
a detection range (increment) of 0.4 m (1.3 ft) for 
each two-minute time interval in 7/24 duration. The 
one-week data (07.05.18 - 14.05.18) of RTMS detec-
tors from 6:00 AM to 10:00 PM provided by Istanbul 
Metropolitan Municipality, Traffic Control Center (IMM-
TCC) was analysed in order to select the start and end 
time-point of the capacity drop phenomena during the 
morning and evening peak hours. In this study, traffic 
conditions between 14:30-15:30 are modelled includ-
ing an un-congested flow, transition condition, and 
congested flow conditions. 

Simulation of the study area using VISSIM
The well-known microsimulation software, VISSIM 

version 10 [12] was used to create a microscopic mod-
el of the Yıldız merging area. In the base model, we use 
the default values of parameters for driving behaviour 

4. REAL-WORLD APPLICATION
In order to test the proposed calibration method, 

a case study area was selected and the proposed 
methodology implemented on the simulated highway 
stretch. For this purpose, one segment of the O-1 High-
way in Istanbul, Turkey, specifically the Yıldız junction, 
was selected. A bottleneck area is formed at Yıldız 
junction through one mixed traffic lane and a spatial 
bus priority lane merging into three-lane mainline 
[34]. The driving and lane-changing behaviour in this 
specific section are observed to be peculiar due to its 
distinct geometry and traffic composition, as shown in 
Figure 2.  

Data collection procedure
As shown in Figure 2, the Yıldız merging area of the 

O-1 highway consists of three lanes with mixed traffic 
flow per direction. Due to the distribution of residen-
tial and business districts in Istanbul, the majority of 
Bosporus crossings go from the Asian side to the Euro-
pean side in the morning hours, with the opposite flow 
appearing in the evening hours [35, 36]. This study 
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Figure 2 – A schematic view of Yıldız merging area in O-1 Highway in Istanbul

Figure 3 – Modelled study area by VISSIM (left) vs. Bird’s eye view of study area (right); Source: Google Earth
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“ObsrvdVehs”), W74, and lane-change model param-
eters. Table 8 presents the obtained MANE and RMSE 
values. As shown in Table 8, the simulation with default 
values of the driving behaviour and lane-change pa-
rameters yielded worse MANE and RMSE values com-
pared to simulations with calibrated parameters using 
any of the metaheuristic methods examined. It can 
also be seen that GAPSO, PSOGA algorithms have the 
best MANE values of 0.353 and 0.366 as well as the 
best RMSE values of 9.080 and 9.466, respectively.

Table 9 presents the optimized parameters ob-
tained using GA, hybrid GA, PSO, hybrid PSO, and de-
fault parameters. For example, the value of “DecelRed-
DistOwn” and “AccDecelOwn” which is calibrated by 
GAPSO is 137 m and -1.62 m/s2, in comparison to 
default values of 200 m and – 1.00 m/s2, respectively. 

Figure 4 shows the best MANE values obtained by 
GA, hybrid GA, PSO, and hybrid PSO algorithms with 
respect to the Number of Function Evaluations (NFE). 
The value of objective function MANE was calculated 
by using Equation 1. The x-axis denotes the number of 
function evaluations and y-axis represents the mini-
mum objective function (MANE) value up to every NFE. 

Figure 5 shows the best RMSE values obtained by 
GA, hybrid GA, PSO, and hybrid PSO algorithms with 
respect to NFE. The value of objective function RMSE 
was calculated using Equation 2. The x-axis denotes the 
number of function evaluations and y-axis represents 
the minimum objective function (RMSE) value up to 
every NFE. 

models. After simulation, we compared simulated traf-
fic volumes and speeds at detectors for every two-min-
ute interval with the measured values. A comparison 
between the modelled data and observed data reveals 
that there is a significant difference between these 
two sets of data. It justifies the need for formulating 
a calibrated model based on actual traffic condition 
before making a scenario analysis. The results of the 
optimization process and the driving behaviour mod-
el parameters using the proposed calibration method 
are discussed in detail in Section 5.

VISSIM simulation and evaluation settings
The following values for the simulation and eval-

uation attributes were set. As noted below, the total 
simulation time (period time) was calculated as 300 
+ 3,600 = 3,900 sec. We assumed 300 seconds as a 
warm-up time at the beginning of the simulation peri-
od. Data collection was done in just 60-minute simu-
lation period with a two-minute time interval (120 sec) 
excluding warm-up periods. In order to decrease the 
simulation time as well, 'QuickMode' and 'UseMaxSim-
Speed' attributes were activated. In order to eliminate 
the stochastic discrepancy, in each scenario, five inde-
pendent runs with the same initial condition and dif-
ferent speeds were made and an average of the total 
time was recorded. To this end, the simulation settings 
used in VISSIM were as follows: initial random speed 
= 40, speed increment = 3, number of runs = 5, step 
time (resolution) = 5, simulation time=3,900 with max 
speed for Simulation ('UseMaxSimSpeed', true and 
'QuickMode', 1).

5. RESULTS AND DISCUSSION 
In our study, eleven parameters to be optimized 

using the proposed methodology were selected. They 
were selected from the general parameters (“Look-
BackDistMax”,” LookAheadDistMax”, “StandDist”, 

Table 8 – Summary of different objective function values 
for the optimization problem

Method Default GA PSO GAPSO PSOGA
MANE 1.280 0.436 0.433 0.353 0.366
RMSE 34.508 11.611 11.721 9.080 9.466

Table 9  – Selected driving behaviour parameter values before and after calibration

Parameters Range Default GA PSO GAPSO PSOGA

W74ax 0.50 ~ 2.50 2.00 1.03 0.98 1.83 1.25

W74bxAdd 0.70 ~ 4.70 2.00 2.88 2.42 3.18 3.03

W74bxMult 1.00 ~ 8.00 3.00 4.55 5.89 3.90 4.52

LookBackDistMax 50 ~ 200 150 112 128 135 127

LookAheadDistMax 100 ~ 300 250 262 191 195 170

StandDist 0.00 ~ 3.00 0.50 1.50 1.93 0.76 1.08

ObsrvdVehs 1.00 ~ 5.00 2.00 2.88 3.03 2.75 3.40

DecelRedDistOwn 100 ~ 200 200 175 156 137 152

AccDecelOwn -3.00 ~ 0.50 -1.00 -1.60 -2.03 -1.62 -2.27

MinHdwy 0.50 ~ 3.50 0.50 2.37 2.47 2.01 1.92

SafDistFactLnChg 0.10 ~ 0.60 0.60 0.32 0.38 0.40 0.33
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at PSOGA and PSO algorithms could be noticed. Fi-
nally, at the end of optimization iterations, hybrid and  
single algorithms manage to reduce the MANE and 
RMSE values by 72%, and 66%, respectively, when 
compared with the initial values. 

Figure 6 presents speed profile over selected time 
period including uncongested flow condition (14:30-
15:00), transition condition (15:00-15:00), and con-
gested flow condition (>15:20). As shown, the simu-
lated data with calibrated parameters value are in an 
acceptable fit status, while simulated data with default 

One can clearly see that the hybrid algorithms 
outperform the single algorithms and that the lowest 
values of both MANE and RMSE are achieved with 
the hybrid GA algorithm. It is possible to compare the 
performance of the four algorithms with respect to 
the percent change from the initial MANE and RMSE 
scores (1.28 and 34.50) calculated using default val-
ues for the selected parameters. Initially, PSO and 
PSOGA start with the higher MANE values – just above 
0.55, whereas GAPSO registers a better value. After 
around 240 NFEs, good improvement of MANE values 
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proposed calibration methodology shows successful 
computational performance, one might consider using 
parallel computing techniques to decrease the calibra-
tion time of the proposed calibration procedure [37].
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parameters value has big difference with the observed 
data, in particular in transition and congested traffic 
conditions. As conclusion for our case study, in un-
congested flow condition, the simulated models with 
VISSIM default parameters outputs acceptable results 
and can be reliable; however, calibrated parameters 
provide better and well-fit results with the observed 
data for transition and congested flow condition.

Modelling and calibration processes were done 
by a personal laptop with the following configuration; 
CPU: Intel Core™ i5 - 8500@3.00 GHz, RAM: 16 GB, 
Operation system: Microsoft windows ver. 10 64-bit. 
This computer needed around 44 hours to complete 
optimization for each of the methods.

6. CONCLUSION
The interaction between each element creates a 

great complexity in microsimulation traffic models. 
The driving behaviour and lane-change model param-
eters have major effect on the level of representa-
tiveness. In order to achieve reliable microsimulation 
models, more efficient calibration optimization meth-
ods should be developed and compared. In this study, 
metaheuristic optimization methods, namely GA, hy-
brid GA, PSO, and hybrid PSO, have been developed 
and applied to calibrate microscopic traffic simulation 
model parameters. The MATLAB and VISSIM microsim-
ulation software are used for the implementation of 
the proposed optimization methods. The calibration 
methods have been implemented and tested in a case 
study by using traffic data collected from a segment of 
the O-1 Highway in Istanbul, Turkey. The observed traf-
fic parameters have been compared with the results 
obtained by the simulation runs. The calibration is for-
mulated as a minimization problem in which the objec-
tive function values are set to MANE and RMSE. The 
calibration results of objective functions have been 
presented in detail. Results show that, hybrid GA, and 
hybrid PSO methods outperform GA-only and PSO-only 
methods. Among all the algorithms tested, hybrid GA 
generated the lowest MANE and RMSE values. Based 
on the achieved results, the combining metaheuristic 
algorithms approach is very promising and is therefore 
highly recommended for calibrating microscopic traffic 
simulation models. 

In terms of the future studies, the application of 
this methodology could be extended to larger freeway 
networks or signalized roadways. Improving the opti-
mization and calibration performance of the proposed 
methodology by developing an auto-tuning process for 
hybrid GA, hybrid PSO, PSO, and GA parameters includ-
ing “mutation and crossover rates, phi, w, c1, c2, etc.” 
and also by using different combinations of GA and 
PSO operators inside the hybrid technique remains 
an interesting area for investigation. Although the 
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