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ABSTRACT

Providing a satisfying delivery service is an important 
way to maintain the customers’ loyalty and further expand 
profits for manufacturers and logistics providers. Consider-
ing customers’ preferences for time windows, a bi-objective 
time window assignment vehicle routing problem has been 
introduced to maximize the total customers’ satisfaction 
level for assigned time windows and minimize the expect-
ed delivery cost. The paper designs a hybrid multi-objective 
genetic algorithm for the problem that incorporates modi-
fied stochastic nearest neighbour and insertion-based local 
search. Computational results show the positive effect of 
the hybridization and satisfactory performance of the meta-
heuristics. Moreover, the impacts of three characteristics 
are analysed including customer distribution, the number of 
preferred time windows per customer and customers’ pref-
erence type for time windows. Finally, one of its extended 
problems, the bi-objective time window assignment vehicle 
routing problem with time-dependent travel times has been 
primarily studied.
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1. INTRODUCTION
In many distribution networks, the deliveries are 

made within a scheduled time window because many 
operational processes such as inventory management 
and scheduling of personnel heavily depend on it, es-
pecially in retail [1-2]. Typically, these time windows are 
endogenous and long-term decisions. For instance, the 
supplier and customers might agree that each delivery 
in an entire year is made within a specific time window 
on the same day of the week [1]. At the moment of the 
supplier negotiating service time windows with all its 

customers, their demands are usually unknown. When 
their demands become known for a given delivery, the 
delivery routes that respect the negotiated time win-
dows must be constructed to complete the delivery 
activity. The problem, called the time window assign-
ment vehicle routing problem, was firstly introduced 
by Spliet and Gabor [1], who studied how to design 
one time window that has a predetermined width for 
each customer from continuous exogenous time win-
dows so as to minimize the expected delivery cost. Lat-
er, Spliet and Desaulniers [2] divided the continuous 
exogenous time windows into several candidate dis-
crete time windows for the application and examined 
this problem again. Then, to maintain the customers’ 
loyalty and further expand the profits for manufactur-
ers and logistics providers, a bi-objective time window 
assignment vehicle routing problem (BOTWAVRP) is in-
troduced to maximize the total customers’ satisfaction 
level for the assigned time windows and to minimize 
the expected delivery cost [3]. This paper designs a hy-
brid multi-objective genetic algorithm (HMOGA) for the 
problem. On this basis, the impacts of three problem 
characteristics are deeply analysed. Later, considering 
the congestion during peak hours, the problem is fur-
ther extended into a bi-objective time window assign-
ment vehicle routing problem with time-dependent 
travel times (BOTWATDVRP). The versatility of HMOGA 
proposed is shown by solving the extended problem.

Relevant literature can be classified into two cate-
gories: single-objective time window assignment prob-
lem and vehicle routing problem with time windows 
that is solved to construct the delivery routes within 
the assigned time windows and to obtain the delivery 
cost. For the first category, apart from the mentioned 
above, Agatz, Campbell, Fleischmann and Savelsbergh 
[4] studied how to select a time window set for per zip 
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At the moment of assigning the time windows for 
all customers, the distributions of their everyday de-
mands within a period can be obtained. We approx-
imate the probability distributions of customer de-
mands by a finite set of scenarios, which is common 
for stochastic optimization problems [1, 2, 12]. Specifi-
cally, three demand scenarios of low demand, medium 
demand and high demand with equal probability are 
adopted according to demand behaviours of ice cream 
vendors [2]. The demands of ice cream vendors are af-
fected by weather and the effect is simultaneous and 
similar. If it is hot, the demands of ice cream vendors 
are high; if it is cold, the demands are low; otherwise, 
the demands are normal. Assuming the probabilities 
of three different weather conditions (cold, regular 
or hot) are the same, three demand scenarios of ice 
cream vendors also occur equally. Overall, each ice 
cream vendor has three demand scenarios of low de-
mand, medium demand and high demand with equal 
probability within a period and all ice cream vendors 
have the same demand scenario at the same time.

The problem can be formulated as a three-index 
linear mix-integer programming model with bi-objec-
tives which is displayed in literature [3].

3. HYBRID MULTI-OBJECTIVE GENETIC 
ALGORITHM
BOTWAVRP is clearly NP-complete as in the case of 

one demand scenario, one time window assigned per 
customer and one objective, it reduces to the VRPTW, 
an NP-complete problem [2]. Exact methods are inef-
ficient with large-scale problem instances. Apart from 
that, they are unable to support multi-objective opti-
mization. Genetic algorithms, as meta-heuristics, are 
proven to provide near-optimal solutions to complex 
optimization problems in an acceptable time [13]. 
Furthermore, the ability to maintain a population of 
candidate solutions in the calculation process makes 
them suitable to approximate Pareto-optimal sets of 
multi-objective problems [13]. Based on these rea-
sons, a hybrid multi-objective genetic algorithm is 
designed for BOTWAVRP. For keeping the time win-
dow assigned for each customer the same in all de-
mand scenarios, encoding and genetic operators are 
all modified to some extent. Besides, to speed up the 
solution, stochastic nearest neighbour is modified 
to construct the initial solutions. Also, insertion local 
search is used to improve the quality of Pareto opti-
mal solutions. The flowchart of the proposed HMOGA 
is presented in Figure 1.

3.1 Encoding and decoding

A chromosome is a potential solution. Each chromo-
some is an array of characteristics referred to genes. 
In the context of the BOTWAVRP, a chromosome is  

code in a region so as to minimize the delivery cost giv-
en the number of customers and weekly demand per 
zip code. On the assumption of different travel times, 
Campbell and Savelsbergh [5] and Ehmke and Camp-
bell [6] examined the same problem that involves 
the two decisions about which customers should be 
accepted and which time windows for the accepted 
customers should be assigned so as to maximize the 
profit. The similarity with our problem is that they con-
sidered the customers’ preferences for time windows. 
However, they viewed these preferences as strong 
constraints instead of finding trade-offs between the 
satisfaction of these preferences and the profit or the 
delivery cost.

The vehicle routing problem with time windows 
(VRPTW) is a variant of vehicle routing problem. Due 
to its inherent complexities and usefulness in real 
life, the VRPTW has been extensively studied in the 
last 30 years. Baldacci, Mingozzi, and Roberti [7] re-
viewed the exact algorithms and model formulations. 
Local search algorithms and meta-heuristics were 
reviewed by Bräysy and Gendreau [8, 9]. Pillac, Gen-
dreau, Guéret, and Medaglia [10] classified the vehicle 
routing problem based on the quality and the evolu-
tion of the information and reviewed the applications 
and solution approaches of its dynamic variants. For 
multi-objective VRP, a classification of objectives and 
solution approaches can be found in Jozefowiez, Se-
met and Talbi [11].

This paper is organized as follows: Section 2 pres-
ents a detailed description of the problem. Section 3 
discusses the hybrid multi-objective genetic algorithm 
(HMOGA) for BOTWAVRP. Experimental design and 
computational results are given in Section 4. Section 5 
addresses the extension of the problem with time-de-
pendent travel times. Finally, the work is summarised 
in Section 6.

2. PROBLEM DEFINITION
The BOTWAVRP is defined as follows. Each custom-

er needs to be assigned one time window that every-
day deliveries will respect within some period of time. 
The candidate time windows that can be assigned to 
the customers cover an entire day without overlap, e.g. 
[8:00-9:00], [9:00-10:00],……, [17:00-18:00]. Con-
sidering the customers’ preferences for the time win-
dows, the supplier wants to simultaneously maximize 
the total satisfaction level of the customers for the as-
signed time windows and minimize the expected deliv-
ery cost. The delivery cost includes the travelling cost 
and the waiting cost that depend on time. Locations 
of customers and travel times between customers are 
deterministic. A set of vehicles with the fixed number 
can be partly or wholly used for the delivery, depend-
ing on the need.
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visiting sequence. The time window number of a node 
is given before generating its sorting key because the 
time window constraint requires that the demand 
node with a smaller time window number must be vis-
ited before the one with a larger time window number 
by the same vehicle.

When the feasibility condition is checked, the chro-
mosome must be decoded. Decoding is the inverse 
process of encoding. The procedures are described as 
follows:
Step 1: Sorting the gene values of each scenario in 
ascending order; 
Step 2: Decoding the vehicle number per node;
Step 3: Decoding the time window number assigned 
per node.

represented as an array of five-digit numbers accord-
ing to the random keys representation so that the 
standard genetic operators can be used in the HMOGA 
[14, 15]. 

Table 1 gives an example. In the chromosome, each 
gene represents a demand node and has a fixed posi-
tion. To simultaneously obtain the delivery schemes of 
different demand scenarios, all customer nodes are 
copied several times, depending on the number of 
scenarios. The order in which the demand nodes are 
visited in each demand scenario is determined by sort-
ing the gene values. The first digit of each gene value 
represents the assigned vehicle number to the node; 
the second and the third digits represent the assigned 
time window number to the node and the last two dig-
its are the sorting keys that are used to decode the 

Random key
representation

Population
initialization

Two-point
crossover

Uniform
mutation

Combined elitist
strategy with binary 
tournation selection

Fast non-dominated
sorting and diversity

preservation

End

Y

Y

N

N

Stopping criteria
are met?

Local search
exploitation

Perform
local search

Figure 1 – Hybrid multi-objective genetic algorithm flowchart 

Table 1 – Encoding

Scenarios 1 2

Demand nodes 1 2 3 4 5 1 2 3 4 5

N. Vehicle 1 1 2 2 1 2 1 2 1 1

N. Timeslot 9 6 7 6 4 9 6 7 6 4

N. Sorting 90 12 45 67 3 56 78 34 12 3

Chromosome 10,990 10,612 20,745 20,667 10,403 20,956 10,678 20,734 10,612 10,403

Note: two demand scenarios are used to represent the randomness in the example
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3.3 Genetic operators

Crossover and mutation are two basic operators in 
the genetic algorithms. The crossover operator creates 
better offspring by combining good traits of two par-
ents. In this paper, two-point crossover is used with the 
probability of PC [14]. The two-point crossover operator 
firstly generates two crossover points and then swaps 
the segments between the two crossover points of two 
chromosomes. However, as shown in Table 2, to meet 
the consistency of the time window assigned to a cus-
tomer in multiple scenarios, the two crossover points 

3.2 Initialization

Initialization is the first operator of the optimiza-
tion process. One goal of this operator is to provide a 
good approximation of search space so that the solu-
tion of MOGA can converge into the good basins of 
the solutions space [13]. Besides, it is to help MOGAs 
rapidly generate an initial population. As the scale of 
the instance increases, it is very difficult to randomly 
generate a feasible solution, leading to consuming an 
amount of time in finding the initial population [3]. The 
stochastic nearest neighbour method is modified here 
to approximate a good search space and generate fast 
the initial population.

The following algorithm presents the process of 
the modified stochastic nearest neighbour. For the 
high-demand scenario, a demand node is randomly 
selected as the next visiting node of the vehicle from 
the first n candidate demand nodes the closest to the 
current visiting node in terms of travel times or the rest 
of demand nodes when the number of the remaining 
demand nodes is less than n. And the time window 
number that the arriving time of the selected node be-
longs to is assigned to it. This process is repeated until 
one more customer assigned to the vehicle will lead to 
an overload or make the arriving time out of the upper 
bound of the last time window. Then, the next vehicle 
is selected and the above processes are repeated until 
all the demand nodes are assigned to a vehicle. At this 
time, the part chromosome of the high-demand sce-
nario is successfully obtained. Finally, a feasible chro-
mosome is constructed by copying the part chromo-
some to the rest of demand scenarios. This is because 
the only difference of different demand scenarios is 
the capacity constraint and the delivery routes that 
satisfy the high demand are definitely feasible in the 
other demand scenarios.

Table 2 – Crossover operator

Scenarios 1 2

Demand nodes 1 2 3 4 5 1 2 3 4 5

ch1 10,990 10,612 20,745 20,667 10,403 20,956 10,678 20,734 10,612 10,403

ch2 10,830 20,340 10,590 10,690 20,720 10,805 10,390 30,570 10,650 10,769

↑ ↑

cch1 10,990 20,340 10,590 10,690 10,403 20,956 10,378 20,534 10,612 10,403

cch2 10,830 10,612 20,745 20,667 20,720 10,805 10,690 30,770 10,650 10,769
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uniqueness. The scalar of each individual is the sum 
of the values each of which represents the surrounded 
density of an objective function value of the individual. 
The details of these approaches can be found in liter-
ature [17].

3.6 Selection

At the stage of the evolutionary process, a limit-
ed number of promising solutions are selected to re-
produce [13]. The elitist strategy is firstly applied in 
HMOGA for faster convergence and better solution. 
The sub-population with the lowest rank is the current 
elitist. If the number of them is less than or equals 
the number of the size of the population, they are di-
rectly passed to the new generation. And the rest of 
solutions are selected from all solutions by binary tour-
nament selection. In the binary tournament selection, 
the rank is used as the first criterion and the crowding 
distance is used as a backup criterion. Otherwise, the 
different solutions among the elitists are firstly passed 
onto the new generation for the diversity and then the 
rest of solutions are selected by binary tournament 
selection from the elitists according to the crowding 
distance value. 

3.7 Local search

Local search is often used to improve the quality 
of meta-heuristic algorithm. In this paper, an inser-
tion-based local search [18] is applied to the different 
solutions among the sub-population with the lowest 
rank. All nodes in a scenario are given a chance to be 
inserted into the same vehicle route or into the routes 
of other vehicles without violating feasible require-
ments. The newly obtained scheme with the minimal 
expected delivery cost is kept in each scenario. Then 
the newly obtained schemes of all scenarios are com-
bined to form a new solution. Because local search 
consumes a large computation time and easily leads 
to prematurity, the local search is periodically applied 
in this paper.

3.8 Termination criteria

Two termination criteria are set: the maximum 
number of generations and the maximum number of 
generations with the same results. When the algo-
rithm reaches one of them, the search is stopped.

In most cases of MOGAs, the stopping criterion is 
only set as the maximum number of generations which 
is decided a priori by the user’s knowledge [14]. How-
ever, we do not have any knowledge and the choice of 
the maximum number of generations is a very delicate 
issue. Therefore, the number is set as a large num-
ber and the maximum generation number with the 
same results is set as a backup criterion. The backup 
criterion needs to measure the progress made by the  

are restricted to randomly select between all demand 
nodes in a selected scenario, e.g. Points 2 and 4 of 
Scenario 1, and then the time window numbers of the 
corresponding demand nodes in other scenarios are 
updated after swapping, e.g. Points 2-4 of Scenario 2.

After the crossover operator has finished, the sam-
pling space is enlarged with the new offspring. Uniform 
mutation operator is applied to the enlarged sampling 
space with the probability of PM in order to exploit a 
wider solution space. The vehicle number and the time 
window number of each gene that undergoes mutation 
are replaced by newly generated values. Of course, the 
time window numbers of its corresponding demand 
nodes in the other scenarios also need to be replaced 
by the newly generated time window numbers in order 
to keep the consistency of the assigned time windows 
per node in all scenarios.

3.4 Constraints checking 

In HMOGA, the search is executed in the feasibility 
area. Therefore, the feasibility of each chromosome 
newly generated is judged whenever in the initializa-
tion phase or in the process of conducting genetic op-
erators. If a chromosome is found to be infeasible, it 
will immediately be discarded. Because encoding en-
sures the customer service constraint and the routing 
constraint and each procedure of HMOGA ensures the 
consistency of the assigned time windows, the criteria 
of feasibility become that the capacity constraint and 
the time window constraint are both satisfied.

3.5 Evaluation

The survival of the individuals (called chromo-
somes) relies on their fitness values [13]. The fitness 
value is a scalar representation of the goodness of the 
solution. In the case of multi-objective optimization, it 
is unsuitable to derive the fitness value from the ob-
jective function like single-objective optimization. For 
one reason, the objective function value of a solution 
is not a value, but a vector. For another, the solution of 
multi-objective problem exists in the form of alternate 
trade-offs. Each objective component of any solution 
in the Pareto optimal set can only be improved by de-
grading at least one of its other objective components 
[16]. Therefore, to provide full information about the 
solution, fast non-dominated ranking [17] is used to 
assign the fitness value of each solution here. The 
approach reorganizes the population into a series of 
ranked sub-populations so that the individuals of the 
same sub-population do not dominate each other, and 
all the individuals belonging to the sub-populations 
with lower ranks dominate all the individuals of the 
sub-populations with higher ranks. Also, to preserve 
the diversity of solutions, the crowding-distance-as-
signment [17] is used to assign a scalar for each in-
dividual in the same sub-population to represent its 
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overlap. The distances between customer nodes are 
computed as the Euclidean distance. The vehicle 
speed is set as 5. The value of time is set as 1. As 
for three demand scenarios, they are accomplished by 
multiplying the basic demand with the demand multi-
pliers. The basic demand is set as 5. Three demand 
multipliers are uniformly generated from [0,7,0.8], 
[0.95,1,05] and [1.2,1.3], respectively [1]. Ten dis-
crete time windows with 1-hour interval and without 
overlap are constructed as candidates, [8:00,9:00], 
[9:00,10:00], ..., [17:00,18:00], as do Campbell et 
al. [5]. Each customer prefers two of them. The satis-
faction levels for the two preferred time windows are 
three and the rest are one. The two preferred time win-
dows per customer are selected by the uniform [1, 10] 
distribution. The supplier starts the delivery service 
from 8:00. The vehicle capacity is 30. The number of 
vehicles that could be used increases with the number 
of customers so that the total capacity of vehicles ex-
ceeds the total volume of high demand.

4.2 Performance of local search 

This Section demonstrates the effectiveness of two 
local searches in HMOGA. Simulations were conduct-
ed using five different settings. The five settings are: 
MOGA with no local search (NLS), MOGA only with the 
modified stochastic nearest neighbour (SNN), MOGA 
only with the insertion search used at each genera-
tion (IN1), MOGA only with insertion search used at 
an interval of 10 generations (IN10) and MOGA with 
the modified stochastic nearest neighbour and inser-
tion search used at an interval of 20 generations (SN-
NIN20). Simulations were conducted in two instances 
with 15 customers.

Figure 2 shows the minimal expected delivery cost 
over generations. The minimal expected delivery cost 
of SNN at generation 1 is significantly lower than that 
of NLS. This shows that the modified stochastic near-
est neighbour provides a good search starting point 
for HMOGA. And SNN in the case spends only 1.56 
seconds in generating the initial population on aver-
age, which is one fourth of the time taken by NLS. As 
the scale of the instances increases, the advantage of 
SNN is definitely more significant because it is more 
difficult to randomly generate a feasible solution in 
a larger solution space while the modified stochastic 
nearest neighbour is still able to obtain a feasible solu-
tion at each run.

As shown in Figure 2a, the solution quality of IN1 
at the initial stage is significantly better than that of 
the NLS. However, the IN1 converges into local opti-
ma at generation 75 and the final solution is obviously 
worse than that of NLS. For IN10, the final solution is 
better than that of the NLS, which demonstrates that 
prematurity does not occur in IN10. Therefore, it can 
be concluded that the insertion-based local search 

algorithm at each generation. The same results mean 
that there is no progress than the previous generation. 
For MO, the progress includes two aspects: the newly 
non-dominated solutions are found or the quality of the 
non-dominated solutions is improved. The progress ra-
tio proposed in literature [16] is used to measure the 
quality improvement of the non-dominated solutions.

( ) _ _ ( )
_ ( ) _ ( )

Pr n num nondom indiv n
nondom indiv n nondom indiv n 1dominating

=
-  (1)

where Pr(n) is progress ratio at generation n;  
nondom_indiv(n) represents solutions in the sub-pop-
ulation with the lowest rank at generation n, called 
non-dominated solutions; num_nondom_indiv(n) refers 
to the number of non-dominated solutions at genera-
tion n.

Pr(n)=0 means the non-dominated solutions at 
generation n do not dominate any one of non-domi-
nated solutions obtained at generation n-1, which 
demonstrates that the quality of the non-dominated 
solutions is not improved. Therefore, if the number 
of the non-dominated solutions at generation n is the 
same as that at generation n-1 and Pr(n)=0, there is 
no progress made by generation n.

4. COMPUTATIONAL EXPERIMENTS AND 
ANALYSES
In this Section, our computational results and anal-

yses are presented. Firstly, the large instances are 
elaborated. Next, the positive effect achieved by the 
hybridization of the multi-objective genetic algorithm 
and the local search heuristics is reported. In addition, 
the solutions obtained by HMOGA on small and medi-
um instances are compared with those of the commer-
cial solver CPLEX 12.7.1 to assess the performance of 
HMOGA. Finally, in order to obtain managerial insights, 
the impacts of some instance characteristics are an-
alysed. All our experiments were conducted on an In-
tel Core I5 CPU 2.6 GHz processor. The HMOGA was 
compiled in Matlab R2015b. The parameter settings 
chosen after some preliminary experiments were: 
population size=1,500; crossover rate=0.9; mutation 
rate=0.1; generation interval using the insertion local 
search=20; maximum number of generations=1,000; 
and maximum number of generations with the same 
results=10. Unless otherwise stated, these parame-
ters were used in each instance.

4.1 Test instances

The instances used in our experiments were ran-
domly generated. To show the impact of the custom-
er distribution density, the customer nodes were dis-
tributed over a sparse grid (10x10) and a dense grid  
(20x20), respectively [5]. In each grid, the supplier 
node is located in the centre and the customer nodes 
are uniformly distributed over the whole grid without 
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C(X",X') do not add up to 1.0. Therefore, it is important 
to consider both C(X',X") and C(X",X') when comparing 
a pair of algorithms.

Given that SNNIN20 is compared with NLS, SNN 
and IN10, there is a total of six pair-wise set coverage 
values. The values can be easily computed based on 
the four non-dominated sets obtained by the four al-
gorithms, taking the non-dominated set of SNNIN20 
and one of the other three algorithms at one time. In 
Figure 3, the bars represent the average set coverage 
values corresponding to each pair of algorithms. For 
each pair of algorithms, the average value is computed 
over five instances with 15 customers; with each in-
stance subjected to 20 test runs. The figure shows that 
SNNIN20 outperforms NLS, SNN, and IN10, which 
again validates the effectiveness of incorporating the 
two local search procedures in the MOGA. The com-
putation time of SNNIN20 for the instances with 15 
customers is on average about 74 s at a run. These 
results clearly indicate that compared with NLS, SNN, 
and IN10, our HMOGA, SNNIN20, is able to better ap-
proximate the Pareto-optimal sets of the instances 
within a reasonable time.

4.3 Performance comparisons

In this Section, the solution obtained by CPLEX 
12.7.1 and our HMOGA heuristic are compared to fur-
ther demonstrate the performance of HMOGA. A set 
of 24 instances with five and ten customers from lit-
erature [20] is used. To match our problem, the de-
mands of customers in the instances are regenerat-
ed by basic demand multiplying demand multipliers 
as stated in Section 4.1. The original customers’ de-
mands are set as their basic demands. The candidate 
time windows are added. The service duration that 
belongs to R category are divided equally into ten  
candidate time windows and the rest are divided 
equally into twelve candidate time windows. The num-
ber of vehicles increases by two as the number of cus-
tomers increases by five.

can improve the solution quality of MOGAs, but when 
it is applied in MOGAs, the attention should be paid to 
balancing the width and the depth of the exploitation.

SNNIN20 is finally applied to solve the problem in-
troduced, because it not only provides a good starting 
point but also balances the width and the depth of 
the exploitation so as to obtain the best final solution, 
which is shown in Figure 2.

The validation of SNNIN20 is further tested from 
the perspective of the whole solution set. The set cov-
erage, which is proposed in [19], is used here. The set 
coverage, denoted by C(X',X"), quantifies the extent to 
which the outcome of one multi-objective algorithm 
dominates the outcome of another one. The set cover-
age is expressed as follows:

( , )
; :

C X X
X

a X a X a a' "
"

" " ' ' ' "7! ! (
=

=
 (2)

where X' and X" are the non-dominated sets obtained 
by a pair of multi-objective algorithms, respectively; 
|X'| is the number of non-dominated solutions and   
a a' "(= represents that solution a" is equal to or dom-
inated by solution a'.

The value of C(X',X") belongs to [0,1]. The larger 
the value, the higher the ratio that elements in X" are 
covered by that in X'. It is to be noted that C(X',X") and 
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The results show that our HMOGA is able to quickly 
solve all instances and find satisfactory near-optimal 
front at a single run. For the instances with five cus-
tomers, HMOGA was able to obtain the optimal front 
of three fourths of instances and it was only not able 
to find one of two extreme solutions of one fourth of 
instances; specifically, maximal satisfaction level and 
its expected delivery cost. For medium-scale instanc-
es with ten customers, CPLEX cannot find optimal 
solutions of six instances (half of all instances) within 
3,600 seconds. Although the performance of HMOGA 
on these instances also becomes worse, it was still 
able to quickly obtain satisfactory solutions of all in-
stances within 100 s, especially the minimal expected 
delivery cost. The average deviation between the mini-
mal expected delivery costs and their optimal values is 
4%, which is satisfactory considering the huge scale of 
variables, more than NT NC NC NS NV NC NS2$ $ $ $+ +  
(where NT is the number of time windows; NV is the 
number of vehicles; NC is the number of customers; 
NS is the number of scenarios). It should be also noted 

Since CPLEX cannot solve the multi-objective prob-
lem, two objectives of our model are viewed as the 
main objective and the sub-objective, and then weight-
ed to an objective. Next, the two models with different 
weighted objectives are solved by CPLEX with the de-
fault setting, respectively. Table 3 provides their results 
and two extreme solutions obtained by HMOGA due to 
the inability to display all the non-dominated solutions. 
One extreme solution is the minimal expected delivery 
cost (MEDC) and its corresponding satisfaction level 
(SL) while the other is the expected delivery cost of the 
maximal satisfaction level (EDC) and the maximal sat-
isfaction level (MSL). These solutions of HMOGA are 
the best among the 20 runs. The column ‘Inst.’ shows 
the instance number. The column ‘t/s’ is the run time 
in seconds. The run time of HMOGA is the average of 
20 runs. The time limit for CPLEX is set to 3,600 s. The 
bold figures demonstrate that HMOGA obtains the op-
timal solution. Column ‘Dis./%’ gives the discrepancy 
between MEDCs obtained by CPLEX and HMOGA.

Table 3 – Comparison of the results obtained with CPLEX and HMOGA

Inst.
CPLEX HMOGA Dis. [%]

t/s MEDC
(1)

SL
(2) t/s EDC

(3)
MSL
(4) t/s MEDC

(5)
SL
(6)

EDC
(7)

MSL
(8) 1

5 1-^
^
^h
h
h

C101C5 0.1 166.8 11 1.9 485.5 15 11.8 166.8 11 485.5 15 0
C103C5 0.3 146.5 5 1.7 785.8 15 14.2 146.5 5 785.8 15 0
C206C5 0.5 186.4 9 8.6 2,220.6 15 14.3 186.4 9 2,220.6 15 0
C208C5 2.8 152.1 9 1.9 815 15 19.8 152.1 9 815 15 0
R104C5 0.7 132.7 9 0.5 191.1 15 8.3 132.7 9 191.1 15 0
R105C5 0.2 135 5 0.7 205.6 15 6.2 135 5 178.3 13 0
R202C5 1 126.5 7 0.5 718.9 15 25.4 126.5 7 718.9 15 0
R203C5 1.4 178 7 0.5 503.9 15 16.1 178 7 503.9 15 0

RC105C5 0.3 198.1 5 0.5 225.1 15 5.5 198.1 5 259.8 13 0
RC108C5 0.1 207.6 9 0.5 374.3 15 9.4 207.6 9 414.8 15 0
RC204C5 2 172 7 0.5 565 15 21.8 172 7 565 15 0
RC208C5 1.8 162.6 9 0.5 294.3 15 14.9 162.6 9 294.3 15 0
C101C10 3,600.0 \ \ 129.2 528.4 30 41.0 283.0 12 630.5 30 /
C104C10 2,177.8 261.7 14 3,600.0 \ \ 33.9 303.2 14 880.7 30 7
C202C10 159.9 211.6 10 433.9 1,076.2 30 92.8 233.4 10 1,629.1 30 10
C205C10 3,228.9 219.8 14 3,600.0 \ \ 59.3 227.8 16 1,755.8 30 4
R102C10 3,600.0 \ \ 3,600.0 \ \ 22.5 211.1 18 304.6 26 /
R103C10 1,295.2 143.1 18 69.8 233.4 30 29.0 151.0 14 246.1 30 6
R201C10 50.5 171.5 14 3,600.0 \ \ 58.9 171.5 14 629.7 30 0
R203C10 1,009.9 213.2 16 3,600.0 \ \ 83.1 213.2 16 458.2 30 0

RC102C10 440.0 309.1 20 52.0 385.4 30 15.6 314.7 18 392.0 30 2
RC108C10 1,011.2 317.1 16 16.9 415.2 30 23.6 331.7 12 415.2 28 5
RC201C10 54.2 234.3 12 1,510.7 428.1 30 49.2 246.8 14 428.1 30 5
RC205C10 124.0 280.5 16 1,435.0 651.1 30 48.8 280.5 16 651.1 30 0
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customer distribution has an impact on the delivery 
cost and the customer’s satisfaction level, and the 
dense customer distribution is advantageous for the 
supplier.

Varying number of preferred time windows
The impact of the number of preferred time win-

dows per customer was then examined. Table 5 dis-
plays the results of five preferred time windows per 
customer. Compared with the base cases, the minimal 
expected delivery costs are roughly the same and the 
corresponding satisfaction levels improve about 50% 
on average. This is not surprising because the aver-
age satisfaction level of each customer for the time 
windows improves as the number of preferred time 
windows per customer increases. As for maximal sat-
isfaction levels, they also improve a lot and the corre-
sponding expected delivery costs decrease a lot in the 
sparse grid. In the dense grid, despite no change of 
maximal satisfaction levels, the corresponding expect-
ed delivery costs significantly decrease. The explana-
tion lies in the fact that as the number of preferred 
time windows per customer increases, the schemes 
to obtain the maximal satisfaction level increase and 
there exist some better assignment schemes. There-
fore, according to our intuition, the number of the 
preferred time windows plays an important role in the 
supplier’s performance.

Varying preference type for time windows
In the base cases, the preferred time windows per 

customer are randomly selected from ten candidates. 
In this section, the preferred time windows per cus-
tomers are selected from five candidates, [12,13], 
[13,14], [14,15], [15,16], [16,17]. The results of these 

that HMOGA is capable of finding the whole near-op-
timal front at a single run, whereas CPLEX cannot 
achieve this.

The main reason why the capability of HMOGA to 
find the maximal satisfactory level is relatively worse, 
is that the local search does not focus on generating 
the scheme with high satisfactory level in initializa-
tion phase and thus does not provide a good base for 
searching it. Therefore, it might be a direction to de-
sign another local search that generates the feasible 
solution based on a satisfactory level to further im-
prove the performance of the algorithm.

4.4 Instance characteristic analyses

In this Section, the impacts of the instance char-
acteristics are analysed. Two extreme solutions are 
still taken as representatives here. The tables in the 
section show the results of five instances with 30 cus-
tomers.

Customer distribution
Compared with the distances between customers 

in the sparse grid, those in the dense grid are relatively 
shorter and thus the lower minimal expected delivery 
costs are obtained with the basically same satisfac-
tion levels. Besides, it is observed from Table 4 that 
the maximal satisfaction levels are relatively higher 
while their expected delivery costs do not increase in 
the dense grid. This is due to the fact that the shorter 
the distances between customer nodes, the larger is 
the number of customers that a vehicle can visit in a 
time window and the higher is the probability of sat-
isfying customers that prefer the same time window. 
Therefore, a conclusion from Table 4 is drawn that the  

Table 4 – Base results 

Instances
10x10 grid 20x20 grid

MEDC SL EDC MSL MEDC SL EDC MSL

1 18.63 44 37.41 84 34.09 48 51.36 74

2 17.58 40 37.74 84 36.93 48 49.45 80

3 16.4 46 34.56 84 34.03 50 48.71 80

4 19.78 50 40.08 84 39.59 48 57.98 80

5 18.58 44 38.34 84 38.39 38 52.54 78

Table 5 – Results for different number of preferred time windows 

Instances
10x10 grid 20x20 grid

MEDC SL EDC MSL MEDC SL EDC MSL
1 16.07 64 19.47 84 36.57 68 42.58 90
2 17.54 72 20.1 84 37.29 74 46.23 90
3 18.63 74 24.43 84 39.27 70 48.27 90
4 15.03 66 18.2 84 32.67 78 37.65 90
5 18.29 66 20.16 84 37.54 70 44.43 90
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5.1 Mathematical formulation with  
time-dependent travel times

Based on literature [2] and literature [14], the BOT-
WATDVRP is formulated as a mixed-integer linear pro-
gramming model in the following:

 Data Sets
C i CU VDC,!^ h  is the union of a set of customer 

nodes and a set of virtual depot nodes; CU represents 
the customer nodes set; VDC denotes the virtual de-
pot nodes set in which a node corresponds to a vehi-
cle, which facilitates the statement of vehicles’ usage. 
K k K!^ h is the vehicles set. TW w TW!^ h is the can-
didate time windows set; each time window has lower 
and upper bounds, , .l uw w6 @  S s S!^ h is the demand 
scenarios set.

Constants
s SPs !^ h is the probability of demand scenario s;   

,ST i CU w TWi
w ! !^ h refers to the satisfaction level 

of customer i for time window w; ,q i CU s Si
s ! !^ h

represents the demand volume of customer i in sce-
nario s; st i CUi !^ h  is the service time of custom-
er i; capacity of vehicle k is denoted as ;Q k Kk !^ h  

, ,t i C j C h Hij
h ! ! !^ h  represents the travel time be-

tween node i and node j at time h; t0 is the starting 
time of the delivery service; VTC is value of time; and  
M is a big parameter.

Decision Variables
yi

w equals 1 if time window w is assigned to cus-
tomer i; otherwise, 0, , ;i CU w TW xij

hs6 ! !  equals 1 if 
any vehicle starts to move from node i to node j at time   
h in scenario s; otherwise, 0, , , , ;i C j c s S h H6 ! ! ! !  
Vi

sk  equals 1 if node i is visited by vehicle k in scenario 
s; otherwise, 0, , , ;i C k K s S di

s6 ! ! !  refers to the 
total volume delivered by vehicle when departing node  
i in scenario , , ;s i C s S ati

s6 ! !  is the time when vehi-
cle arrives at customer i in scenario s, , .i CU s S6 ! !

Optimization

,min maxp t x y l at VTC0,s ij
h

ij
hs

i
w

w i s
w TWi CUh t

H

j Ci Cs 0

+ -
!!!! =

f b lp//////  (3)

max y STi
w

i
w

w TWi CU !!

//
 (4)

subject to:

cases are reported in Table 6. When the preferred time 
windows are clustered, satisfying the preference of a 
customer definitely sacrifices that of another one. This 
is the reason why it is found from Table 6 that the sat-
isfaction levels of the minimal expected delivery costs 
significantly fall whereas the minimal expected deliv-
ery costs do not decrease. To our surprise, it has been 
observed that the maximal satisfaction levels improve 
a little. One reason for the result might be that the use-
ful travel time of a vehicle is restricted by the capaci-
ty constraint so that the preferred time window in a 
range closer to the service starting time becomes ad-
vantageous. However, it should be noted that the cor-
responding delivery costs of the maximal satisfaction 
levels significantly increase, especially in the dense 
grid, because customers that can be visited by the 
same vehicle to reduce delivery cost in the base cases 
have to be assigned to different vehicles for satisfying 
the customers’ preferences for the time windows in 
the respective cases. Therefore, the customer’s pref-
erence type for time windows has a significant impact 
on the supplier’s performance. From the perspective 
of suppliers, it is better that customers have uniform 
preferences for all time windows.

5. PROBLEM EXTENSION WITH  
TIME-DEPENDENT TRAVEL TIMES
In reality, travel times are subjected to variations 

over time due to the existence of events like the con-
gestion during peak hours, accidents and vehicle 
breakdowns. The congestion during peak hours is the 
dominator of the variation. Therefore, we focused on 
the influence of the congestion during peak hours and 
further extended our problem. In literature, the travel 
times in the scenario are generally viewed as time-de-
pendent constants due to the fact that the congestion 
during peak hours is predictable and the resulting 
variations of travel times can be known in advance. 
We also adopted it and named the extension of our 
problem as bi-objective time window assignment ve-
hicle route problem with time-dependent travel times 
(BOTWATDVRP). In the next section, a mix-integer lin-
ear programming model for it is established. HMOGA 
proposed here is used to solve the model to prove its 
versatility.

Table 6 – Results for different preference types for time windows

Instances
10x10 grid 20x20 grid

MEDC SL EDC MSL MEDC SL EDC MSL
1 19.65 30 47.82 88 39.44 40 57.99 84
2 17.99 30 47.99 84 38.31 34 56.68 82
3 17.99 30 47.99 84 39.02 36 60.12 78
4 20.73 30 46.41 86 41.56 50 59.97 78
5 18.46 30 47.81 86 38.25 30 56.57 80
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ensured in each demand scenario. The second cate-
gory of constraints (e.g. Equation 6) is customer service 
constraint that makes each customer visited exactly 
once. Equations 7-10 that belong to the third catego-
ry are called routing constraints. They guarantee that 
each route which serves customers is a Hamiltonian 
cycle and each one without a customer is a node. The 
fourth category is a capacity constraint that prevents 
any vehicle from overload. Equations 11 and 12 be-
long to this category. The fifth category (namely, time 
window constraint) consists of Equations 13-15. They 
demonstrate that each customer must be served with-
in their assigned time window.

Finally, the corresponding relationship between ve-
hicles and routes is described by Equations 16 and 17.

5.2 Computation result

Due to more decision dimensions of the decision 
variable ,xij

hs  the extended problem is more difficult 
to solve compared with BOTWAVRP. However, HMOGA 
proposed for BOTWAVRP is still able to solve the prob-
lem because the genetic algorithm has good versatil-
ity. In this Section, the instance numbered C103C15 
in literature [20] is solved to demonstrate this point. 
The customer demands and the number of vehicles 
are given as stated in Section 4.3. The travel times be-
tween customers and depot node are time-dependent 
and satisfy “first-in-first-out” property which guaran-
tees that if a vehicle leaves node i for node j at a given 
time, any identical vehicle leaving node i for node j at 
a later time will arrive later at node j [21].

Table 7 gives delivery routes of high-demand sce-
nario of a solution randomly selected from the final 
non-dominated solutions obtained by HMOGA. It is 
clearly observed that all customers are serviced with-
in the assignment time window and the vehicles are  

,y i CU1i
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Equations 3 and 4 are the two objective functions 
which respectively minimize the expected delivery cost 
and maximize the total customers’ satisfaction level 
for the assigned time windows.

There are five categories of constraints. The first 
category of constraints (e.g. Equation 5) is the time win-
dow assignment constraint demonstrating that each 
customer should be assigned one time window used 
in all demand scenarios. The rest categories must be 

Table 7 – A solution of C103C15 instance

Route 1 12 5 2 8 15 14 11 6

Time Window 1 2 3 4 5 7 8 8
[0,103] [103,206] [206,309] [309,412] [412,515] [618,721] [721,824] [721,824]

Satisfaction level 3 3 1 1 1 1 1 1
Demand 51.21 12.02 12.2 12.52 12 12.92 24.52 37.73
Load 123.91 111.89 99.69 87.17 75.17 62.25 37.73 0
Travel time 8.7 33.13 27.7 3 53.9 5 7 30.8
Arriving time 50.25 148.95 227.08 389.78 482.78 626.68 721.68 818.68
Waiting time 0 0 0 0 0 0 0

Route 2 9 7 10 3 13 4 1

Time Window 1 2 3 4 5 7 8
[0,103] [103,206] [206,309] [309,412] [412,515] [618,721] [721,824]

Satisfaction level 1 1 1 1 1 1 1
Demand 12.64 12 38.96 25.4 38.61 12.78 12.02
Load 139.77 127.77 88.81 63.41 24.8 12.02 0
Travel time 52.8 36.02 6.4 18 54.1 19.2 22.4
Arriving time 34.2 177 303.02 399.42 507.42 651.52 760.72
Waiting time 0 0 0 0 0 0 0
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双目标时间窗指派车辆路径问题的混合多目标遗传
算法

摘 要：提供客户满意的配送服务是制造商以及物流企
业维护客户忠诚度，提高利润的重要途经。考虑客户时间
窗偏好，最大化客户时间窗满意度并最小化期望配送成本
的双目标时间窗指派车辆路径问题曾被提出。本文通过修
改随机近邻搜索、融合插入局部搜索为这个问题设计了一
个混合多目标遗传算法。数值结果证实了融合局部搜索的
正效用，混合多目标遗传算法的良好性能。此外，分析了
客户分布，客户偏好时间窗数量以及客户时间窗偏好模式
的影响，初步研究了基于时间依赖型旅行时间的双目标时
间窗指派车辆路径问题。

关键词：车辆路径问题；时间窗指派；不确定需求；
时间依赖型旅行时间；多目标遗传算法；局部搜索
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