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ABSTRACT

Air traffic complexity is usually defined as difficulty of 
monitoring and managing a specific air traffic situation. 
Since it is a psychological construct, best measure of com-
plexity is that given by air traffic controllers. However, there 
is a need to make a method for complexity estimation which 
can be used without constant controller input. So far, mostly 
linear models were used. Here, the possibility of using arti-
ficial neural networks for complexity estimation is explored. 
Genetic algorithm has been used to search for the best artifi-
cial neural network configuration. The conclusion is that the 
artificial neural networks perform as well as linear models 
and that the remaining error in complexity estimation can 
only be explained as inter-rater or intra-rater unreliability. 
One advantage of artificial neural networks in comparison 
to linear models is that the data do not have to be filtered 
based on the concept of operations (conventional vs. trajec-
tory-based). 
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1. INTRODUCTION
Air traffic complexity is usually defined as difficulty of 

monitoring and managing a specific air traffic situation 
[1]. In a given sector, air traffic controller (ATCO) has to 

ensure that all aircraft reach their destinations or exit 
points in a safe and efficient manner. To achieve this, 
the ATCO has to monitor current traffic situation, pre-
dict aircraft trajectories, anticipate possible conflicts 
and solve them, all while taking care to accommodate 
the requests from pilots to the most possible extent. 
Complexity arises from interactions among the aircraft 
and between the aircraft and the airspace. Air traffic 
complexity is defined as that part of complexity which 
arises from interactions among the aircraft. Howev-
er, since different types of interactions have different 
levels of difficulty in resolving them and interactions 
can be directly or indirectly related and connected, it 
is wrong to equate the number of interactions directly 
with complexity. It is also wrong to equate air traffic 
complexity and workload, although it has been proven 
that the increase in complexity results in the increase 
in workload which is the limiting factor of airspace sec-
tor capacity [2, 3]. Mogford et al. [4] reviewed many 
research papers searching for relationship between 
complexity and workload. Their conclusion was that 
the complexity is a crucial driver of workload but that 
the relationship between complexity and workload is 
not straightforward; it is mediated by other factors, 
such as equipment quality, individual differences, and 
controller cognitive strategies (Figure 1).
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complexity factors, the Dynamic Density performance 
could be improved by using non-linear techniques 
such as non-linear regression, genetic algorithms, and 
neural networks, which is exactly what was tested in 
this paper. 

In our previous work, similar approach was used to 
test the effect of the trajectory-based operations (TBO) 
on air traffic complexity [14]. ATCOs were recruited to 
perform human-in-the-loop (HITL) simulations during 
which they were asked to provide real-time assess-
ment of air traffic complexity. Linear regression model 
was used to select, among 20 most used complexity 
indicators, those indicators which correlated best with 
subjective complexity scores. Six indicators were used 
to generate a predictive linear model that performed 
well in conventional operations but less so under TBO. 
Therefore, two of seven novel TBO-specific complexity 
indicators were defined and experimentally validated. 
A second correlation model combining these two nov-
el indicators with four already in use generated much 
better predictions of complexity than the first model. 
Nonetheless, the best correlation that was achieved 
was R=0.83 (R2-adjusted = 0.691). This paper will 
show how artificial neural networks and genetic al-
gorithms can be used to estimate the complexity in a 
novel manner.

2. METHODOLOGY
This Section presents a brief overview of the exper-

iment which produced data for training artificial neural 
networks (ANNs). The details of the experiment and 
analysis can be found in [14] and [15].

2.1 Apparatus

Human-in-the-loop simulator trials were deemed 
the best method of collecting subjective complexity 
score because such trials are more representative of 
the real operations than the fast-time simulations or 
observational studies. Additionally, review of the litera-
ture showed that many organizations and researchers 
had successfully used HITL simulations for complexity 
assessment (e.g. [10, 16]). Since the simulator that 
was available did not support TBO (i.e. did not have 
the options of generating, de-conflicting, and execut-
ing the 4D trajectories) and did not have the options to 
record all of the necessary data (i.e. all aircraft states, 
complexity indicator values, human-machine interface 
interactions), it has been decided that the best course 
of action was to develop a custom HITL ATC simulator 
with minimum required features (Figure 2). More de-
tails on the simulator development can be found in 
[15].

The following aims for the development of the ATC 
simulator have been set:

 – Accurate and versatile aircraft model; 

Even though the source of complexity is known (in-
teractions) and the consequences of complexity are 
also known (workload), the complexity itself remains 
firmly inside the mind of the ATCO. On one side, many 
methods of assessing workload were successfully 
used in the past [5–7]. However, since complexity is a 
psychological construct, it is impossible to assess it di-
rectly. It can only be inferred from interactions among 
aircraft or between aircraft and airspace. On the other 
side it is quite easy to detect interactions based on 
the traffic situation (defined as aircraft positions, ve-
locity vectors, intent, route, airspace configuration, 
etc.). But, as mentioned previously, not all interactions 
are equal in terms of the complexity they generate and 
there are also possible multiplicative effects among in-
teractions that make the complexity as a whole signifi-
cantly greater than the sum of individual interactions. 
Therefore, to get from the traffic situation to complexity 
there is a leap that cannot be made without input from 
ATCOs. Multiple research teams were focused on using 
ATCO expert assessment of traffic situation complexity 
to determine which type of interactions influence the 
complexity most.

The main approach taken in such a research was 
to define metrics which can be used to determine the 
number of interactions (e.g. number of conflicts) and 
check them for correlation with ATCO subjective com-
plexity assessment scores. One of the metrics or, as 
they will be called from here on, complexity indicators 
often used is traffic density which is a number calculat-
ed by dividing the number of aircraft with the volume 
of the airspace they occupy. In all research so far it 
was proven that it can by itself explain up to 50% of 
variance in subjective complexity scores [7]. Laude-
man et al. [8] expanded on the notion of the traffic 
density by introducing Dynamic Density which they de-
fined as a combination of ‘both traffic density (a count 
of aircraft in a volume of airspace) and traffic complex-
ity (a measure of the complexity of the air traffic in a 
volume of airspace)’. Authors used informal interviews 
with controllers to obtain a list of eight complexity fac-
tors to be used in dynamic density equation. Only crite-
rion was that the factors could be calculated from the 
radar tracks or their extrapolations. The intention was 
to obtain an objective measure of controller workload 
based on the actual traffic. Their results showed that 
the dynamic density was able to account for 55% in 
controller activity variation. 

Three other teams [9–11] working under the Dy-
namic Density Programme developed additional 35 
complexity indicators, which were later successfully 
validated as a group by Kopardekar et al. [12]. Unfortu-
nately, it was later shown that the complexity indicator 
weights were not universal to all airspace sectors, i.e. 
they had to be adjusted on a sector by the sector basis 
[13]. Furthermore, the same authors [13] suggested 
that, due to possibly non-linear interactions between 
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FL 660. In reality, due to traffic demand, the sector is 
often vertically divided into several elemental sectors 
depending on the traffic loads and in that case ‘Up-
per’ is used to describe the sector from FL 325 – FL 
355. For this research the complete vertical expanse 
was used. Most flights flying through this sector are 
over-flights while minority of flights depart or arrive in 
Croatia [14].

The transfer of traffic between neighbouring Area 
Control Centres (ACC) and Zagreb ACC is regulated by 
Letters of Agreement (LoA). For this research the rel-
evant parts of LoAs were Flight Level Allocation and 
Special Procedures sections which state the condi-
tions that have to be met for all flights crossing the 
boundary of the controlled area (called Flight Level Al-
location Scheme - FLAS). The purpose of FLASes is to 
ensure that flights will cross the controlled area (CTA) 
boundary at required flight levels that enable them to 
land at the desired airport or to be seamlessly joined 
with the existing traffic. It also states what the coordi-
nation points (COP) or transfer of control (TOC) points 
are. The participants were required to adhere to these 
procedures during the simulation runs [14].

To ensure representativeness of the traffic flows, 
actual historic traffic data were used to create simu-
lation scenarios. Off-peak traffic was used to generate 
traffic for low-traffic scenarios; peak traffic was used 
to generate traffic for high-traffic scenarios, and addi-
tional flights were generated in addition to peak traffic 
to create traffic for future-traffic levels scenarios. An 
analysis was made of historic traffic data to determine 
the aircraft type distribution and most commonly used 
routes. The results of this analysis were used to make 
the traffic which was generated for future-traffic sce-
narios more representative than the actual traffic [14].

2.3 Participants

Participants in the experiment were recruited 
among the active licenced air traffic controllers work-
ing with the Croatia Control Ltd., Croatian air navigation 

 – Realistic working environment; 
 – Ability to record all necessary data; 
 – Support for TBO;
 – Simple meteorological model;
 – Simple surveillance model;
 – Easy data editing;
 – Voice and datalink communication.

Before the simulator was used in the research, it 
was validated using a series of tests. The user inter-
face and tool operation were validated by comparison 
with operational ATC systems and by expert assess-
ment. Aircraft models were validated by comparison 
with real-life flight data collected from quick access 
recorders, and working environment was validated by 
the licensed ATCOs [15].

2.2 Airspace and traffic

Airspace in which the simulations were performed 
has been chosen according to the following require-
ments [14]:

 – Participants (ATCOs) had to be familiar with the 
airspace. This ensures that they can accurately as-
sess the air traffic complexity. It also saves time on 
pre-simulation training and removes the possibility 
of different learning rates affecting the results.

 – Airspace data must be available. Most European 
air navigation service providers (ANSPs) nowadays 
share their airspace data on-line for free.

 – Available flight data upon which the flights for the 
simulation scenarios were created must include 
flights passing through the desired airspace. In this 
way realistic flight data can be used.

 – Since this research considers only en-route opera-
tions, a sector of en-route (upper) airspace will be 
used.
One of the sectors which met all these criteria and 

the one chosen for the experiment is Zagreb Upper 
North sector. Geographically, the sector consists of 
airspace over northern Croatia. Vertically, the sector, 
as used in this research, starts at FL 285 and ends at 
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Figure 2 – Simulator software outline [15]
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 – Aircraft density I (based on sector volume);
 – Aircraft density II (based on convex hull volume);
 – Aircraft density II squared (based on convex hull 

volume and the squared number of aircraft);
 – Separation criticality index;
 – Number of aircraft with horizontal separation less 

than 8 NM;
 – Inverse of minimum horizontal separation in the 

same vertical neighbourhood;
 – Inverse weighted mean of aircraft vertical separa-

tion;
 – Ratio of standard deviation to mean value for 

ground speed;
 – Ratio of mean aircraft distance to number of air-

craft;
 – Altitude variance;
 – Fraction of aircraft with fewer than 600 seconds 

to conflict;
 – Fraction of aircraft climbing;
 – Fraction of aircraft descending;
 – Fraction of aircraft either climbing or descending;
 – Number of aircraft pairs at a 3D Euclidean distance 

less than 5 NM;
 – Number of aircraft pairs at a 3D Euclidean distance 

of 10-15 NM;
 – Ground speed variance;
 – Fraction of TBO aircraft; and
 – Standard deviation of aircraft headings.

The subjective complexity score was entered by 
clicking on an on-screen panel which opened once 
every 120 seconds. Each participant did nine simula-
tion scenarios, each lasting approximately 50 minutes, 
which means that in theory there should be 25 sub-
jective complexity scores per participant per scenario. 
This totals to 225 complexity scores per participant, or 
2,250 complexity scores overall. In reality, only 1,997 
complexity scores were entered. This is due to three 
reasons. First, one participant only did 7 scenarios 
(this accounts for 50 missing scores) before leaving 
the research for personal reasons. Second, some par-
ticipants could not finish all of the future-traffic level 
scenarios because they were designed to be very dif-
ficult (this accounts for 57 scores). Third, some partic-
ipants did not enter the scores as soon as they were 
prompted. In some cases this was due to intense focus 
on controlling the traffic. This accounts for the remain-
ing 146 missing scores [14].

3.2 Genetic algorithm search

The purpose of the analysis was to determine 
whether artificial neural networks (ANN) could be 
used to estimate air traffic complexity based on the 
values of the complexity indicators, and if they could, 
how good was the performance of ANN compared to 
linear regression methods. As mentioned previously, 
in our earlier experiment the best correlation between 

service provider (ANSP). All controllers had at least 4 
years of experience working at ANSP and a minimum 
of 2 years had passed since they acquired the air traf-
fic control license. All 10 of them had prior experience 
of controlling the traffic in the airspace sector which 
was used for the experiment [14].

All the participants were briefed before the com-
mencement of the experiment. The briefing included 
the following topics: air traffic complexity, subjective 
complexity rating scale, trajectory-based operations, 
tools and functions of the simulator, airspace, sim-
ulator scenarios, and operational procedures. Also, 
participants were given a short simulator training of a 
minimum of 90 minutes (two scenarios, one with con-
ventional and one with trajectory-based operations).

Besides ATCOs, one of the authors participated 
as the pseudo-pilot in all experiments. The controller 
could communicate with the pseudo-pilot only via a 
headset. Since the pseudo-pilot had to take on the role 
of air traffic controllers in other air traffic control units, 
to facilitate coordination, an assistant to the pseu-
do-pilot participated in the scenarios involving high 
and future traffic levels. The experiments did not in-
volve planner controllers, only the executive ones [14].

3. DATA ANALYSIS AND RESULTS
This Section will present data gathered during the 

initial experiment, how they were processed and ana-
lysed. More details on the initial analysis, which was 
done using multiple step-wise linear regression, can 
be found in [14].

3.1 Data recording and processing

Throughout the complexity measurement experi-
ment, three categories of data were recorded [14]:

 – Raw aircraft state data. It records the complete air-
craft state of each aircraft in a scenario at a 1-sec-
ond interval. These data can be used to replay the 
simulation runs and to calculate values of complex-
ity indicators in post-processing. This was useful for 
calculating the values of the new complexity indica-
tors that were developed after the initial analysis of 
the current complexity indicators.

 – Values of complexity indicators. A set of 20 com-
plexity indicators were coded in the simulator itself. 
This code produced values for each of the indica-
tors at a 1-second interval. Their values were re-
corded for post-experiment analysis.

 – Subjective complexity scores. During the simulator 
runs, the research participants (air traffic control-
lers) assessed the air traffic complexity using a 
scale from 1 to 7.
The following is a complete list of complexity indica-

tors which were used in the analysis [14] :
 – Aircraft count;
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combinations of 20 complexity indicators is   
220 – 1 ≈ 1 million, and the number of neurons in 
the hidden layer was limited to 40, the complete 
search space included approximately 4×107 com-
binations. This means that the initial population 
included less than 0.02% of all possible combina-
tions.

 – Train the ANNs on the 80% of the data set. ANNs 
were trained using supervised learning where 
backpropagation was used to adjust the weights 
of neurons by calculating the gradient of the loss 
function. This was performed using Levenberg–
Marquardt algorithm [19].

 – Evaluate the ANNs on the remaining 20% of the 
data set. Using different set of data to evaluate 
the ANNs than the one used to train them makes 
it possible to test for generalization of the learning. 
In this way, those ANNs which produced overfitted 
model with poor general performance will not be 
favoured over the rest of ANNs.

 – Sort the ANNs according to performance. As a 
measure of performance mean squared error 
(MSE) was used. ANNs with the lowest error were 
put on the top of the list.

 – Multiply ANNs according to their rank. Bottom half 
of the list (worst performing networks) was discard-
ed and the rest were duplicated according to their 
rank: ANNs from 2,000th-4,000th position were 
copied once, those from 1,000th-2,000th position 
were copied twice, those from 500th -1,000th posi-
tion were copied three times, etc. This enabled the 
most successful ANNs to increase their numbers 
so that those parts of the search space were more 
thoroughly explored in search of the best solution. 
Due to rounding down each time the remaining list 
of the ANNs was halved, this method of ANN dupli-
cation did not generate 8,000 networks as in the 
beginning of the algorithm. Therefore, the rest of 
the spots (12) were filled with randomly selected 
ANNs from the bottom half of the list.

 – Mutate the ANNs. In this part of the algorithm the 
two variable parameters, the number of hidden neu-
rons and the number of complexity indicators, were 

the values produced by linear prediction model and 
the actual subjective complexity scores was R=0.83 
(R2-adjusted = 0.691). Previously, Gianazza and Guit-
tet had also used ANNs to evaluate air traffic complex-
ity metrics by comparing their values with the sector 
status [17]. Their assumption was that the sector was 
split at the time when the workload was too high and, 
on the other hand, two sectors were merged when the 
workload was low. They also assumed that the sole 
reason for the increased workload was an increase in 
complexity. Compared to their method, we have used 
actual complexity scores provided by the licensed air 
traffic controllers during HITL simulations as a mea-
sure of air traffic complexity.

Due to relatively small number of input parame-
ters (20 complexity indicators), multi-layer percep-
tron (MLP) network architecture was selected for the 
ANN which will be trained to estimate the complexity 
(Figure 3). MLPs are proven to be universal function 
approximators which means that, among other appli-
cations, they can be used to approximate non-linear 
relationships between data [18]. Here, MLP was used 
to estimate air traffic complexity based on the values 
of air traffic complexity indicators.

In this case, three layers were used: input, hidden 
and output layer. Input layer initially had 20 neurons to 
match the number of input parameters. There was only 
one output parameter, the subjective complexity score 
estimation; therefore, there was only one output neu-
ron. To allow for possible performance improvements 
which could be achieved by changing the number of 
neurons in the hidden layer, a genetic algorithm was 
used to search for the best-performing hidden layer 
configuration. Also, the genetic algorithm was used to 
try out different combinations of complexity indicators

General genetic algorithm which was used to opti-
mize the ANN consisted of the following steps:

 – Generate a population of neural networks with 
uniformly distributed number of neurons in the 
hidden layer and randomly selected number and 
combination of complexity indicators. In this case, 
8,000 randomly generated ANNs were used for 
initial population. Since the number of possible  

Hidden layer
≤ 40 neurons

Output layer
(1 neuron)

Input layer
(n neurons)

Complexity
estimate

Complexity
indicator #1

Complexity
indicator #2

Complexity
indicator n

Figure 3 – Multilayer perceptron as used for complexity estimation
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Lastly, the ANN with best complexity estimation 
performance will be presented. It was first identified 
in generation 30; it had 4 neurons in the hidden lay-
er, used 19 complexity indicators and performed with 
MSE of 0.5249 on the validation data set. The training 
and validation performance can be seen in Figure 6.

semi-stochastically modified. With equal probability, 
the number of neurons in the hidden layer was in-
creased by one, decreased by one, or not modified 
at all. Same with the number of complexity indica-
tors. In 1/10th of the ANNs crossbreeding occurred, 
where the number of neurons in the hidden layer in 
network A was copied to network B, and vice versa.

 – Return to the training step.
This procedure was repeated 45 times or, as it is 

often called in reference to genetic algorithms, gener-
ations. This number of generations was chosen to en-
able the best performing ANNs to change their initial 
configuration (e.g. number of neurons in the hidden 
layer) by the amount equal to the maximum possible 
change from any starting point (e.g. maximum change 
in number of neurons in the hidden layer is 39, from 1 
to 40). Later analysis showed that 45 generations was 
more than enough because the algorithm reached 
showed no sign of further improvement after only 15 
generations.

3.3 Results of the genetic algorithm search

For each generation of the genetic algorithm, a pop-
ulation average was calculated (Figure 4). It can be seen 
that the population average MSE has stopped decreas-
ing in the 15th generation. Since there is only one output 
(complexity score in range from 1 to 7), the MSE was in-
tentionally non-normalized, so it can be used to directly 
assess the error in terms of complexity scores. 

Initial distribution of the number of neurons was 
uniform in the range from 1 to 40. It can be seen in 
Figure 5 that the population-wide average number of 
neurons in the hidden layer decreased from initial-
ly around 20 to only 4 by generation 25. Better per-
forming networks were those with smaller number of 
neurons in the hidden layer even though no cost was 
associated with having more neurons. This is probably 
because ANNs with more neurons overfitted the train-
ing data and thus performed poorly on the validation 
data set.

The number of complexity indicators used as in-
puts to the ANN remained high (average of 17.55 in-
dicators out of possible 20) throughout the search 
indicating that the best performing networks did find 
some utility in using more indicators. However, not all 
indicators were used with equal frequency as can be 
seen in Table 1 which shows how often each indicator 
was used in best performing ANNs for each of the 45 
generations. Though frequency of use is not the best 
measure of utility and it is not directly comparable to 
multiple step-wise linear regression results from the 
previous work [14], an overlap between those indica-
tors selected by linear regression and those most fre-
quently used by ANNs can be seen (indicators used in 
linear regression model are marked with an asterisk 
in Table 1). 
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controllers. In 44% of cases the ANN estimates differ 
from the controller’s by one. There are still approxi-
mately 7% of cases in which the ANN estimates differ 
from the controller’s by 2 or more levels. Some ideas 
on the cause of this can be found in the Discussion.

This ANN was also retested with the complete data 
set and MSE was equal to 0.6415 which is still below 
the population mean for all ANNs. To make the com-
parison with the linear regression model possible, 
the correlation coefficient was calculated and it is 
R=0.783 which is somewhat lower than the correla-
tion achieved by linear regression model (R=0.83). 
Likewise, R2 is 0.6087 which is lower than the one 
achieved by linear regression model (R2=0.693). How-
ever, these results have been achieved on the com-
plete data set as opposed to the TBO-only data set 
used for linear regression. The data were not filtered 
in this case because ANNs were expected to adjust au-
tomatically to the difference in concept of operations 
(conventional vs. TBO) which was only partially the 
case. Linear regression model, when used on the com-
plete set of data, achieved performance of R=0.746 
and R2-adjusted=0.554 [14]. The comparison of per-
formance of all models can be seen in Table 2.

Standard error of the estimate of the subjective 
air traffic complexity is the smallest in the ANN model 
but not by a large margin. It can be seen in Figure 7 
that in 49% of cases the ANN estimates the complex-
ity score to be equal to the one proposed by air traffic  

Table 1 – Complexity indicators frequency of use

Complexity indicator Frequency  
of use Complexity indicator Frequency 

of use

Fraction of TBO aircraft * 100% Fraction of aircraft climbing 84%

Standard deviation of aircraft headings * 91% Aircraft density II (based on convex hull volume) 84%

Aircraft count * 91% Separation criticality index 82%

Fraction of aircraft with fewer than 600 
seconds to conflict 89% Aircraft density II squared (based on convex hull 

volume and the squared number of aircraft) 82%

Number of aircraft pairs at a 3D  
Euclidean distance less than 5 NM * 87% Ground speed variance 80%

Fraction of aircraft either climbing or 
descending * 87% Ratio of standard deviation to mean value for 

ground speed 80%

Inverse weighted mean of aircraft vertical 
separation 85% Number of aircraft pairs at a 3D Euclidean 

distance of 10-15 NM 78%

Ratio of mean aircraft distance to number 
of aircraft * 85% Aircraft density I (based on sector volume) 78%

Inverse of minimum horizontal separation 
in the same vertical neighbourhood 84% Altitude variance 78%

Fraction of aircraft descending 84% Number of aircraft with horizontal separation 
less than 8 NM 73%

*used in linear regression model

Table 2 – Comparison of performance of different complexity estimation models

Kopardekar  
et al. [16] Linear model [14] TBO-specific linear 

model [14] ANN model

R 0.83 0.746 0.833 0.783

R2 0.69 0.556 0.693 0.609

R2-adjusted N/A 0.554 0.691 N/A

Std. error of the estimate N/A 0.851 0.889 0.801
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adjusted to discard the data which do not improve ac-
curacy of complexity estimation. However, the analysis 
of frequency of the complexity indicator usage in the 
population of the best performing ANNs shows that 
some of the indicators are very useful for complexi-
ty estimation. These are mostly the same indicators 
which were identified as useful by linear regression.

Overall, the performance of ANNs is mostly equal 
to linear models. This means that the issues with lin-
ear model accuracy did not stem from non-linear re-
lations between indicators and subjective complexity 
scores. Instead, there might be some other source of 

4. DISCUSSION
Results have shown that ANNs can be used to deter-

mine air traffic complexity with accuracy similar to lin-
ear models. The genetic algorithm search for the best 
ANN configuration has shown that smaller networks, 
with less neurons in the hidden layer, outperform the 
larger ones. Also, the genetic algorithm search has 
shown that the best performing ANNs used almost all 
complexity indicators available. This does not mean 
that all of them are equally useful (or useful at all), 
because weights between neurons could have been 

a) b)

Figure 8 – Example of intra-rater unreliability; both situations were given the same complexity score (=1)

Complexity scores: ATCO 1: 4, ATCO 2: 3, ATCO 4: 2, ATCO 5: 5

Figure 9 – Example of inter-rater unreliability; complexity scores vary from 2 to 5 for the traffic situation presented
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state all interactions they see and which steps need to 
be taken to resolve all conflicts. The number of interac-
tions and the number of steps to resolve the conflicts 
could be used as a measure of complexity. Overall, we 
find that the problem of estimating complexity, even 
after almost two decades of research on the global 
scale, has still remained an unsolved challenge.
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SAŽETAK

Kompleksnost zračnog prometa uobičajeno se defini-
ra kao težina praćenja i upravljanja određenom situacijom 
u zračnom prometu. Budući da je to psihološki konstrukt, 
najbolja mjera kompleksnosti je ona koju daju kontrolori 
zračnog prometa. Međutim, postoji potreba da se napravi 
metoda za procjenu kompleksnosti koja se može koristiti bez 
anketiranja kontrolora. Za tu su potrebu do sada korišteni 
uglavnom linearni modeli. Ovdje istražujemo mogućnost 
korištenja umjetnih neuronskih mreža za procjenu komplek-
snosti. Korišten je genetski algoritam u potrazi za najboljom 
konfiguracijom umjetne neuronske mreže. Naš zaključak je 
da umjetne neuronske mreže djeluju jednako dobro kao i 
linearni modeli i da se preostala pogreška u procjeni kom-
pleksnosti može objasniti samo kao nepouzdanost u proc-
jenama kontrolora. Jedna od prednosti umjetnih neuronskih 
mreža u usporedbi s linearnim modelima je u tome što se 
podaci ne moraju filtrirati na temelju koncepta operacija 
(konvencionalnog naspram temeljenog na putanjama).

KLJUČNE RIJEČI

kompleksnost zračnog prometa; procjena kompleksnosti; 
umjetne neuralne mreže; genetski algoritmi; simulacije s 
čovjekom u petlji; upravljanje zračnim prometom;
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