
Promet – Traffic & Transportation, Vol. 31, 2019, No. 3, 287-297 287

Černý J, Peško Š, Černá A. Alternate Criteria in LP Solutions of Public Transport Line Planning

ALTERNATE CRITERIA IN LP SOLUTIONS OF PUBLIC 
TRANSPORT LINE PLANNING

ABSTRACT

In the paper, the public transportation line planning 
means planning of routes and frequencies of vehicles on 
them. In the world literature, different criteria are used in 
this context; mainly the variable costs of lines, the fixed costs 
of lines, the fixed plus variable costs of lines, the number 
of direct travellers, the total or average riding time and the 
total or average travelling time. The current paper adds two 
more: the total number of used vehicles (to be minimized 
when all passengers are transported) and relative excess of 
supply over demand (to be maximized without exceeding the 
number of available vehicles). Basic mathematical models 
for both cases are presented and the motivation of such 
approach is described including a brief excursion into the 
history of the Czech and Slovak research of line planning 
where the use of these objectives has arisen. Further, the 
basic models were modified for the cases of fourteen spe-
cial practical requirements, e.g. heterogeneous vehicle fleet  
(= rolling stock), limitation of transfers, elastic demand, lim-
ited total number of lines, etc. The brief outline of the experi-
ence with practical use is added as well.

KEY WORDS

public transportation; line planning; linear programming; 
criterion; objective function;

1. INTRODUCTION
The current paper deals with the public transport 

line design, i.e. the design of routes and frequencies 
of vehicles on them. This issue belongs to the gen-
eral theory of public transport planning presented in 
books like [1], extensive book sections as [2] or large  
survey-type papers such as [3] or [4]. The structure of 
this planning process and the line planning position 
in it are described in more detail later in this Section.

Line planning has been discussed in hundreds 
of publications over the past decades, as seen from 
survey papers [5, 6, 7]. However, the PRIVOL method,  

successfully used in the Czech and Slovak Repub-
lics, is not mentioned there. The main purpose of this 
paper is to explain to the readers its essence and 
to demonstrate its ability to work with Mixed Integer 
Linear Programming (MILP) models to address many 
specific transport situations. PRIVOL is based on the 
so-called Erlander approach, which is explained later 
in this Section. PRIVOL is actually a linear modification, 
avoiding the passenger time loss criterion (used by Er-
lander), which is non-linearly linked to the number of 
vehicles deployed, as presented later in this Section.

Further, two basic problems P1 and P2 have been 
formulated, to which the method PRIVOL has been 
originally designed. 

Section 2 lists 14 requirements of public transport 
engineers for specific conditions, which should be add-
ed to the method PRIVOL so that solutions using MILP 
models would continue to be possible. 

Sections 3 and 4 show that all requirements can 
be formulated in the linear form and solved by LP  
(= linear programming) which proves the truth of the 
basic hypothesis.

Section 5 is focused on the discussion and remarks 
to previous Sections.

Final Section 6 presents conclusions of the paper 
and outlines the possibilities of future research.

The method PRIVOL, problems P1 & P2 with all 14 
modifications and the MILP models for their solution 
are original research results of the authors’ team.

Public transport planning steps 
In general, the planning process starts when a can-

didate network, available fleet (= rolling stock) of ve-
hicles and passenger demand (usually in the form of 
an O-D matrix) are given. The process consists of the 
following steps: 
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represents the inspiration for creating the method 
PRIVOL  that is mentioned in the following Sections, it 
enters the bibliography although it is cited in [5]. 

In 1976, S. Erlander gave lectures in Prague and 
Žilina where he widely explained the results of [8], 
mainly the original approach to the combination of 
routing and frequencing in one step. Since that time, 
the Czech and Slovak researchers have named it ‘Er-
lander approach’ or ‘Erlander principle’. It deals with 
the given set of potential lines L0 (= candidate routes 
in [6]) and the goal is to choose a subset L 1 L0 by 
means of a selective variable xl ! {0, 1, 2, ...} de-
fined for all l ! L0 and having the following meaning:  
xl = 0 & l gL i.e. the candidate line l is not selected 
and xl > 0 & l ! L i.e., l is selected into L. Therefore, the 
selected subset is L = {l ! L0: xl  > 0}. First, xl expressed 
the number of vehicles assigned to l, but later, in the 
Czech and Slovak (briefly CS) situation, it was shown 
that similar role may be fulfilled by xl  expressing fre-
quency, i.e. the number of services per hour or the 
static or dynamic capacity of vehicles assigned to l [9].

S. Erlander [8] used this approach together with 
the objective expressing the total time losses of pas-
sengers. This led to the need to use non-linear pro-
gramming model, since loss of time while waiting for 
the connection is inversely proportional to frequency. 
Moreover, the model had to be protected against value 
xl  = 0 in the denominator. These complications caused 
that, in the early eighties, CS available computers 
were able to handle sets L0 of maximal cardinality 15, 
although the practical needs were at least 10 times 
greater. Therefore, for a CS use of Erlander approach, 
it was necessary to abandon the time loss objective 
and to look for another one, enabling the use of lin-
ear programming on one side, but keeping in mind the 
time loss of passengers on the other side.

Erlander approach combined with linear programming  
In the eighties, CS researchers sought an objective 

function that would be linearly dependent on variables 
xl . The model they started with, included the following 
assumptions: 

 –  all vehicles have the same capacity c (i.e. the num-
ber of places for passengers) and the number of 
available vehicles is n; 

 –  for all l ! L0, the cycle time is t, (= the round trip 
running time plus layover time at each end of the 
line l), and 

 –  all passengers mentioned in OD-matrix have to be 
transported. 
To meet the last assumption, some of the traffic 

assignment methods were used to calculate the traffic 
load fe for each e ! E, i.e. the larger of the numbers of 
passengers travelling along edge e in both directions 
(within one hour). 

1)  Choice of subnetwork for public transport opera-
tion and, if necessary, rebuilding sections of a can-
didate network that are not yet eligible for public 
transport.

2)  Design of routes (briefly “routing”).
3)  Determining of frequencies (briefly “frequencing”).
4)  Timetabling.
5)  Vehicle scheduling.
6)  Crew scheduling.
7)  Crew rostering.

Two consecutive steps of this process sometimes 
merge into one step, for example the fifth with the 
sixth, the sixth with the seventh, or the second with 
the third. And just the last one, i.e. combining routing 
and frequencing into one step is the topic the current 
paper deals with. The result of this procedure is a set 
of public transport lines. Here, each line is defined by 
two important data: the route and the frequency of ve-
hicles, i.e. the results of the 2nd and 3rd steps. 

In the current paper, it is supposed that the public 
transportation operates on a network represented by 
a (undirected) graph G = (V, E) where the set of verti-
ces (= nodes) V represent potential stops/stations of 
vehicles (i.e. buses, trolleybuses, trams, trains, etc.) 
and the set of edges E represent network segments 
enabling direct movement of vehicles between stops 
(not passing any other stop). The goal is to find a set of 
public transport lines that will operate on network G.

A public transportation line l is usually defined by 
two basic data:

 –  Route rl = vl0, vl1, …, vl,m(l), where m(l) means the 
number of inter-stopping edges, vl0 and vl,m(l) are 
the terminals (with vl0 = vl,m(l) for a circular line),  
vl1, …, vl,m(l)-1 are the intermediate stops, listed in 
the order in which they are passed.

 –  Timetable Tl describing the movement of all ser-
vices in both directions of route rl. For the purpos-
es of the current paper, it is strongly simplified and 
specified later, together with individual models.
Symbol El expresses all edges passed by the route 

rl, i.e. that are equal to at least one inter-stopping edge 
of rl.

Line planning is one of the most important activi-
ties of urban transport managers. It determines both 
the carriers’ costs and the passengers’ satisfaction. 

Erlander approach to line planning 
It is not surprising that line planning has been 

an intensely studied issue, especially in the last four 
decades. Perhaps, even more than some hundreds 
papers have been focused on this topic. Survey type 
papers, like [5, 6, 7] have a prominent position among 
them. The last two are quite recent (2009/2012) and 
one can find much more than a hundred entries in 
their bibliography. Therefore, the bibliography of the 
current paper does not contain the items cited there. 
However, there is one exception. Since paper [8]  
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i.e. the smallest relative excess (with respect to e ! E) 
ought to be maximal. Conditions 1, 4 and 5 form prob-
lem P2.

The solution method for both problems P1 and P2 
and the corresponding PC program were called PRIVOL 
(Slovak abb. PRIdelenie VOzidiel Linkám = assignment 
of vehicles to lines) and this name is commonly used 
among the Czech and Slovak experts. Sometimes its 
meaning is a bit extended, and by PRIVOL not only the 
method is understood, but also the solved problem 
with the corresponding mathematical model.

2. BASIC HYPOTHESIS 
The systems of urban transport lines have been 

optimized by PRIVOL in more than ten Czech or Slo-
vak towns from 1988 up to now. However, it was in 
the “pure form” of P1/2 only seldom, e.g. in the Slo-
vak town Piešťany in 2003. More often, the municipal 
managers requested some modifications of the meth-
od.

The main purpose of this Section is to present the 
basic hypothesis, to be proved in the Sections 3 and 4. 
It is formulated as follows:

Basic Hypothesis: If the following specific practi-
cal requirements are individually incorporated into 
problems P1 or P2 then they can be formulated in 
linear form and solved by LP (= linear programming). 
The word “fleet” is a general expression for the rolling 
stock:
rq1)  repetition of optimization with changed set L0,
rq2)  one system with heterogeneous fleet – vehicles 

  with different number of places,
rq3)  more than one system with homogeneous  

  fleets, 
rq4)  heterogeneous fleet and heterogeneous 

  groups of vehicles on lines, 
rq5)  increase disappointingly small percentage of 

  direct travellers, 
rq6)  limited number of routes, 
rq7)  limited number of routes in several time  

  periods, 
rq8)  elastic demand with respect to supply,
rq9)  cost minimization in the case of one system  

  with a homogeneous fleet,
rq10) cost minimization in the case of more than  

  one system with homogeneous fleets,
rq11) more than one system with partially redun- 

  dant fleet, 
rq12) optimal use of partially redundant bus or trol- 

  leybus fleet in no mixed service, 
rq13) optimal use of redundant bus fleet in mixed  

  service, 
rq14) optimal choice of representatives for groups  

  of lines.

When variables xl meant the number of assigned 
buses (or other types of vehicles like trolleybuses or 
trams, for instance) then the Erlander’s constraint [8] 
was

x nl
l L0

#
!

/  (1)

expressing the limited number of available vehicles 
and the “new” constraint was

t
c x f Ee60 for each

:l L e E l l e
l0

$ !
! !

/  (2)

requiring sufficient supply of places for passengers 
on each section of the network, since 60xl /tl is the 
frequency of line l and c is the capacity of the unique 
vehicle in the system.

Problem P1: Number of vehicles as the objective
The first idea (see [9] and [10]) concerning the ob-

jective function was to take the total number of used 
vehicles

z xl
l L

1
0

=
!

/  (3)

The reasoning was that if all passengers are trans-
ported by a minimal number of vehicles, then their to-
tal riding time can be expected to be minimal as well.

Problem P1 was to find integer variables xl ≥ 0 for 
l ! L0 meeting the Constraints 1 and 2 and minimizing 
the Objective function 3. Using available computers at 
that time it was possible to solve instances of P1 with 
about 100 elements in set L0 and with networks that 
had about 100 edges.

However, several managers of public administra-
tion were not fully satisfied with the reached results. 
Their main problem was not the lack of vehicles, but 
the lack of comfort for passengers who often had to 
stand (when all the seats were occupied) in the vehi-
cles for tens of minutes. Therefore, the researchers 
looked for another linear objective function – the mini-
mal (relative) reserve of places for passengers – to be 
maximized.

Problem P2: Maximum of minimal reserve of places 
for passengers

It was obvious that the reserve of places for pas-
sengers had to be maximized everywhere, on each 
edge of the network. Consequently, there was no 
sense in looking for some objective of summation type 
but rather of the Max-Min one [9].

Constraint 1 remained unchanged. Constraint 2 was 
modified into the form

t
c x f Ey e60 for each

: l l e
l L e El0

$ !
! !

/  (4)

where ,y 0 3! h  is an auxiliary variable, represent-
ing the minimal relative excess of supply over demand. 
Finally, the objective is

maxy "  (5)
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Then neither Constraint 1 nor 4 could have remained 
unchanged. First of all, it was necessary to know total 
available capacity ctot as the sum of capacities of all 
buses. Then Constraint 1 was replaced by

t x c60
l L

l
l tot

0

#
!

/  (6)

Moreover, Constraint 4 got the form

x yf Eefor each
:

l e
l L e El0

$ !
! !

/  (7)

Hence, the modified version P2a is defined by 5, 6 
and 7.

However, having dynamic capacities xl does not 
mean having the set of vehicles assigned to each line. 
For this purpose, a PC interactive “man-machine” pro-
gram was prepared enabling the transport engineer 
to determine and to improve the assignment of vehi-
cles to the lines i.e. to determine “realistic” values xl’ 
derived from the resulting xl. The main goals of this 
procedure were

 –  not to abandon any line l with, even small, xl > 0 if 
line l is the only one passing  through an edge e 
with fe > 0 or if xl ≥ b where b is an upper bound of 
“negligible” values,

 –  to minimize differences xl – xl
’, especially when  

xl
’ < xl. 

Of course, if values xl
’ are used instead of xl in Con-

straint 7, there should exist y ≥ 1 fulfilling it for each  
e ! E.

3.3 More than one system with homogeneous 
fleets (rq3)

Many Czech and Slovak towns have more than one 
system of surface public transport. One can see buses 
and trolleybuses. Very often, especially in the towns 
with about 100 thousand inhabitants, buses and trol-
leybuses are used (Zlín, Pardubice, Žilina, Prešov, etc.), 
some of such towns prefer buses and trams (Liberec, 
Olomouc). The larger towns have all three systems 
(Prague, Plzeň, Brno, Ostrava, Bratislava, Košice). 

Then the following modification of problem P2 
could be used, where xl means the number of vehicles.

First of all, if there were s systems, then set L0 is 
split into parts L01, L02, … L0s, where each l ! L0k be-
longs to the k-th system, k = 1, …, s. Then, since it is as-
sumed that all vehicles of the k-th system have equal 
capacity ck, symbol nk denotes the number of available 
vehicles of the k-th system. Naturally, capacity cl of a 
vehicle assigned to a line l ! L0k is cl = ck. Instead of 
Constraint 1 the following is used:

, ,x n k s1for eachl k
l L k0

f# =
!

/  (8)

and, similarly, 

t
c x yf Ee60 for each

: l
l

l e
l L e El0

$ !
! !

/  (9)

Hence, the modified version is defined by 5, 8 and 9.

3. LESS KNOWN MODIFICATIONS OF 
PROBLEMS P1 AND P2 
In this Section, less known modifications are pre-

sented. Several of them, namely rq1, rq2, rq3 and 
rq5 were successfully used in practice, while rq2, 
rq3, rq4, rq5, rq6, rq7 and rq8 are mentioned in the 
conference presentation [11], but their presentation 
in Subsections 3.1-3.8 of the current paper is more 
complex due to increased practical experience of the 
authors. All eight cases show that these requirements 
are formulated in linear form and are solvable by LP, 
which confirms the validity of the basic hypothesis for  
rq1-rq8. New original modifications corresponding to 
rq9-rq14 requirements that have not yet been pub-
lished or used in practice are described in Section 4.

3.1 Increase of y by repetition of optimization 
with changed set L0 (rq1)

When the method PRIVOL was applied in the Czech 
or Slovak towns, almost always the first resulting val-
ue y was disappointingly small, much smaller than 1, 
which signalized a small supply of places for passen-
gers. Of course, such a solution was (and is) not fea-
sible. 

Since, usually, it is not possible to increase the ve-
hicle fleet, it is necessary to look for the solution in 
routing. The way is to extend the candidate set L0. For 
this purpose, a PC interactive “man-machine” program 
was prepared enabling the transport engineer 

 –  to determine the “limiting” edges e ! E where the 
left side of Constraint 4 is equal (or almost equal) to 
the right one,

 –  to design new lines, passing mainly through these 
edges, to be introduced into L0.
Afterwards, a new calculation has been made with 

the changed set L0. If the new resulting y is not yet sat-
isfactory, the procedures will be repeated, etc.  

3.2 One system with heterogeneous fleet – 
vehicles with different capacities (rq2)

The following situation occurred many times in the 
past. In a town, there was bus transit, using vehicles 
with different number of places in operation. They 
were e.g. standard buses (with the “static” capacity of 
about 80 passengers, sitting or standing), midibuses 
(45 passengers), minibuses (25 passengers), or even 
articulated buses (140 passengers). In such a case, 
the definition of variables xl, as the number of vehicles, 
lost any sense. The modification was that the meaning 
of xl was changed to dynamic capacity, i.e. the number 
of passenger places per hour on line l. Of course, it 
did not have to be an integer, but a non-negative real 
would have been sufficient.
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3.6 Limited number of routes (rq6) 

It may happen that the public authority asks the 
transport engineers to keep the number of selected 
lines |L| not exceeding the given limit n*. The reason 
is that among CS transport engineers there is a wide-
spread unwritten principle that the number of urban 
routes should not exceed the number hp where p is 
the population of the town and h is a constant. The 
authors feel that it may be approximately 0.2 p if p is 
expressed in thousands. For instance, if the popula-
tion is 40,000 then the number of routes should not 
exceed 8.

If the basic form of PRIVOL (Problems P1/2) is to 
be used, then new binary variables ql for l ! L are intro-
duced where ql = 1 if l is chosen to L and ql = 0 other-
wise. Then the following constraints should be added:

q x q l L10 for eachl l l
6

0# # !  (15)

q n*

l L
l

0

#
!

/  (16)

3.7 Limited number of routes in several time 
periods (rq7)

It was not said explicitly, but it is obvious that, until 
now, all models have dealt with only one time period. 
Now, it is supposed that the route set optimization 
should be found by basic PRIVOL, i.e. analogically as 
in problems P1 or P2, for g (> 1) different time peri-
ods like morning peak and saddle, afternoon peak, 
evening, weekend, etc. It may happen that the optimal 
set of lines Lj for the j-th period differs substantially 
from the others. The passengers do not like routes that 
pass different stops in different time periods to have 
the same number. However, there may be reasons for 
keeping the total number of lines under limit n*. Of 
course, these lines may have different headways, i.e. 
different frequencies on the same routes (= sequences 
of stops) in different time periods. These requirements 
lead to the following problem formulation: to find a 
positive real number y and non-negative integers ql, 
(line l choice indicator), xlj (number of vehicles on l in 
the j-th period) for each j = 1, …, g and l ! L0 such that

maxy "  (17)

, ,x n j g1forlj oj
l L0

f# =
!

/  (18)

, ,t
c x f y E j ge60 1for each and

: l l ej
l L e El0

f$ ! =
! !

/  (19)

ql x q l L10 for eachli l
i

m
6

0
1

# # !
=
/  (20)

q n*
l

l L0

#
!

/  (21)

3.4 Heterogeneous fleet and groups of vehicles 
on lines (rq4) – exact solution

Model 3.2 has been used in practice many times 
in cases when ko different types of vehicles with differ-
ent static capacities ck (= numbers of places for pas-
sengers), k = 1, …, ko were available for operation. As 
a matter of fact, it is of a heuristic “man-machine” type 
and the same can be said if 3.3 is used for the solution 
of 3.2 as said in 5.3, 3rd paragraph. In both cases, the 
procedure is of a cascade type consisting of two steps. 
One of them is exactly calculated by a computer and the 
other is done “manually” by an engineer – in 3.2 it is 
the distribution of individual vehicles among lines and 
in the case of the use of 3.3 it is the “a priori” decision 
what size of vehicles is assigned to each line l ! L0.

Now, in accordance to [11], a new approach can be 
proposed. It consists again of two steps, but both yield 
an exact solution.

The 1st step is the same as in 3.2 i.e. by the solu-
tion of the problem defined by Constraints 5, 6 and 7 
one reaches the dynamic capacities xl  assigned to all  
l ! L0. Then set L of the selected lines L = {l ! L0: xl > 0}. 
For the use in the 2nd step al = xl for all l ! L is denoted. 
Moreover, nk means the number of available vehicles 
of the kth type for k = 1, …, ko. 

2nd step: Define variable zlk as number of vehicles 
of the k-th type assigned to line l for each l ! L. Find 
non-negative integers zlk, l ! L, k = 1, …, ko and a real 
number y’ such that

, ,z n k k1for eachlk k o
l L

f==
!

/  (10)

c z a y l Lfor each'

, ,
k lk l

k k1 o

$ !
f=
/  (11)

' maxy "  (12)

3.5 Disappointingly small percentage of direct 
travellers (rq5)

Managers of CS towns that have about one hun-
dred thousand inhabitants asked the researchers to 
introduce a constraint concerning the percentage of 
direct travellers into the method PRIVOL. They usually 
wanted it above 90%.

The solution was as follows. If the resulting number 
of direct travellers was under 90%, then the reduced 
OD-matrix, remaining after the deletion of all directly 
travelling passengers, was denoted as H = (hvw). As 
usual, the set of the lines selected by PRIVOL was de-
noted L. Then such l’ ! L0 – L was chosen that

maxb h h
( ) ^ ( )( ) ^ ( )

vw
l L L

vw
v l w lv l w l' ' 0

=
! ! !! !

- c m//  (13)

and, for some “sufficient” b > 0 the constraint

x bl ' $  (14)

was added to the constraints of the problem and it was 
solved again. This step could be repeated until the per-
centage of direct travellers exceeded 90.
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of Problem P1. Then the modified problem is to find 
the number of vehicles xl assigned to line l for each  
l ! L0 meeting Constraints 1, 24 and 25.

t
c x f Ey e60 for each

: l l e
l L e E

o
l0

$ !
! !

/  (24)

mint
c60

: l e l
l L e Ee E l0

"c \
! !!

//  (25)

4.2 Cost minimization for more than one 
system with homogeneous fleets (rq10)

The situation, motivation of problem solving and 
its goals are almost the same as in 4.1 The only dif-
ference is that instead of one system there are s dif-
ferent systems here. Hence, set L0 is split into parts  
L01, L02, … L0s, where each l ! L0k belongs to the k-th 
system. All vehicles of the k-th system had equal ca-
pacity ck and the symbol nk denotes the number of 
available vehicles of the k-th system. Consequent-
ly, capacity cl of a vehicle assigned to a line l ! L0k is  
cl = ck. Moreover, cek > 0 denotes the cost of one pass-
ing through edge e ! E by a unique vehicle of the k-th 
system. The problem is then to find the number of ve-
hicles xl assigned to line l for each l ! L0 meeting Con-
straints 8, 24 and 26.

mint
60

: l ek l
l L e Ee Ek

s

1 k l0

"c \
! !!=
///  (26)

4.3 More than one system with partially 
redundant fleet

Suppose that the modification 3.3 of Problem P2 
has been resolved with the resulting value y. For some 
k ! {1, …, s} it has been found that the same resulting 
value y is reached even if nk was replaced by nk – 1. 
This indicates that one vehicle of the k-th system is 
redundant and its use may cause inutile costs. With 
subsequent repeating of such a stepwise reduction 
one can reach such an s-tuple n1 – d1, …, ns – ds that 
none of its elements can be reduced without the re-
duction of value y. Of course, such an s-tuple need not 
be unique; different ordering of indices k may lead to 
different final n-tuples.

However, this problem can be conceived in another 
way. Suppose that a (fixed) cost ck is given for one ve-
hicle use of each k = 1, …, s and the other denotations 
are the same as in 3.3 (Constraints 8 and 9). Value y is 
given like several rows above. Then the problem is to 
find the integers xl for l ! L0 such that

min
k

s

k l
l L1 k0

"c \
!=

/ /  (27)

4.4 Optimal use of partially redundant bus or 
trolleybus fleet – no mixed service

No mixed service means that it is not allowed to 
use a bus on trolleybus lines. Suppose that the avail-
able numbers of buses and trolleybuses are n1 and n2, 

where noj is the given number of vehicles in service 
in the j-th time period and fej is the given demanded 
number of places for passengers passing edge e ! E in 
one direction in the  j-th time period. 

3.8 Elastic demand with respect to supply (rq8)

This paragraph deals with a complex problem even 
for the basic PRIVOL, represented by problems P1 and 
P2. The reason is that the elasticity could be depen-
dent on the place and time and be non-linear. In the 
sequel, only a simplified linear problem will be present-
ed for problem P1. 

Suppose that on each edge e ! E the actual de-
mand is {e = fe + bese where se represents the supplied 
number of places for passengers passing through edge  
e ! E in one direction, be is a positive real number,  
be << 1 (i.e. be is much smaller than 1) and fe is the orig-
inal estimate of flow through e derived from the O-D 
matrix. Then Constraint 2 turns to

t
c x f b t

c x60 60
:: l l e e e l l

l L e El L e E ll 00

$ { = +
! !! !

//  (22)

which is equivalent with

b t
c x f Ee1 60 for each

:
e l l e

l L e El0

$ !-
! !

^ h /  (23)

4. NEW ORIGINAL MODIFICATIONS OF 
PROBLEMS P1/P2
The modifications presented here have not yet 

been published anywhere. Since requirements  
rq9-rq14 appeared only recently in the interviews of 
the authors with other experts, there is no experience 
with their application within the framework of PRIVOL 
in practice.

In all six cases it is shown that these requirements 
are formulated in linear form and solvable by LP, 
which confirms the validity of the basic hypothesis for  
rq9-rq14.

4.1 Cost minimization in the case of one 
system with a homogeneous fleet (rq9)

It may happen that passing of some edge e ! E by 
public transport vehicles is considerably costly, e.g. 
there are many curves or the road goes up and down 
or there is a necessity for braking and accelerating 
many times, etc. Then it is welcome if the supply of 
places of passengers per hour does not redundantly 
exceed demand fe. It is then possible to use the fol-
lowing modification of the basic Problem P1: Let yo > 0 
be a given constant, representing the lower bound of 
admissible supply/demand ratio. Let ce > 0 be the cost 
of one passing through edge e ! E by a unique vehicle. 
Let the other denotations be the same as in the case 
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The corresponding modification of Problem P2 is 
the following: find non-negative integers xl, l ! L0 meet-
ing Constraints 1, 4, 5 and 33.

, ,x k n1 1forl
l Lk

f= =
!

/  (33)

5. DISCUSSION 

5.1 Discussion to Section 1

Comment to merging of routing and frequencing 
(see Section 1 after the list of planning steps). Of 
course, it is not necessary to do these two steps at 
the same time in one unique procedure. First, do the 
2nd step, e.g. by genetic algorithm as in [12] and after-
wards the 3rd one, e.g. by “classic” procedures from 
[13]. However, many practitioners prefer, in general, 
the merged steps on which the current paper is fo-
cused. 

Response on small changes in demand, candidate 
network or fleet (see Section 1). Naturally, it may hap-
pen that after some time (months or years), passenger 
demand, available “candidate” network or available 
fleet slightly change and the current routing and fre-
quencing remains optimal no longer. Then, it will not 
be necessary to look for a completely new solution but 
it will be sufficient to modify the existing solution, as 
described e. g. in [14, 15 or 16]. It is possible to do 
this using PRIVOL as well, but not in the exactly optimal 
manner. Moreover, it is not certain that, comparing 
with [16], such a high percentage of the existing lines 
remains intact. Using PRIVOL in this case requires sen-
sitive changes of the initial “candidate” set of routes 
L0. 

Comment to one-level approach. In the current pa-
per, the one-level approach is adopted in the formula-
tions of the line creation problems to be solved. Here, 
an a priori distinction of “levels” is not included, i. e. 
specific types of service designed to serve particular 
markets like in [17] for Zurich in Switzerland. Neither 
are there distinguished public transport subsystems 
of “higher” and “lower” levels. If they are expected in 
practice, the current paper assumes first to deal with 
the lower level alone and, if necessary, to create the 
lines of the higher level separately afterwards. For in-
stance, if feeder lines are required for connecting the 
lower level with the higher one, as in [18], then these 
passengers are considered in the O-D matrix similarly 
as other passengers demanding transport in the lower 
level only. 

Note on the candidate set of routes L0 (see Section 
1, paragraph Erlander Approach). In practice, in most 
cases, set L0 is constructed by traffic engineers “man-
ually”, using their erudition and experience. However, 
as shown e.g. in [19, 20, 21 and 22], creation of new 

respectively. Suppose further that for the given n1, n2, 
the solution of problems 3.3 and 4.3 has been already 
done with the resulting values yo and xol, l ! L0. Denote 
Ek set of all edges, belonging to any l ! L0k, k = 1, 2. 
Denote 

,n k 1 2for'
k ol

l L k0

\= =
!

/  (28)

i.e. nk
' is the number of vehicles from the k-th sys-

tem that are necessary for reaching value yo. Value  
dk = nk – nk

' represents the number of “free” vehicles 
that can be used for the improvement of passenger 
comfort on the edges passed by the lines of the k-th 
system. If the fleet is partially redundant, then at least 
one of these differences is positive. Suppose it is the 
h-th system where dh > 0. The problem is to find a real 
value y > yo and non-negative integers xl, l ! L0 meeting 
Constraints 5, 8, 29 and 30.

e Et
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If the resulting y > yo, then the comfort of passen-
gers, using only the h-th system, increases using the 
whole fleet of n vehicles, compared with the case when 
only n'

1 + n'
2 was used and the comfort of the others did 

not decrease.

4.5 Optimal use of redundant bus fleet in 
mixed service

In contrast to the previous Section, mixed  
bus-trolleybus traffic is allowed on the trolleybus lines. 
The denotations are the same as in 4.4. Similarly, it 
is assumed that, for the given n1, n2, the solution of 
problems 3.3 and 4.3 has been already done with the 
resulting values yo and xol, l ! L0. Of course, h = 1, d1 > 
0 since the mixed traffic has sense only if the bus fleet 
is redundant.

The problem is to find a real value y and non-negative  
integers xl, l ! L0 meeting Constraints 5, 9, 31 and 32.

x nl
l L

1
01

#
!

/  (31)

x n nl
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1 2
02

# +
!

/  (32)

4.6 Groups of lines – optimal choice of 
representatives 

It happens that the basic set of lines L0 is split into 
groups L00, L01, …, L0k and the problem is to choose 
exactly one representative line from each group  
L01, …, L0k and arbitrary (even empty) subset of lines 
from L00 into the resulting set L. For instance, it may be 
caused by the fact that each group  L01, …, L0k corre-
sponds to a non-negligible but weak flow of passengers. 
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A good example was in Žilina, when all the candi-
dates for the role of the key lines with saddle head-
ways about 10 or 15 minutes, had the saddle value of 
tl just under 60 or 90 minutes, such as 59, 58, or 88, 
90 with the necessity of only small additional idle time 
0, 1 or 2 min in terminals when l was chosen to set L.

5.2 Discussion to Section 2

Note on the completeness of the list of require-
ments. This list includes all the requirements that the 
authors encountered in interviews with the Czech and 
Slovak public transport managers during the last years. 
It does not, however, include all the criteria applied in 
the creation of lines in the world literature - see, for 
example, aspects of emissions, noise and accidents 
on the selected routes in [24] or capacity issues in [6]. 

5.3 Discussion to Section 3

Increase of “y” by repetition of optimization with 
changed Set L0 (see 3.1). When the method PRIVOL 
was applied in the Moravian town Olomouc in the nine-
ties, the first round led to the value y ≈ 0.5, i.e., the 
demand was double supply. After five repetitions of 
calculations with subsequently augmented set L0 of 
candidate routes, value y > 1 was reached.

Note to vehicles with different number of places (see 
3.2). In Žilina in 1989 the fleet consisted of standard 
buses for 90 passengers and articulated ones for 145 
passengers. The authors worked with the candidate 
set L0 so carefully that in the rush hours, after the op-
timization as in problem P2 with resulting xl, l ! L, all 
the key lines had a unique headway of 5 min and each 
such line had assigned buses of only one size.

Note to different systems (see 3.3). This model can 
be used also in the case of 3.2, mainly when it is pos-
sible, in advance, to assign a single size of vehicle to 
each line l following e.g. some transport engineering 
aspects (necessity of a small vehicle because of sharp 
turns on the route etc.). Then the problem turns into 
the one presented in 3.3. 

If there is more than one system and some of them 
use heterogeneous (with respect to capacity) fleet, 
then such a system can be split into subsystems with 
homogeneous fleets assuming that each line is a priori 
assigned to some subsystem. Then the problems 8, 9 
and 5 can be applied as well.

A small pitfall in the case of 3.3. The authors met 
an interesting situation in Pardubice in the late nine-
ties. There were two systems, buses and trolleybuses. 
The bus fleet was homogeneous from the point of ve-
hicle capacity – each bus had about 90 places for pas-
sengers (sitting and standing together) and almost the 
same could be said about trolleybuses; each had a ca-
pacity of about 82. Coincidentally, the number of bus-
es available was 40, the same as for trolleybuses, i.e.  
n1 = n2 = 40 in the model. After several rounds of type 

lines is possible also in a “scientific” manner, using 
mathematical models and methods together with a 
solution on a computer. 

Note on the constancy of the cycle time and on 
the stationarity of the set of lines (see Section 1, para-
graph Erlander Approach). Value tl is supposed to be 
constant. However, this assumption may be considered 
acceptable only for some periods like morning and af-
ternoon peak, morning and evening saddle, (both on 
workdays), Saturday morning, etc. Therefore, applying 
the Erlander approach in line creation for each indi-
vidual period, the frequencies on the selected routes 
may be (naturally) different. It can even happen that 
the set of operated routes in one period is not identi-
cal with the set in the other one. For example, in the 
Slovak town Žilina, after the line optimization in 1989, 
there was a “saddle” line, having the route partially 
(about one third) different from the “peak” sister. Or, in 
Linköping (Sweden) at about the same time, there was 
an “evening saddle” bus line connecting suburban res-
idential areas without passing through the city centre. 
Of course, such a line would not have any sense in the 
peak hours.

A bit different approach can be found in [23] where 
the running times (including tl) are a priori considered 
random. 

Note to periodicity of timetables. Public administra-
tion officers have very different ideas about whether 
and in what sense public transport timetables should 
be periodic. Some do not require them at all, others 
only for a few key lines and some for all of them. Some 
of them accept only constant headways (in minutes) 
from the integer divisors of 60: D(60) = {60, 30, 20, 15, 
12, 10, 6, 5, 4, 3, 2, 1}, Some of them, e. g. in Žilina in 
the nineties, accepted also 7.5 min (in driver’s sched-
ule and alternations 7, 8, 7, 8 in public timetables). In 
Olomouc in the nineties the authors were told that the 
officer accepted only the configuration 4, 4, 4, 4, .. of 
headways in rush hours on one main street, while, on 
two other similar main streets, they accepted also the 
less regular configuration 5, 3, 5, 3, … 

Mainly (but not only) in off-peak periods, unnec-
essarily long idle time in terminals may be caused by 
the inconsistency of cycle time tl with the requirement 
of periodicity. For instance, in Pardubice in the nine-
ties, the computer was forced to choose a route l with  
tl = 62 and the expected headway of 15 or 20 min into 
set L, with consequent inutile additional idle time 13 
or 18 min in the new extended cycle of the length of 75 
or 80 min, i.e. 17% or 23% of the total working time.
It is difficult to find any universal approach to this is-
sue. However, in order to avoid such issues, it is pos-
sible to formulate the following general advice based 
on the authors’ long experience: Keep in mind the re-
quirements of periodicity in the design phase of the 
set of candidate routes L0!
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5.4 Discussion to Section 4

Note on the relationship of values yo and y, d1 and 
d2.in 4.4 and 4.5. Imagine a town situated in a narrow 
valley on both banks of the river. A single road with one 
bus line, parallel to the river, runs along each bank. 
Both lines are equally long, they have the same de-
mand of passengers, they run the same buses at the 
same headways of 15 minutes, and three vehicles on 
each line. Assume that the minimum yo is reached on 
both lines and that, afterwards, there is one vehicle 
added to the system. Whether it is assigned to any 
line, the minimum value yo for the entire system re-
mains unchanged.

Assume another town in a wider valley with four par-
allel equally long lines with equal demands of passen-
gers, equal headways of equally capacitated vehicles, 
three buses on each of the first two lines and three 
trolleybuses on each remaining line. Let minimum yo 
be reached on each of the four lines and, afterwards, 
one bus and one trolleybus are added to the fleet. Then 
yo remains unchanged and it is reached in both bus 
and trolleybus systems. After applying 4.4, d1 = d2 = 1  
the maximum y remains yo both for buses and trolley-
buses. 

On the other hand, if the redundant bus is added to 
the trolleybus fleet, then for the entire system the re-
sulting y remains unchanged y = yo, but the trolleybus 
subsystem reaches y =1.25 yo.

5.5 General discussion

PRIVOL – tool for urban or rural transport? This 
is a frequently but incorrectly asked question, since 
PRIVOL is a tool for the line design, when the passen-
ger demand is expressed in the form of passenger 
flows and the corresponding supply is expected in the 
form of vehicle flow, or the related headway. Therefore, 
this is encountered much more often in urban trans-
port than in the rural areas (in the Czech and Slovak 
Republics PRIVOL was used in urban cases only).

Benefits for the main stakeholders in urban trans-
port. The most important stakeholders are passen-
gers. Among others one has to emphasize the carriers 
(usually a city transport company) and municipal au-
thorities. Almost always the latter ones are donors, i.e. 
subsidizing institutions for the carriers that have more 
operating costs than incomes from fares and adver-
tisements.  

After PRIVOL is applied, the main benefit to passen-
gers are the travel time savings due to more straight-
forward line routes and smaller headways, although it 
sometimes happens that the walking distance to the 
nearest stop is slightly greater. The main benefit to 
donors are cost savings with unchanged incomes and 
transport quality. For instance. in the Slovak town Žili-
na (population about 100,000) in 1989, about 7% of 

3.1 a solution with y > 1 was obtained. When the 
number of buses was changed to n1 = 39, then the  
resulting y worsened under the previous value. On the 
contrary, if the number of trolleybuses was reduced from 
40 to n2 = 39, the resulting y > 1 remained unchanged, 
similarly as for n2 = 38, 37,…, until 27. Only value  
n2 = 26 caused worsening of y under the previous val-
ue. Hence, 13 trolleybuses seemed “inutile” from the 
point of view of the global value of y. It was another 
managerial decision problem to be solved. However, 
a similar approach to the one described in 4.4 or 4.5, 
had not been known yet at that time. Hence, the com-
petent managers preferred another solution – the elec-
trification of other streets, allowing a new trolleybus 
line to be added (mainly the today’s trolleybus line No. 
13 with 5 min. headway in the peak). That balanced 
the “demand” for buses with the one for trolleybuses.

Comment to 3.4. The number al represents the 
“ideal” capacity of line l, and the numbers of vehicles 
zlk represent the final result for the service. Constraint 
11 ensures that the relative satisfaction of line l is at 
least y’ and 12 ensures that it is the maximum possi-
ble.  

Note to exactness of the solution from 3.5. This 
procedure is of the ‘greedy’ heuristics type, i.e. it is 
not able to guarantee optimality of the solution. Dr 
Tomáš Majer from the University of Žilina informed the 
authors that he elaborated an exact “one-step” model 
based on integer LP that surely leads to the optimum. 
The publication was expected in 2018.

Remark to 3.5. The expression “sufficient” b > 0 in 
14 means “such a  b > 0 that provides sufficient ca-
pacity for the transportation of at least the abovemen-
tioned number h* of passengers on line l’. It depends 
on mutual overlapping of parts used by hvw passengers 
for v ! l’, w ! l’.  

Note to the choice of values noj in 3.7. At the begin-
ning, number noj vehicles in service in the j-th  period 
is chosen noj = n (= the size of the available fleet) for 
each j = 1, …, g. Assume that it leads to value y of the 
minimal relative excess of supply over demand. Then, 
similarly as in 4.3, there exists a (not unique) g-tuple 
no1, …, nog such that noj = n – dj for j = 1, …, g leads to 
the same value y but any replacing of dj by dj + 1 de-
creases value y. These numbers of vehicles no1, …, nog 
can be used for different periods. 

Note to 3.8. This type of demand elasticity as-
sumes that there is a “basic” demand fe on each  
e ! E and, moreover, when the supply of posts of pas-
sengers is se then there will be an increase in demand 
that is linearly dependent on se with a coefficient be. 
Since Constraint 2 requires that the supply is not low-
er than the demand, which increases with the supply 
now, Constraint 2 is replaced by 22, transformed to 23. 
Actually, it is a linear approximation of non-linear de-
pendency of demand on supply (the total number of 
inhabitants is a natural limit, not allowing unlimited 
linear increase of passenger demand).
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 –  (in the more distant future) incorporation of rebuild-
ing costs or health threatening costs (emissions, 
noise etc.) of candidate sections into the common 
solution of routing and frequencing by linear pro-
gramming.
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ALTERNATÍVNE KRITÉRIÁ, POUŽÍVANÉ PRI  
PLÁNOVANÍ LINIEK VEREJNEJ DOPRAVY POMOCOU 
LINEÁRNEHO PROGRAMOVANIA

ABSTRAKT 

Plánovaním liniek verejnej dopravy sa v článku rozu-
mie navrhovanie ich trás a frekvencie spojov na nich. Vo 
svetovej literatúre sa v tejto súvislosti zvyčajne používajú 
rôzne kritériá, najmä variabilné náklady liniek, fixné náklady 
liniek, súčet týchto nákladov, počet cestujúcich bez prestu-
povania, celkový lebo priemerný čas cestovania, prípadne 
celkový lebo priemerný čas prepravy. Článok pridáva dve 
ďalšie, a to celkový počet použitých vozidiel (minimalizuje sa 
pri podmienke, že sa všetci dopytujúci cestujúci prepravia) a  
pomerný previs ponuky miest nad dopytom (maximalizuje sa 
pri podmienke neprekročenia počtu disponibilných vozidiel).  
Pre obidva prípady sa uvádzajú matematické modely, spo-
lu s motiváciou takéhoto prístupu a stručným pohľadom do 
histórie českého a slovenského výskumu tejto problematiky. 
Základné modely sa ďalej modifikujú pre rôzne špeciálne 
požiadavky z praxe (napr. heterogénny park vozidiel, ob-
medzenie počtu prestupov, elastický dopyt, ohraničenie 
celkového počtu liniek apod.). Napokon sa uvádza krátky po-
pis skúseností s praktickým využitím týchto postupov. 

KĽÚČOVÉ SLOVÁ

verejná doprava; plánovanie liniek; lineárne  
programovanie; kritérium; účelová funkcia;

vehicle kilometres were saved. For more recent appli-
cations, it is difficult to obtain data on specific savings 
that are considered to be “business secrets”.

6. CONCLUSION
The paper deals with urban transport line planning, 

in two directions. First, two original objectives, not yet 
mentioned in the survey type papers like [6] or [7], are 
described: 
1)  The number of vehicles in service (to be mini-

mized), provided all passengers are transported at 
the acceptable degree of comfort. Comfort is ex-
pressed by the relative excess of passenger places 
supply over demand.

2)  The minimum relative excess of supply over de-
mand (to be maximized) without exceeding the 
number of available vehicles. 
These two objectives were used in the formulation 

of two problems, P1 and P2. Mathematical models for 
both problems are presented and the possibilities of 
solution outlined.

The second and the main direction of the current 
paper is to describe fourteen modifications rq1-rq14 of 
problem P2 and to outline their practical applications.

Thus, it can be said that the paper brings three 
benefits to the reader:

 –  it introduces them to PRIVOL – a successful 
Czech-Slovak method of designing public transport 
lines, based on MILP, which has not yet been re-
ported by any international survey paper,

 –  for the first time in a scientific journal, it presents 
eight specific practical requirements and shows 
how they can be expressed linearly and be includ-
ed in PRIVOL (so far only described in the proceed-
ings of a Czech-Slovak scientific conference),

 –  as an original contribution to the development of 
transport science, it introduces six new modifica-
tions of the PRIVOL method, enabling the resolu-
tion of six unresolved practical decision-making 
problems.
As concerns the benefits to the main stakeholders 

after applying PRIVOL, the paper shows that the main 
benefit to passengers are travel time savings due to 
more straightforward line routes and smaller head-
ways, while the main benefit to providers are smaller 
costs (e.g. due to vehicle kilometres savings) maintain-
ing the incomes and the travel quality unchanged. 

The future research can be expected mainly on the 
following issues:

 –  elastic demand with respect to supply – the exten-
sion of model 3.8 to a non-linear elasticity function;

 –  extension of 4.4 and 4.5 to the case of more than 
two systems;

 –  incorporation of operation costs into 3.4, 4.4, 4.6 
and, maybe, into some others as well,
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