
ABSTRACT 

Traffic paradox is an important phenomenon which 
needs attention in transportation network design and traffic 
management. Previous studies on traffic paradox always ex-
amined user equilibrium (UE) or stochastic user equilibrium 
(SUE) conditions with a fixed traffic demand (FD) and set the 
travel costs of links as constants under the SUE condition. 
However, traffic demand is elastic, especially when there 
are new links added to the network that may induce new 
traffic demand, and the travel costs of links actually depend 
on the traffic flows on them. This paper comprehensively 
investigates the traffic paradox under different equilibrium 
conditions including the user equilibrium and the stochastic 
user equilibrium with a fixed and elastic traffic demand. Ori-
gin-destination (OD) mean unit travel cost (MUTC) has been 
chosen as the main index to characterize whether the traffic 
paradox occurs. The impacts of travelers’ perception errors 
and travel cost sensitivity on the occurrence of the traffic 
paradox are also analyzed. The conclusions show that the 
occurrence of the traffic paradox depends on the traffic de-
mand and equilibrium conditions; higher perception errors 
of travelers may lead to a better network performance, and a 
higher travel cost sensitivity will create a reversed traffic par-
adox. Finally, several appropriate traffic management mea-
sures are proposed to avoid the traffic paradox and improve 
the network performance.
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1. INTRODUCTION
Traffic paradox has been widely examined since it 

was first proposed by Braess in 1968 [1]. As it is de-
fined under the user equilibrium with the fixed demand 
(UE-FD) condition, the addition of a new link may result 
in a higher total network travel cost. Braess’ paradox 
occurs because travelers attempt to minimize their 
own travel time while ignoring the effect of their deci-
sions on other travelers, which is decided by the user 
equilibrium condition. Following this idea, many stud-
ies about Braess’ paradox have been conducted [2-7]. 
For example, Pas and Principio found that the occur-
rence of the paradox depends on the traffic demand, 
as it only occurs in a certain demand range [8], Yang 
and Bell proposed a traffic paradox based on network 
capacity [9], and Korilis made some suggestions on 
how to avoid Braess’ paradox [10]. However, they are 
all conducted under the UE condition. Braess’ paradox 
under the SUE can refer to Zhao et al. [11-12], but they 
set the travel costs of links as constants rather than as 
flow-dependent values. Besides, some researchers ex-
tended Braess’ paradox to dynamic traffic assignment 
problems [13-15].

According to reviews of previous studies, we know 
that different equilibrium conditions (i.e., traffic as-
signment models) will impact whether the traffic para-
dox occurs and how it works (e.g. traffic paradox does 
not occur under the system optimization condition, for 
its objective function is a minimum total travel cost).  
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Figure 1a depicts a simple network including only 
one OD pair connected by two paths and four links. 
Path 1 consists of links 1 and 4; path 2 consists of 
links 3 and 2. 

In order to improve the network performance and 
reduce delay, link 5 is added to the original network to 
construct a new five-link network shown in Figure 1b. 
Links 3, 5 and 4 form the new path 3.

As in the classical Braess’ example, the travel cost 
functions for 5 links are assumed to be linear as fol-
lows:
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where ta is the travel cost on link a; xa is the flow on 
link a;

Based on the relationship between links and paths, 
the travel cost of three paths in networks are:
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Note that the flows and travel cost on paths 1 and 
2 are equal to the symmetrical property of both net-
works. Additionally, the flows on paths and links are 
necessary to satisfy the following flow conservation 
conditions.

In a four-link network, they are:
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In a five-link network, they are:
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The traffic demand of the OD is set as q. Assum-
ing the capacity of every link is equal to 10, it can be 
deduced that the capacity of two networks is 20 and 

Depending on whether the travelers’ perceived ran-
domness is observed, the equilibrium conditions can 
be classified as UE and SUE. On the other hand, de-
pending on whether the observed traffic demand is 
elastic or not, the equilibrium conditions can be classi-
fied as fixed demand (FD) and elastic demand (ED). All 
four conditions (i.e., UE-FD, SUE-FD, UE-ED and SUE-
ED) will be examined in this paper. 

The common index which characterizes whether 
Braess’ paradox occurs is the difference of total travel 
cost (TTC) between the original network and the new 
network with additional links [12, 15, 16]. However, it 
may not apply to the case of the ED condition, because 
the addition of links may induce higher traffic demand 
and make the TTC higher. In this paper, in order to 
achieve an average distribution of the TTC, we have 
chosen the mean unit travel cost (MUTC) as the main 
index. However, the indexes of the TTC and the traffic 
demand (only under elastic demand condition) are still 
analyzed.

It is clear that the traffic demand will determine 
whether the traffic paradox occurs when the link travel 
cost function and equilibrium conditions are confirmed 
[8]. And the traffic paradox occurs always in a con-
gested network, namely the condition when the traffic 
demand is high. Furthermore, we will investigate the 
range of the traffic demand where the traffic paradox 
occurs under different equilibrium conditions and give 
some new insights. The impact of the parameters (i.e., 
travelers’ perception errors and travel cost sensitivity) 
on the occurrence of the traffic paradox will also be 
examined. 

The basic parameters of the network to be stud-
ied in this paper are introduced in the next section. 
After that, the traffic paradox with the FD and the ED 
are analyzed in Sections 3 and 4, respectively. Finally, 
conclusions about the main results of this paper are 
presented.

2. BASIC DESCRIPTION
The networks shown in Figure 1 are considered to 

be the example networks, which are essentially the 
same as the one used by Braess and widely used in 
other studies about the traffic paradox.
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Figure 1 – Example networks
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where ck is the travel cost on path k, and u denotes the 
minimum OD path travel cost.

In a four-link network, by taking the advantage of 
symmetry, we can easily solve the equilibrium condi-
tion (Equation 7) to obtain the expression of T4.

T
q

2
11

504 = +  (8)

In a five-link network, the usage of paths will vary 
with the range of the traffic demand, which makes it 
more complex to obtain the expression of T5, so we 
use the following process:
Step 1, assuming all paths are used, according to 
Equation 7, we have:

c c c1 2 3= =  (9)

Solving Equations 1-5 and 9, we can obtain the ex-
pression of fk:
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Step 2, if a path is unused, the flow on it is equal to 
zero. By solving fk≤0, we can figure out which path is 
used and the corresponding range of the traffic de-
mand in Table 1.
Step 3, according to Equation 7 and Table 1, by solving 
Equations 1-6, we can derive the expression of T5 as 
follows:

Table 1 – The usage of paths in different ranges of traffic 
demand
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According to Equations 8 and 11, the relationship 
between ∆T and the traffic demand under the UE-FD 
condition is shown in Figure 2, and the range of the 
traffic demand (RTD) where the traffic paradox occurs 
can be accurately determined as [2.58,8.89]. In other 
words, when the traffic demand is lower than 2.58 or 
higher than 8.89, the traffic paradox will not occur.

x20 5
5-^ h  in four-link and five-link networks, respec-

tively [9]. Since link flow is not larger than its capacity 
,x0 105

5# #^ h  the capacity of a five-link network falls 
within the interval of [10, 20]. According to capacity 
constraints, the maximum values of q (set as qmax) 
are not larger than the capacity of networks. However, 
if traffic demand q exceeds 10, and reaches 11, for 
example, one possible condition is that 10 travelers 
choose path 3, and the remaining 1 traveler cannot be 
routed to the five-link network. To avoid this condition, 
we set qmax=10 to guarantee that the traffic demand 
can never exceed the capacity of networks.

Apart from that, the traffic demand should satisfy 
the flow conservation condition as follows:

,q f k Kk
k

6 !=/  (5)

where K represents a set of paths.
In previous studies, under the fixed demand condi-

tion, if the addition of link 5 results in the increase of 
the TTC of a network, the traffic paradox occurs. How-
ever, under the elastic demand condition, the addition 
of links may induce a higher traffic demand to make 
the TTC higher, which makes the index of the TTC not 
applicable under this condition, and the index of travel 
cost per traveler defined as the MUTC more meaning-
ful. Let T4 and T5 represent the MUTC in a four-link and 
five-link network, and their expressions are:
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If T5>T4, the traffic paradox occurs. For conve-
nience, we set ∆T=T5-T4. Accordingly, ∆T>0 represents 
the occurrence of the traffic paradox. Due to q5=q4 un-
der the FD condition, the results of solving q5T5>q4T4 
and T5>T4 are the same, so the indexes of TTC and 
MUTC are equivalent. We have chosen the MUTC as 
the main index to characterize whether the traffic par-
adox occurs, because it is applicable for both the FD 
and the ED conditions.

3. FIXED DEMAND

3.1 User equilibrium (UE)

The UE is a network state of each OD pair in which 
no traveler can reduce his or her travel cost by uni-
laterally changing paths. In other words, all used OD 
paths have an equal and minimum travel cost, and no 
unused route has a lower travel cost, i.e.:
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, ;

c u f k K
c u f k K

0
0

if
if

>k k

k k

6

6

!

$ !

=
=  (7)



Tu Q, Cheng L, Li D, Ma J, Sun C. Traffic Paradox Under Different Equilibrium Conditions Considering Elastic Demand

4 Promet – Traffic & Transportation, Vol. 31, 2019, No. 1, 1-9

error is greater, i.e., when i→0, the travelers believe 
that there is no difference in the travel cost of paths 
on a network, and that flows on every path are equal.

Hence, the probability of selecting each alterna-
tive path is specified, and the path flow assigned ac-
cordingly can be calculated. The path flow is obtained 
though the following:

;f q P Kkk k$ 6 !=  (15)

In a four-link network, though the observed travel 
cost is stochastic, due to the symmetrical property of 
the network, the flows and costs on path 1 and 2 are 
still equal, and the expression of T4 is the same as that 

under the UE-FD which is T
q

2
11

504 = + .
In a five-link network, since the analytical expres-

sion of T5 cannot be definitely written, a route-based 
method of successive average (MSA) is developed to 
solve the SUE condition and obtain T5.
Step 1. (Initialization) Set tolerance error f, set the 
working path K, initial traffic flow f( )

k
0 and x( )

a
0  based 

on a free flow travel time, and initial iteration number 
n=1,
Step 2. (Update travel cost) Use Equations 1–4 to up-
date c( )

k
n  and t( )

a
n ,

Step 3. (Update traffic flow) Use Equations 14–15 to 
calculate the auxiliary path flow d( )

k
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k
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then stop, f( )
k
n 1+  is the optimal solution. Otherwise, 

set n:=n+1, and go to step 2,
Step 5. (Calculate T5) Use Equation 6 to calculate T5.

Therefore, the relationship between ∆T and the 
traffic demand under the SUE-FD condition can be 
obtained and graphically shown in Figure 3. Accord-
ing to ∆T>0, the range of the traffic demand (RTD) in 
which the traffic paradox occurs can be deduced as 
Equation 16 with different values of i. And it is notewor-
thy that the flows on path 3 always exist even though 
the travel cost of path 3 is very high. Due to the net-
work loading property of the SUE, the traffic paradox 
will persist until the traffic demand reaches the upper 
bound.
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As Figure 3 shows, the degree of travelers’ percep-
tion errors can observably impact the RTD in which 
the traffic paradox occurs. A counter-intuitive result is 
that a lower degree of travelers’ perception errors may 

3.2 Stochastic user equilibrium (SUE)

Actually, travelers cannot know the travel cost ac-
curately. They choose paths depending on their per-
ceived travel cost on paths. The perceived travel cost 
is assumed to be:

c ck k kp= +u  (12)

where cku  represents the perceived travel cost on path 
k, which is a random variable; ck  is the actual OD trav-
el cost on path k; kp  is a random error term associated 
with the path observed and its expectation is assumed 
to be 0 [17]. This means that the path will be chosen 
if its travel cost is perceived to be the lowest among all 
the alternative paths. The probability of choosing such 
a path can be expressed as follows:

,PrP c c l K<k k l 6 != ^ h  (13)

where Pk is the probability of choosing path k.
Different distributions of the examined travel time 

result in different models of the stochastic network 
loading. The Logit model has widely been used in dis-
crete choice. In this paper, the same Logit model is 
utilized, in which utility terms are supposed to be in-
dependently and identically Gumbel-distributed. The 
choice probability is then obtained through the follow-
ing:
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where i is a positive dispersion parameter, which can 
be interpreted as the degree of travelers’ perception 
errors. A higher value of i indicates that travelers have 
a more accurate perception of the travel cost or a high-
er-quality information on the traffic network condition 
[18], i.e., when i→+∞, the SUE is equal to the UE. On 
the contrary, a lower one indicates that the perceived 
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Figure 2 – The values of ∆T for variable q under UE-FD
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improved compared to that of the original network 
without link 5, even though this is not the system opti-
mization condition.

q
q

13
80 18

0 1and# # #t t
-  (17)

4. ELASTIC DEMAND
In reality, traffic demand is not fixed. Instead, it will 

be influenced by the level of network service. As the 
travel cost increases, travelers may decide to use a 
different mode of travel (e.g., subway), shift the time 
of travel, or even give up this trip. Taking these factors 
into account, the OD traffic demand can be assumed 
as a function of the OD travel cost as follows:

( )q D n=  (18)

where n represents a certain OD travel cost and it is 
different under the UE and the SUE. D(∙) is the OD traf-
fic demand function, it is expected to be monotonically 
decreasing (or at least nonincreasing) with regard to 
the OD travel cost. This function is also bounded from 
above for the maximum OD traffic demand. In this pa-
per, we use the following linear function:

q q mn= -r  (19)

where qr  is the upper bound of the OD traffic demand. 
It is decided by the population size, vehicle ownership 
for origin nodes, the employment intensity or retail for 
destination nodes, and the network capacity. m rep-
resents the degree of travelers’ sensitivity to travel 
cost, a higher value of m indicates that travelers are 
more concerned about travel cost, and traffic demand 
decreases more when travel cost increases, and vice 
versa. If m=0, it implies that the traffic demand is rigid 
and equivalent to the fixed demand condition.

Under the elastic demand condition, apart from 
the equilibrium conditions in Section 2, Equation 19 
is also needed for a pleasing outcome. Here, another 
seemingly counter-intuitive and puzzling result is that 
the addition of links may not induce a higher traffic de-
mand but lead to a lower traffic demand. So, we con-
sider both indexes of ∆q(∆q=q5-q4) and ∆T in order to 
characterize whether the traffic paradox occurs under 
the elastic demand condition.

4.1 User equilibrium (UE)

Under the UE condition, n in Equation 19 represents 
the minimum OD travel cost. By solving the equilibrium 
conditions 7 and 19, the expression of q4 and T4 can 
be derived as Equation 20:

q
q

T
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2 11
2 100

2 11
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4

4

m
m

m

= +
-

= +
+

r

r  (20)

not be a better option. In other words, within a certain 
range of the traffic demand, providing higher-quality 
information will lead to a poorer network performance. 

To better interpret this result, parameter t is set 
as the proportion of flows on path 3 in the traffic de-
mand. According to ∆T≤0, a region of t with respect to 
the traffic demand can be determined by Equation 17, 
which is the area surrounded by the axes and the criti-
cal line as Figure 4 shows. When t falls within the indi-
cated area, the traffic paradox will not occur, and the 
new addition of link 5 can improve (or at least not re-
duce) the operational efficiency of a network. We can 
observe that the curve with a lower i goes down more 
gently, but has a lower initial t, and it intersects the 
critical line at a higher traffic demand, so the reversed 
traffic paradox occurs. This analysis is more specific 
than of the previous studies, with the advantage being 
that we only need to control t within this area through 
certain management measures (such as route guid-
ance). The operation efficiency of a network will get 
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Figure 3 – The values of ∆T for variable q under SUE-FD
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Step 1. (Initialization) Set tolerance error f, set the 
working route K, initial traffic flow ,f( )

k
0  x( )

a
0  and q( )0  

based on free flow travel time and initial iteration num-
ber n=1,
Step 2. (Update travel cost) Use Equations 1–4 to up-
date c( )

k
n and ,t( )

a
n  ,

Step 3. (Update traffic flow) Use Equations 14, 15, 19 and 
22 to calculate the auxiliary traffic flow d( )

k
n  and traffic 

demand l( )n  to update the traffic flow and demand 
, ,f f n d f q n qq l1 1( ) ( ) ( ) ( )

k
n

k
n

k
n

k
n n n nn1 1= + - = + -+ +_ _^ ^ ^ ^i ih h h h

Step 4. (Check convergence) If 
f

f f
( )

( ) ( )

k
n

k K

k
n

k
n

k K

1 2-
+

!

!

+_ i

/
/

,
q

q q
n

n n1 2

# f+
-+_ ^
^

^ ih

h

h
 then stop, fk

n 1+^ h  and q n 1+^ h

is the optimal solution, .q q( )n5 1= +  Otherwise, set 
n:=n+1, go to step 2,
Step 5. (Calculate T5) Use Equation 6 to calculate T5.

The RUBTDs where the traffic paradox occurs char-
acterized by ∆q and ∆T are not equivalent, and their 
difference may quite strongly depend on the degree of 
travelers’ perception errors i. Their difference comes 
from the difference between nSUE and the MUTC, as 
nSUE represents the expected minimum perceived trav-
el cost, unlike the MUTC, which makes the relation be-
tween q5 and T5 not linear but more complex. We can 
observe in Figure 6 that a higher i can make the result 
of a traffic assignment be closer to the UE-ED, which is 
similar to the conclusion under the FD condition, and 
the difference between the indexes of ∆q and ∆T is 
smaller. On the contrary, a lower i will lead to a more 
different result, and when i is too low, we may get op-
posite results from the two indexes, which means that 
it is not the traffic paradox characterized by ∆q but the 
traffic paradox characterized by ∆T which can be seen 
from the result found in Figure 6 when i=0.01. When it 
comes to travelers, travel cost can be more intuitively 
felt, so ∆T is a more reasonable index to characterize 
a traffic paradox than ∆q under the SUE-ED condition. 

According to different ranges of upper bound of 
traffic demand (RUBTD), we can also derive the expres-
sion of q5 and T5 using a process similar to the one in 
Section 3.1, and the results are shown in Equation 21.
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Both ∆q and ∆T are observed. However, their re-
sults are equivalent to the linear relation between q5 
and T5 (here T5 is equal to nUE) in Equation 19. Accord-
ing to Equation 19, the higher the degree of travelers’ 
sensitivity to travel cost, the lower the OD traffic de-
mand. Therefore, the reversed traffic paradox occurs 
when m increases, as we can observe in Figure 5.

4.2 Stochastic user equilibrium (SUE)

As mentioned above, n represents different OD 
travel costs under the UE and the SUE. Under the UE, it 
is the minimum OD travel cost; under the SUE, it is the 
expected minimum perceived travel cost, which can be 
written as [19]:

ln exp c
UE

k K
ki

n i=
- -

!

^ h/
 (22)

In a four-link network, the expressions of q4 and T4 
are:

ln
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r
 (23)

Since it cannot derive the analytical expression of 
T5, a modified method of successive average (MMSA) 
is developed to solve the SUE-ED model in a five-link 
network to obtain q5 and T5.
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Figure 5 – The values of ∆T  and ∆q for variable q̄ with different m
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traffic demand (under the elastic demand) were ana-
lyzed in order to characterize whether the traffic para-
dox occurs. The main conclusions in this paper are as 
follows:
1) The occurrence of a traffic paradox depends on the 

traffic demand, as the link travel cost function and 
equilibrium conditions are given. There is a traffic 
demand range where the traffic paradox occurs, and 
if the traffic demand falls outside of the range, the 
operation efficiency of a new network with addition 
of links is better than that of the original one.

2) Three indexes, including total travel cost, mean unit 
travel cost and traffic demand (only under the ED 
condition) are observed in order to characterize 

Besides, we can also observe that each of the 
curves is not monotonic and the reversed traffic para-
dox occurs as the parameter of m increases.

5. CONCLUSIONS
The traffic paradox on Braess’ network under four 

equilibrium conditions is investigated in this paper. 
We made some efforts to complete the studies of the 
traffic paradox under the static traffic assignment con-
ditions, and emphatically analyze the impacts of trav-
elers’ perception errors and travel cost sensitivity on 
the occurrence of a traffic paradox. The applicability 
of the three indexes and the difference between them, 
including total travel cost, mean unit travel cost and 
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Figure 6 – The values of ∆T  and ∆q for variable q̄  with different i and m
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考虑弹性需求的不同均衡条件下的交通悖论

摘要

在交通网络设计和管理中，交通悖论是一个非常受关
注的现象。现有文献中关于交通悖论的研究主要考虑了固
定需求下的用户均衡和随机用户均衡条件，且在随机用户
均衡条件中，路段出行费用通常被设置为常数。然而，交
通需求是弹性的，尤其当新路段加入交通网络中，可能会
诱增交通量，并且路段出行费用会受到路段上交通流量的
影响。本文综合分析了四种不同均衡条件下的交通悖论现
象，包括固定需求和弹性需求下的用户均衡和随机用户均
衡条件。采用起讫点之间的平均单位出行费用作为判断交
通悖论是否发生的主要指标，分析了出行者的观测误差和
出行费用敏感度对于交通悖论发生的影响。研究结论表
明：交通悖论的发生取决于交通需求和均衡条件；更高的
观测误差可能会提升网络的性能；更高的出行费用敏感度
会使交通悖论的发生延后。最后，本文提出了一些交通管

理策略来避免交通悖论的发生，同时提高网络的性能。

关键字

交通悖论，用户均衡，随机用户均衡，固定需求，弹性需

求，相继平均算法
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