
ABSTRACT

For a long time, many researchers have investigated the 
continuous network design problem (CNDP) to distribute eq-
uitably additional capacity between selected links in a road 
network, to overcome traffic congestion in urban roads. In 
addition, CNDP plays a critical role for local authorities in 
tackling traffic congestion with a limited budget. Due to the 
mutual interaction between road users and local authorities, 
CNDP is usually solved using the bilevel modeling technique. 
The upper level seeks to find the optimal capacity enhance-
ments of selected links, while the lower level is used to solve 
the traffic assignment problem. In this study, we introduced 
the enhanced differential evolution algorithm based on mul-
tiple improvement strategies (EDEMIS) for solving CNDP. We 
applied EDEMIS first to a hypothetical network to show its 
ability in finding the global optimum solution, at least in a 
small network. Then, we used a 16-link network to reveal the 
capability of EDEMIS especially in the case of high demand. 
Finally, we used the Sioux Falls city network to evaluate the 
performance of EDEMIS according to other solution meth-
ods on a medium-sized road network. The results showed 
that EDEMIS produces better solutions than other consid-
ered algorithms, encouraging transportation planners to 
use it in large-scale road networks.
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1. INTRODUCTION
The continuous network design problem (CNDP) 

can be defined as “determining optimal capacity 
enhancements of selected links under budget con-
straints in a given road network”. In this well-known 
transportation problem, the global optimum solution 
can be found by exact methods (for example, branch 

and bound) only for small-sized networks; in fact, diffi-
culty in finding the optimal solution for CNDP increas-
es with the dimensions of the network. CNDP can be 
generally formulated as a bilevel programming model 
since it has multiple objectives in which road users 
and local decision makers interact mutually. Due to 
the non-convex feature of the bilevel programming 
model of CNDP, it can be recognized as one of the 
significant problems in the transportation/optimiza-
tion fields. The difficulty of the bilevel programming 
model of CNDP arises from the requirement of solv-
ing the traffic assignment problem at the lower level 
for each candidate solution at the upper level. On the 
other hand, solving the upper-level objective function 
requires finding equilibrium link flows, determined by 
solving a traffic assignment problem at the lower level. 
In CNDP, upper level can be formulated as the sum of 
total travel time and expenditures of investment for ca-
pacity enhancement in a given road network, while the 
lower level is defined as a deterministic (DUE) or sto-
chastic user equilibrium (SUE) traffic assignment [1]. 
It is clear that SUE traffic assignment models may be 
used in the lower level problem of CNDP. A wide range 
of literature shows us that there is a limited number 
of studies in which the SUE traffic assignment is con-
sidered to determine users’ reactions to the changes 
performed in terms of link capacity expansions at the 
upper level of CNDP. The reason is that the use of SUE 
traffic assignment models increases the computation 
burden of the bilevel solution of CNDP by introducing 
more paths than DUE traffic assignment. This issue 
is also clearly stated in the pioneer study by Farahani 
et al. [2]. It is also indicated in the same study that 
the SUE traffic assignment models have been used 
only in three studies in the late 2000s, which used  
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converted into a set of single-level models. Recently, 
Baskan [17, 18] also attempted to solve the bilevel for-
mulation of CNDP using three powerful heuristics in 
solving CNDP. Wang et al. [19] remarked that the mul-
tiple user classes should be taken into consideration 
for solving CNDP. Differently from the literature, Wang 
et al. [20, 21] presented a bilevel programming model 
to solve CNDP with a relaxation algorithm. Small and 
medium-sized networks have been used to show the 
capability of the proposed model. 

In terms of CNDP based on SUE traffic assign-
ment, the first study was presented by Davis [22], in 
which two different methods considering the effect of 
a stochastic user equilibrium were proposed for solv-
ing CNDP, and they were applied to several test net-
works. After almost two decades, Liu and Wang [23] 
considered CNDP with SUE traffic assignment by using 
the logit route choice model, aiming to determine the 
global optimum solution. Du and Wang [24] proposed 
the generalized geometric programming method to 
achieve the global solution for CNDP by considering 
both DUE and SUE assumptions. As another type of 
road network design problems, the discrete network 
design problem (DNDP) with SUE constraint has been 
studied by Chen and Alfa [25]. They used a heuristic 
solution algorithm based on the branch and bound 
method for solving the DNDP by considering SUE traf-
fic assignment. Another point of view for the DNDP, the 
lane reallocation problem has been tackled with the 
SUE principle by using a heuristic solution algorithm 
based on the particle swarm optimization method by 
Zhang and Gao [26]. Similarly to this study, Wu et al. 
[27] proposed a bilevel programming model in which 
the upper level seeks to adopt reversible lanes by op-
timizing the total system cost and flow entropy while 
the lower level deals with a stochastic user equilibri-
um assignment. Long et al. [28] developed a bilevel 
programming model to solve the turning restriction 
design problem with SUE. Recently, Liu and Wang [29] 
proposed a mixed-integer nonconvex model to tackle 
the DNDP with SUE. On the other hand, a study about 
the combined version of CNDP and DNDP, called the 
mixed network design problem (MNDP), with the SUE 
constraint, was proposed by Dimitriou et al. [30]. They 
dealt with problems of road network design and pric-
ing decisions by using a genetic algorithm with elastic 
demand. A recent study about the MNDP was conduct-
ed by Gallo et al. [31], in which an SUE traffic assign-
ment is considered at the lower level while total travel 
time in the network is minimized at the upper level by 
the scatter search method.

Since metaheuristic methods do not guarantee 
reaching the global solution for CNDP, there are few 
applications of metaheuristics in solving CNDP com-
pared to other types of road network design prob-
lems [2]. This issue may be considered as the most 
important disadvantage of the use of metaheuristics 

metaheuristics to determine the solutions in the con-
text of transportation network design problem. There-
fore, we have used the DUE traffic assignment model 
at the lower level of CNDP with regards to some fun-
damental reasons: (1) to decrease the computational 
burden, and (2) to make a fair comparison with oth-
er studies about CNDP since almost all studies in the 
literature used the DUE traffic assignment models to 
take the users’ reactions at the lower level.

In CNDP, we need to take into account the mu-
tual interaction between road users and local de-
cision-makers, when optimizing the upper-level ob-
jective function; in fact, modifications in terms of 
the capacity of the road network affect users’ route 
choice. Users’ responses to these modifications arise 
from the multiplicity of equilibrium link flows. Due to 
the mutual interaction between the two levels, the bi-
level programming model of CNDP may be included in 
the class of non-convex problems; therefore, it is quite 
difficult to use gradient-based optimization algorithms 
for its solution [3].

Abdulaal and LeBlanc [4] first formulated the net-
work design problem and drew attention to the results, 
in terms of increasing of practical capacity, using con-
vex or concave investment functions in the model. 
After this first study, several variations of CNDP have 
been studied, and different solution techniques have 
been developed. Suwansirikul et al. [5] proposed a 
new method for finding an approximate solution and 
tested this method on different test networks. After-
wards, Marcotte [6] and Marcotte and Marquis [7] 
tried to solve CNDP using heuristic methods, easily 
applicable for small-sized road networks. Meng et al. 
[8] presented the augmented Lagrangian method to 
solve CNDP, especially for large networks. On the oth-
er hand, Chiou [9] presented a descent approach by 
using gradient-based algorithms and used several test 
networks to show the efficiency of the proposed algo-
rithms. Ban et al. [10] transformed the bilevel solution 
of CNDP into a single level and achieved good results. 
Karoonsoontawong and Waller [11] proposed three 
well-known heuristic methods and found that the ge-
netic algorithm (GA) produced better results than the 
others in terms of some performance measures. Gao et 
al. [12] formulated CNDP as single level and proposed 
a novel algorithm to solve this problem. Xu et al. [13] 
proposed simulated annealing (SA) and GA to achieve 
good results in solving CNDP. They found that the SA 
outperforms the GA especially for road networks faced 
with high demand. Unlike the study proposed by Xu et 
al. [13], Mathew and Sarma [14] reported that the GA 
model is more efficient for CNDP than the other com-
pared algorithms available in the literature. Wang and 
Lo [15] tried to solve CNDP by considering it as a single 
level. Their results showed that the method is able to 
achieve the global solution for CNDP. Li et al. [16] pre-
sented a viable global optimization method for CNDP, 
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where xa is flow on the link a under given capacity en-
hancement plan and determined at the lower level 
problem; ga(ya) is the investment function. Equation 2 
guarantees that the expenditure of the capacity en-
hancement plan of a link is lower than its own budget. 
It also ensures that the decision variables are to be 
positive.

Users’ reactions to the enhancement projects 
applied at the upper level are determined by solving 
a traffic assignment problem at the lower level. As 
known, a traffic assignment problem can be solved 
under DUE or SUE assumptions so that each of them 
has its own advantages and disadvantages. In this pa-
per, DUE is applied to find the equilibrium link flows 
by considering Wardrop’s first principle. Wardrop [32] 
argued that the travel times of all used paths between 
the same origin-destination (O-D) pair are equal and 
less than any unused paths. This hypothesis and its 
mathematical formulation stated by Beckmann et al. 
[33] are given as follows.

,min z t w y dw
x a a

O

x

a A

a

=
!

^ h/ #  (3)

s.t. , ,f D r R s S k Kk
rs

rs rs
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where Equation 4 represents that the sum of the route 
flows between an O-D pair r-s is to be the demand be-
tween the same O-D pair. Equation 5 shows that the 
flow on a link is to be the sum of the route flows which 
use this link. Equation 6 is related to the non-negativity. 
Frank-Wolfe (FW) algorithm [34] is used to obtain DUE 
link flows in the lower level of CNDP.

3. ENHANCED DIFFERENTIAL EVOLUTION 
ALGORITHM

3.1 Classical DE for CNDP

DE is a strong and easily applicable algorithm intro-
duced by Storn and Price [35] to solve various optimi-
zation problems. It guides the initial solution vectors 
towards the vicinity of the global or near-global opti-
mum solution by means of a repeated cycle of muta-
tion, crossover, and selection. DE takes the advantage 
of two parameters in the solution process apart from 
the number of populations (NP). One of them is the 
mutation factor (F), which is used to obtain mutant 
vector from selected three solution vectors in the pop-
ulation and recommended to be set between 0.5–1 by 
[35]. The second one is the crossover rate (CR), which 
represents the probability of consideration of the mu-
tant vector. The recommended range of CR by [35] is 
[0.8, 1]. F and CR are chosen as 0.8 for all numerical 

for CNDP, although some metaheuristic methods have 
valuable advantages, requiring less computational 
efforts and mathematical complexity. To reveal these 
advantages, this study aims to solve CNDP using an 
enhanced differential evolution algorithm based on 
multiple improvement strategies (EDEMIS). To do this, 
a bilevel programming model has been presented in 
which the upper level deals with minimizing the sum of 
total travel times and investment expenditures while 
the lower level problem is formulated by considering 
the DUE assumption. 

The rest of the paper is presented as follows. The 
bilevel programming model for CNDP is given in Sec-
tion 2. EDEMIS and its improvement strategies are 
presented in the next section. In Section 4, numerical 
experiments are performed on three different test net-
works. Finally, conclusions are given in Section 5.

Notations
A   - set of links, a A6 !
Krs  - set of paths between O-D pair ,rs r R s S6 ! !
R   - set of origins
S    - set of destinations
D   - O-D demands, ,D r R s SD rs 6 ! != 6 @
f    - path flows, , ,f r R s S k Kf k

rs
rs6 ! ! != 6 @

t    - link travel times, ,t x y a At a a a 6 != ^ h6 @
u    - upper bound for link capacity expansions,
     ,u a Au a 6 != 6 @
x    - equilibrium link flows, ,x a Ax a 6 != 6 @
y    - link capacity expansions, , a Ayy a 6 != 6 @
ia   - link capacity, a A6 !
Z    - upper-level objective function
z    - lower level objective function
t   - conversion factor 

.a k
rsd  - the link/path incidence matrix variable, 

     , , ,r R s S k K a Ars6 ! ! ! !
aa,ba - the parameters of link cost function, a A6 !

2. BILEVEL PROGRAMMING MODEL
In case of using a bilevel programming model for 

CNDP, the upper level is usually defined as minimiz-
ing the sum of total travel times and expenditures of 
investment into capacity enhancement projects with-
in a limited budget, whereas road users’ reactions to 
these projects are determined at the lower level. In 
other words, mutual interaction between users and 
local decision makers is taken into consideration by 
using the bilevel programming model. It is clear that 
the use of such model can simplify the solution of 
CNDP, although it leads to some disadvantages (i.e., 
non-convexity) for the algorithms used in the solution. 
This mutual interaction can be formulated as follows:

, ,min Z x y t x y x g y
y a a a a a a

a A
t= +

!

^ ^ ^ ^h h hh/  (1)

s.t. ,y u a A0 a a 6# # !  (2)
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compared with the target vector according to their fit-
ness values, and the best one deserves to enter to the 
next generation as shown in Equation 10.

,
,

f f
y

r r
y

yif
otherwise

t
t t t

t
1 1

=+ ^ ^h h*  (10)

3.2 DE improvement strategies

Although DE is considered as one of the power-
ful heuristic algorithms, probably better solutions for 
CNDP can be obtained by improving it in different 
ways. Thus, we developed the EDEMIS algorithm which 
has three improvements to increase the performance 
of the DE as given below. The flowchart of EDEMIS for 
CNDP is given in Figure 1. 
Improvement 1: More than one mutation strategies 
are simultaneously taken into account by means of 
a parameter called mutation strategy selection rate 
(MSSR). If the MSSR is greater than the random num-
ber generated between 0 and 1, the classical mutation 
strategy is used as shown in Equation 11. Otherwise, 
the second mutation strategy, in which the best solu-
tion vector found in the previous generation is consid-
ered, is used to obtain a mutant vector. 
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By means of this improvement, the proposed al-
gorithm may have the potential to faster achieve the 
global or near global optimum solution of a given opti-
mization problem. It should be noted that the value of 
MSSR strongly affects the solution quality of EDEMIS. 
If the value of MSSR is too small, this may lead to pre-
mature convergence, since the best solution vector is 
taken into account more than it is needed. Therefore, 
the value of 0.95 for the MSSR is used in solving CNDP 
in this paper.
Improvement 2: The second improvement strategy 
may provide a chance to improve the quality of the tar-
get vector when its fitness value is less than that of the 
trial vector at the end of the selection process. In other 
words, the target vector is diversified by means of the 
difference vector (dv) when it could not be improved 
with the trial vector. The difference vector is created by 
multiplying the difference between the trial and target 
vectors with the random number generated within the 
range of 0–1. After that, the difference vector is added 
to the target vector or subtracted according to whether 
the random number generated is less or equal than 
the value of 0.5 or not, and the new vector (nv) is cre-
ated. In case an improvement has been obtained after 
determining fitness values according to the adding or 
subtracting of difference vector, the target vector has 
been replaced with the nv vector. The basic formula-
tion of the difference vector and its application can be 
shown in Equations 12–14.

experiments in this paper. The DE steps can be sum-
marized as follows. Note that the DE solution process 
is described in the context of CNDP for the sake of 
brevity.
Generation of the initial population: At generation t, the 
initial population (yt) is created with capacity enhance-
ments values for a set of selected links as shown in 
Equation 7. Considering the generated upper-level de-
cision variables, equilibrium link flows are determined 
for each solution vector (i.e., target vector) in the pop-
ulation by solving DUE traffic assignment problem at 
the lower level. Following this, the fitness values (fj

t) for 
each target vector are calculated by using Equation 1. 
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where i!{1,2,...,N}, j!{1,2,...,NP} and N is the number 
of links for capacity enhancement projects.
Mutation: First, two randomly selected solution vectors 
subtract from each other; afterwards, a third vector is 
added to the difference vector, multiplied by the muta-
tion factor (F). Thus, the mutant vector (mt) is created, 
and its each member can be determined as shown in 
Equation 8.

m y yy F, , , ,
i
j t

i
t

i
t

i
t1 2 3= + -_ i  (8)

where , ,y y, ,
i

t
i

t1 2  and y ,
i

t3  are randomly selected ca-
pacity enhancement values within the range [0,NP] at 
generation t, and .y y y, , ,

i
t

i
t

i
t1 2 3= =Y Y

Crossover: The crossover mechanism is used to diver-
sify the target vector with the mutant vector. The vec-
tor created by using crossover operator is called trial 
vector (rt), and its each member is chosen either from 
the mutant vector or from the target vector as given in 
Equation 9.

, ,
r

m CR or i i
y

0 1if rand
otherwise

,
,

,i
j t i

j t
rand

i
j t

#
=

=^ h*  (9)

The crossover rate, CR, is compared with a ran-
domly generated value between 0 and 1. If CR is 
greater, the trial vector is created from the mutant vec-
tor, otherwise from the target vector. In addition, the 
statement, i=irand, where irand is the randomly select-
ed integer number in the range [1,N], ensures that at 
least one member of the trial vector is taken from the 
mutant vector to make the trial vector different from 
the target vector at each generation.
Selection: Each DE generation is finalized by applying 
this step. First, the fitness value of each trial vector is 
calculated by using Equation 1. Then the trial vector is 
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- Upper bound for capacity expansion (ua)
- Investment function and cost coefficient (da)
- DE parameters (NP, F, CR, MSSR)
- O-D demand matrix and network parameters
- Parameters of link travel cost function (aa, ba, ia)
- Maximum number of generations (MGN)

STEP 1: Input required parameters

STEP 7: Termination

STEP 3: Mutation, j=1

STEP 4: Crossover, i=1

STEP 5: Selection

i=1

Output
Optimal link cpacity

enhancements

STEP 2: Generation of initial population, t=1

Generate solution vectors, yt={yi
j,t,yi

j,t,...,yi
j,t}, with randomly 

distributed link capacity enhancements as NP

Y

Y

Y

Y

Y

N

N

N

Y

Y

Y

Y

N

N

N

N
N

N

t=MGN
?

IMPROVEMENT 3
IMPROVEMENT 1

IMPROVEMENT 2

Decrease dx vector 
dx=dx · 0.9

t=t+1

ybest,t=ycv,t

ybest,t=ycv,t

Find ybest,t

Calculate the new vector
ycv,t =ybest,t-dx

Calculate the new vector
ycv,t =ybest,t+dx

f=(ycv,t)<f(ybest,t)

f=(ycv,t)<f(ybest,t)

Solve the lower level
problem for new vector and
calculate the fitness value

using Equation 1

Solve the lower level problem for new vector and 
calculate the objective function value using Equation 1

Generate dx random vector

STEP 6: Starting local search

j=j+1

i=i+1

j=NP

Solve the lower level problem by considering solution
vectors and obtain the DUE link flows (x)

Determine the fitness values for each solution 
vector using Equation 1

rand (0,1)<MSSR

rand (0,1)<0.5

rand (0,1)≤CR

Calculate and compare the fitness values of new and
target vectors, the best one enters the next step

mj,t=y1,t+F(y2,t-y3,t) mj,t=y1,t+F(ybest,t-1-y2,t)

ri
j,t=mi

j,t ri
j,t=yi

j,t

Solve the lower level problem for trial vector, rj,t, and
calculate the fitness value using Equation 1

f=(rj,t)<f(yj,t)

y j,t=r t dvj,t=rand · (rj,t-y j,t)

nvj,t=y j,t+dv j,t nvj,t=y j,t-dv j,t

Figure 1 – Flowchart of EDEMIS for CNDP
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from node 1 to 4. The link cost function is defined as 
given in Equation 18. Link parameters, demand data, 
and cost coefficients are adopted from Suwansirikul 
et al. [5].

,t x y y
x

a a a a a
a a

a 4
a b i= + -^ bh l  (18)

The objective function of CNDP for this network is 
presented as:

, , .min Z x y t x y x d y1 5
y a a a a

a A
a a

2= +
!

^ ^ ^h h h/  (19)

where da is the cost coefficient; upper bound for ca-
pacity enhancement is set to 10. The performance of 
EDEMIS in solving CNDP is compared with solutions 
from four algorithms given in the literature. The results 
from solving the 5-link network are given in Table 1. 

The solution obtained by GA is reported as the glob-
al optimum value for this network. In [14], a complete 
enumeration is conducted to obtain the global opti-
mum solution for CNDP. As shown in Table 1, MINOS, 
GA, and EDEMIS are able to achieve to the global op-
timum solution. On the other hand, the objective func-
tion values obtained by EDO and HJ algorithms are 
slightly far from the global solution. This experiment 
shows the ability of EDEMIS to obtain the global op-
timum solution in solving CNDP at least in this hypo-
thetical network. Note that MINOS, GA, and EDEMIS 
algorithms produce slightly different link capacity en-
hancements despite the fact that their objective func-
tion values are the same. This property stems from the 
non-convexity of CNDP. 
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Improvement 3: The last improvement strategy is the 
addition of a local search to the end of each generation. 
The aim of the local search is to push the best solution 
towards the global or near-global optimum at the end 
of each generation. In this process, the algorithm gen-
erates the dxt vector from the range of ,t t

1 2c c^ h  which 
is selected according to the upper and lower bounds of 
decision variables of the given optimization problem, 
as shown in Equation 15.  After the dxt vector is gener-
ated, it is added to the best solution vector, and then 
the candidate vector (ycv,t) is created. If the candidate 
vector’s fitness value is better than that produced by 
the vector of the best solution, it is replaced with the 
best solution in the population. Otherwise, the dxt vec-
tor is subtracted from the vector of the best solution in 
order to search for possible better solutions in other 
direction. The basic statement for creating the candi-
date vector can be seen in Equation 16. After the local 
search is ended, the dxt vector is multiplied with 0.9 to 
reduce the search space around the best solution step 
by step, as given in Equation 17.

,randdxt
1 2c c= ^ h  (15)

dxy y, , tcv t best t !=  (16)

.dx dx 0 9t t1 $=+  (17)

4. NUMERICAL APPLICATION

4.1 5-link network

Before applying the EDEMIS algorithm to small and 
medium-sized networks, a 5-link network is consid-
ered in order to demonstrate the capability of EDEMIS. 
This network consists of four nodes and five links, as 
given in Figure 2. The travel demand is taken as 100 

Table 1 – Comparison of results from solving the 5-link network

MINOS [5] EDO [5] HJ [5] GA [14] EDEMIS 

y1 1.34 1.31 1.25 1.33 1.33

y2 1.21 1.19 1.20 1.22 1.22

y3 0.00 0.06 0.00 0.02 0.00

y4 0.97 0.94 0.95 0.96 0.97

y5 1.10 1.06 1.10 1.10 1.09

Z 1200.58 1200.64 1200.61 1200.58 1200.58

D14=100

1

2

3

4

x1

x3

x4

x2 x5

Figure 2 – 5-link network
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4.2 16-link network

EDEMIS is applied to a 16-link network which has 
16 links and 6 nodes, as given in Figure 3. For this net-
work, two demand scenarios are considered, as given 
in Table 2. All data are taken from Suwansirikul et al. 
[5]. The fitness function for the 16-link network is given 
as:

, ,min Z x y t x y x d y
y a a a a a

a A
a= +

!

^ ^ ^h h h/  (20)

Upper bounds for capacity enhancements were set 
to 10 and 20 for scenarios 1 and 2 for a fair compari-
son with other algorithms. Since the EDEMIS algorithm 
is a stochastic search method, the results obtained 
from this algorithm are given as the best output of 
different trials. Results for scenario 1 are compared 
with those obtained by other major algorithms, as  

1
3

7 4 10 13

15

11

16
14

6
2

12

2

5

9

53

42

1 6

Figure 3 – 16-link network

Table 2 – Travel demand scenarios for the 16-link network

Scenario D16 D61 Total demand
1 5 10 15
2 10 20 30

Table 3 – Comparison of results from solving the 16-link network for scenario 1

MINOS [5] HJ [5] EDO [5] IOA [36] SA [37] CS [17]
y1 0 0 0 0 0 0
y2 0 0 0 0 0 0
y3 0 1.2 0.13 0 0 0
y4 0 0 0 0 0 0
y5 0 0 0 0 0 0
y6 6.58 3.00 6.26 6.95 3.1639 5.1894
y7 0 0 0 0 0 0
y8 0 0 0 0 0 0
y9 0 0 0 0 0 0
y10 0 0 0 0 0 0
y11 0 0 0 0 0 0
y12 0 0 0 0 0 0
y13 0 0 0 0 0 0
y14 0 0 0 0 0 0
y15 7.01 3.00 0.13 5.66 0 0
y16 0.22 2.80 6.26 1.79 6.7240 7.6076
Z 211.25 215.08 201.84 210.86 198.10 199.32
# - 54 10 9 18300 3

SAB [38] GP [9] CG [9] QNEW [9] MILP [15] EDEMIS
y1 0 0 0 0 0 0
y2 0 0 0 0 0 0
y3 0 0 0 0 0 0
y4 0 0 0 0 0 0
y5 0 0 0 0 0 0
y6 5.8352 5.8302 6.1989 6.0021 4.41 5.1597
y7 0 0 0 0 0 0
y8 0 0 0 0 0 0
y9 0 0 0 0 0 0
y10 0 0 0 0 0 0
y11 0 0 0 0 0 0
y12 0 0 0 0 0 0
y13 0 0 0 0 0 0
y14 0 0 0 0 0 0
y15 0.9739 0.87 0.0849 0.1846 0 0
y16 6.1762 6.1090 7.5888 7.5438 7.70 7.6164
Z 204.70 202.24 199.27 198.68 199.78 199.32
# 6 14 7 12 - 5

Note: Z describes the objective function value, # denotes the number of Frank-Wolfe iterations performed
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produces the best solution but needs much more 
computational efforts in terms of the number of Frank-
Wolfe iterations. It is clear that EDEMIS is able to  

given in Table 3. EDEMIS achieved the value of 199.32 
as its best output, and this result is same as that 
produced by CS. Among all compared algorithms, SA  

Table 4 – Comparison of results from solving the 16-link network for scenario 2

MINOS [5] HJ [5] EDO [5] IOA [36] SA [37] AL [8] CS [17]

y1 0 0 0 0 0 0 0

y2 4.61 5.40 4.88 4.55 0 4.6153 4.6144

y3 9.86 8.18 8.59 10.65 10.1740 9.8804 9.9419

y4 0 0 0 0 0 0 0

y5 0 0 0 0 0 0 0

y6 7.71 8.10 7.48 6.43 5.7769 7.5995 7.3821

y7 0 0 0.26 0 0 0.0016 0

y8 0.59 0.90 0.85 0.59 0 0.6001 0.5922

y9 0 0 0 0 0 0.001 0

y10 0 0 0 0 0 0 0

y11 0 0 0 0 0 0 0

y12 0 0 0 0 0 0.1130 0

y13 0 0 0 0 0 0 0

y14 1.32 3.90 1.54 1.32 0 1.3184 1.3152

y15 19.14 8.10 0.26 19.36 0 2.7265 0

y16 0.85 8.40 12.52 0.78 17.2786 17.5774 20

Z 557.14 557.22 540.74 556.61 528.50 532.71 522.40

# - 134 12 13 24300 4000 4

GP [9] CG [9] QNEW [9] MILP [15] LMILP [39] PMC [16] EDEMIS

y1 0.1013 0.1022 0.0916 0 0 0 0.0002

y2 2.1818 2.1796 2.1521 4.41 2.722 4.6905 1.3621

y3 9.3423 9.3425 9.1408 10.00 9.246 9.9778 11.1298

y4 0 0 0 0 0 0 0

y5 0 0 0 0 0 0 0

y6 9.0443 9.0441 8.8503 7.42 8.538 7.5554 5.5616

y7 0 0 0 0 0 0 0

y8 0.008 0.0074 0.0114 0.54 0 0.6333 0.5901

y9 0 0 0 0 0 0 0

y10 0 0 0 0 0 0 0

y11 0 0 0 0 0 0 0

y12 0.0375 0.0358 0.0377 0 0 0 0

y13 0 0 0 0 0 0 0

y14 0.0089 0.0083 0.0129 1.18 0 1.7664 1.2902

y15 1.9433 1.9483 1.9706 0 0 0 1.9979

y16 18.9859 18.986 18.575 19.50 20.000 19.6737 18.82564

Z 534.02 534.11 534.08 523.63 526.49 522.75 518.69

# 31 16 11 - - - 8

Note: Z describes the objective function value, # denotes the number of Frank-Wolfe iterations performed
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shown in Figure 4. The fitness function for the Sioux 
Falls network is formulated as in Equation 21. The up-
per bound for ya was set to 25 for a fair comparison 
with other algorithms.

, , .min Z x y t x y x d y0 001
y a a a a a a

a A

2= +
!

^ ^ ^h h h/  (21)

The results obtained by EDEMIS on the Sioux Falls 
network are evaluated and they are given in Table 5. 
From the table, it can be observed that the EDEMIS 
algorithm is able to produce the best solution among 
the compared major algorithms, except SA and CS. Al-
though SA and CS slightly outperformed EDEMIS, the 
objective function values obtained by these algorithms 
are quite close. In addition, EDEMIS produced good re-
sults with a much lower number of Frank-Wolfe itera-
tions in comparison with SA and CS. It should be noted 
that AL, HJ, and GA algorithms also has the potential 
to achieve good results for solving CNDP, but they re-
quire much more computational efforts as compared 
to EDEMIS. 

produce good results with less computational efforts 
in comparison with EDO, SA, CG, QNEW, and MILP in 
solving CNDP.

In order to investigate the performance of EDEMIS 
under different demand levels, scenario 2 is consid-
ered and results are given in Table 4. 

It can be clearly seen that EDEMIS is able to pro-
duce the best solution in comparison with other 13 
algorithms, as well as with less computational efforts. 
By means of this experiment, the performance of EDE-
MIS has been demonstrated for solving CNDP, espe-
cially in heavier demand conditions. 

4.3 Sioux Falls network

In order to show the ability of EDEMIS on mid-
dle-sized networks, the city of Sioux Falls is used, which 
has 24 nodes and 76 links. As in the previous numer-
ical experiments, the relevant data of the network are 
taken from Suwansirikul et al. [5]. The dashed links 
are candidates for capacity enhancement projects as 
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Figure 4 – Sioux Falls network 
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for solving CNDP, especially under heavier demand  
conditions. As a last experiment, EDEMIS was applied 
to the Sioux Falls network. In comparison with the re-
sults obtained by the other major algorithms, except 
SA and CS, EDEMIS achieved the best solution. Al-
though SA and CS slightly outperform EDEMIS, they 
need a higher number of Frank-Wolfe iterations, which 
increases the computational cost of the methods used 
in the solution. It is clear that EDEMIS gives promising 
results in terms of the fitness value and required com-
putational efforts and can be used for large-scale road 
networks in solving CNDP.
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5. CONCLUSIONS
In this paper, the EDEMIS algorithm has been pre-

sented to solve CNDP, which is formulated as a bilev-
el programming model. In this model, the upper level 
seeks to find the optimal capacity enhancements of 
selected links while the lower level is used to solve the 
DUE traffic assignment problem. To solve this bilevel 
model, EDEMIS has been developed by adding three 
improvement mechanisms to the classical DE algo-
rithm. In order to test EDEMIS in solving CNDP, the first 
numerical experiment has been carried out on a hypo-
thetical test network. This application has demonstrat-
ed that EDEMIS has the ability to achieve the global 
optimum solution, at least on this small network. The 
second experiment is carried out by using the 16-link 
network under different demand levels. The results 
obtained from EDEMIS were compared with those pro-
duced by other methods. From the results, it has been 
found that EDEMIS is able to produce good results 

Table 5 – Comparison of results from solving the Sioux Falls network 

HJ [5] EDO [5] SA [37] AL [8] IOA [36] CS [17]
Initial value of ya 1.0 12.5 6.25 12.5 12.5 -

y16 3.8 4.59 5.38 5.5728 4.6875 5.0916
y17 3.6 1.52 2.26 1.6343 3.9063 1.3515
y19 3.8 5.45 5.50 5.6228 1.2695 6.4903
y20 2.4 2.33 2.01 1.6443 1.6599 2.2995
y25 2.8 1.27 2.64 3.1437 2.3331 2.9074
y26 1.4 2.33 2.47 3.2837 2.3438 2.0515
y29 3.2 0.41 4.54 7.6519 5.5651 3.6725
y39 4.0 4.59 4.45 3.8035 4.6862 5.2202
y48 4.0 2.71 4.21 7.3820 5.4688 3.4230
y74 4.0 2.71 4.67 3.6935 6.2500 4.8798
Z 81.77 83.47 80.87 81.75 87.34 81.51
# 108 12 3900 2700 31 36

GP [9] CG [9] HS [1] PT [9] GA [14] EDEMIS
Initial value of ya 12.5 12.5 - 12.5 - -

y16 4.8693 4.7691 4.4482 5.0237 5.17 5.5415
y17 4.8941 4.8605 1.2926 5.2158 2.94 1.9202
y19 1.8694 3.0706 5.4675 1.8298 4.72 5.2428
y20 1.5279 2.6836 2.3064 1.5747 1.76 1.7973
y25 2.7168 2.8397 0.6453 2.7947 2.39 2.8978
y26 2.7102 2.9754 2.7100 2.6639 2.91 2.8391
y29 6.2455 5.6823 4.1596 6.1879 2.92 3.5865
y39 5.0335 4.2726 3.6761 4.9624 5.99 3.9184
y48 3.7597 4.4026 4.9047 4.0674 3.63 3.5828
y74 3.5665 5.5183 4.3878 3.9199 4.43 4.9844
Z 82.71 82.53 81.83 82.53 81.74 81.60
# 9 6 - 7 77 18

Note: Z describes the objective function value, # denotes the number of Frank-Wolfe iterations performed



Başkan Ö, Ozan C, Dell’Orco M, Marinelli M. Improving the Performance of the Bilevel Solution for the Continuous Network Design Problem

Promet – Traffic & Transportation, Vol. 30, 2018, No. 6, 709-720 719

[5] Suwansirikul C, Friesz TL, Tobin RL. Equilibrium de-
composed optimisation: A heuristic for the continuous 
equilibrium network design problem. Transportation 
Science. 1987;21(4): 254-263.

[6] Marcotte P. Network optimization with continuous con-
trol parameters. Transportation Science. 1983;17(2): 
181-197. Available from: doi:10.1287/trsc.17.2.181

[7] Marcotte P, Marquis G. Efficient implementation of 
heuristics for the continuous network design problem. 
Annals of Operational Research. 1992;34(1): 163-
176. Available from: doi:10.1007/BF02098178

[8] Meng Q, Yang H, Bell MGH. An equivalent continuously 
differentiable model and a locally convergent algorithm 
for the continuous network design problem. Transpor-
tation Research Part B. 2001;35(1): 83-105. Available 
from: doi:10.1016/S0191-2615(00)00016-3

[9] Chiou SW. Bilevel programming for the continuous 
transport network design problem. Transportation Re-
search Part B. 2005;39(4): 361-383. Available from: 
doi:10.1016/j.trb.2004.05.001

[10] Ban XG, Liu HX, Lu JG, Ferris MC. Decomposition 
scheme for continuous network design problem 
with asymmetric user equilibria. Transportation Re-
search Record. 2006;1964: 185-192. Available from: 
doi:10.3141/1964-20

[11] Karoonsoontawong A, Waller ST. Dynamic continuous 
network design problem-Linear bilevel programming 
and metaheuristic approaches. Transportation Re-
search Record. 2006;1964: 104-117. Available from: 
doi:10.3141/1964-12

[12] Gao Z, Sun H, Zhang H. A globally convergent algo-
rithm for transportation continuous network design 
problem. Optimization and Engineering. 2007;8(3): 
241-257. Available from: doi:10.1007/s11081-007-
9015-1

[13] Xu T, Wei H, Hu G. Study on continuous network de-
sign problem using simulated annealing and ge-
netic algorithm. Expert Systems with Applications. 
2009;36(2): 1322-1328. Available from: doi:10.1016/ 
j.eswa.2007.11.023

[14] Mathew TV, Sharma S. Capacity expansion problem for 
large urban transportation networks. Journal of Trans-
portation Engineering. 2009;135(7): 406-415. Available 
from: doi:10.1061/(ASCE)0733-947X(2009)135:7(406)

[15] Wang DZW, Lo HK. Global optimum of the linearized 
network design problem with equilibrium flows. Trans-
portation Research Part B. 2010;44(4): 482-492. 
Available from: doi:10.1016/j.trb.2009.10.003

[16] Li C, Yang H, Zhu D, Meng Q. A global optimization 
method for continuous network design problems. 
Transportation Research Part B. 2012;46(9): 1144-
1158. Available from: doi:10.1016/j.trb.2012.05.003

[17] Baskan O. Determining Optimal Link Capacity Ex-
pansions in Road Networks Using Cuckoo Search 
Algorithm with Lévy Flights. Journal of Applied 
Mathematics. 2013;2013: 1-11. Available from: 
doi:10.1155/2013/718015

[18] Baskan O. An evaluation of heuristic methods for de-
termining optimal link capacity expansions on road 
networks. International Journal of Transportation. 
2013;2(1): 77-94. Available from: doi:10.14257/
ijt.2014.2.1.05

[19] Wang GM, Gao ZY, Xu M. An MPEC formulation and 

1 İnşaat Mühendisliği Bölümü, Mühendislik Fakültesi
 Pamukkale Üniversitesi, 20070, Denizli, Türkiye
2 İnşaat Mühendisliği Bölümü, Mühendislik Fakültesi
 Aydın Adnan Menderes Üniversitesi, 09010, Aydın, Türkiye
3 Politecnico di Bari, D.I.C.A.T.E.Ch.
 Via Edoardo Orabona 4, 70125, Bari, Italia

SÜREKLİ ULAŞIM AĞ TASARIM PROBLEMİNİN İKİ 
SEVİYELİ ÇÖZÜM PERFORMANSININ İYİLEŞTİRİLMESİ

ÖZET

Kentiçi yol ağlarındaki sıkışıklığı azaltmak ve ek kapa-
siteyi ulaşım ağındaki bağlar arasında dengeli bir şekilde 
dağıtmak için Sürekli Ulaşım Ağ Tasarım  (SUAT) problemi 
üzerinde  araştırmacılar uzun yıllardır çalışmaktadırlar. 
Diğer taraftan SUAT probleminin ele alınması yerel yöneti-
cilerin kısıtlı bütçelerle trafik sıkışıklığını azaltma çabaları 
noktasında oldukça önem taşımaktadır. SUAT problemi yerel 
yöneticiler ve kullanıcılar arasındaki karşılıklı etkileşim ned-
eniyle genellikle iki seviyeli modelleme tekniği kullanılarak 
çözülebilmektedir. Üst seviyede seçilen bağlara ait en uygun 
kapasite genişletmelerinin bulunması amaçlanırken alt se-
viyede ise trafik atama problemi çözülmektedir. Bu çalışma-
da, SUAT probleminin çözülmesi amacıyla Çoklu İyileştirme 
Stratejilerine Dayalı İyileştirilmiş Diferansiyel Gelişim algorit-
ması geliştirilmiştir. Önerilen algoritmanın SUAT probleminin 
çözümünde global optimum çözüme ulaşabildiğini göster-
mek amacıyla algoritma ilk olarak küçük bir test ağına uygu-
lanmıştır. Sonrasında önerilen algoritmanın özellikle ağır 
talep şartları altındaki performansını test etmek amacıyla 
16 bağdan oluşan bir ulaşım ağı uygulaması yapılmıştır. 
Son olarak Sioux Falls şehir ağı uygulaması ile literatürde-
ki algoritmaların sonuçları ile karşılaştırmalar yapılmıştır. 
Sonuçlar geliştirilen algoritmanın karşılaştırma yapılan diğer 
algoritmalardan çoğunlukla daha iyi sonuçlar verebildiğini 
ve büyük ölçekli ulaşım ağlarında karar vericiler tarafından 
kullanılabileceğini göstermiştir.

ANAHTAR KELİMELER

Sürekli Ulaşım Ağ Tasarımı; Kapasite Genişletme; Karşılıklı 
Etkileşim; Kullanıcı Dengesi;
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