
ABSTRACT

This study focuses on a distribution problem involving 
incompatible products which cannot be stored in a com-
partment of a vehicle. To satisfy different types of customer 
demand at minimum logistics cost, the products are stored 
in different compartments of fleet vehicles, which requires 
the problem to be modeled as a multiple-compartment ve-
hicle routing problem (MCVRP). While there is an extensive 
literature on the vehicle routing problem (VRP) and its nu-
merous variants, there are fewer research papers on the 
MCVRP. Firstly, a novel taxonomic framework for the VRP 
literature is proposed in this study. Secondly, new mathe-
matical models are proposed for the basic MCVRP, together 
with its multiple-trip and split-delivery extensions, for obtain-
ing exact solutions for small-size instances. Finally, heuristic 
algorithms are developed for larger instances of the three 
problem variants. To test the performance of our heuris-
tics against optimum solutions for larger instances, a lower 
bounding scheme is also proposed. The results of the com-
putational experiments are reported, indicating validity and 
a promising performance of an approach.
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1.	INTRODUCTION 
The vehicle routing problem (VRP) arises from the 

logistics field and deals with the distribution of goods 
to customers [1]. It is a generalization of the traveling 
salesman problem (TSP), which is an NP-hard prob-
lem [2]. The concept of a multiple-compartment VRP 

(MCVRP) includes separated compartments carrying 
incompatible products requested by one or more cus-
tomers. The problem aims to meet different types of 
customer demands in the same vehicle while seeking 
minimum distribution cost. There is an extensive liter-
ature on routing problems which includes taxonomic 
studies [3-7]. Figure 1 proposes a new taxonomy for the 
VRP. 

The general VRP can be represented using six 
main classes with respect to constraints describing 
the problem structure, those being operational policy, 
objective, vehicle, product, depot and period. The op-
erational policy dimension represents problem char-
acteristics and constraints regarding system configu-
ration and operating principles. In the VRP, soft time 
windows (STW) [8] or hard time windows (HTW) [9] 
can be defined to determine operational constraints 
while servicing each node. Another operational classi-
fication identifies the problem as pickup and delivery 
(PD) [10], backhaul (BH) [11] or backhaul and linehaul 
(BH&LH) [12], as opposed to the classical linehaul 
problems. If the demand of a customer can be satis-
fied by more than one vehicle, the VRP with split deliv-
ery (SLD) [13] is valid; otherwise, no split deliveries are 
allowed. The last operational classification category di-
vides the problem as a single-trip (ST) or multi-trip (MT) 
VRP [14], allowing a vehicle to perform one  or several 
trips within the planning period. The VRPs also differ 
according to their desired objectives. Literature wide-
ly uses minisum objectives, which minimize the total 
distribution cost (MSTC) [15], total distribution time 
(MSTT) [16] or total length of routes (MSTL). Minimizing 
the total waiting time of the customers (MSWT) [17] is  
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planning horizon of the problem may involve a single 
time period (STP), which is mostly the case, or multiple 
time periods (MTP) [27]. Our taxonomy is inspired by 
Kendall’s notation [28]. The notation, including one 
segment for each dimension and subsegments sepa-
rated by commas, is illustrated in Figure 2.

Recent MCVRP studies are listed in Table 1 using 
our taxonomy. Lahyani et al. [15] studied the collec-
tion of olive oil using heterogeneous multiple-com-
partment vehicles with split delivery for different 
types of products. They solved the problem using a 
branch-and-cut algorithm. Coelho and Laporte [37] 
described the MCVRP for fuel distribution, which dis-
tinguishes between split and unsplit compartments 
and tanks. They proposed two mixed integer linear 
programming formulations and a branch-and-cut al-
gorithm for all problem variants. Since the MCVRP 
is an NP-Hard problem, most studies use heuristic 

another objective considered for representing custom-
er satisfaction. Minimax objectives, such as minimizing 
the maximum travel time (MMTT) [18] or travel length 
(MMTL) [19], can be useful in balancing the workload 
of drivers, and explicit load balancing objectives (LBTT 
and LBTL) [20, 21] can be used for the same purpose. 
Depending on the problem structure, other objectives 
can also be considered, such as non-monetary objec-
tives in humanitarian logistics problems [22].

In vehicle dimension, depending on the type of ve-
hicle, the fleet can be identical (IF) or heterogeneous 
(HF) [23]. In terms of capacity restrictions of the ve-
hicles in the fleet, the most studied problem is fixed 
capacity (FC), where vehicle number and capacity are 
assumed to be predetermined and cannot be altered. 
In contrast, the number of vehicles or their capacities 
can be increased in the flexible fleet size (FLC) catego-
ry [24]. In terms of compartments, the vehicles may 
have a single compartment (SC), fixed-size multiple 
compartments (FMC) or flexible-size multiple compart-
ments (FLMC) [25]. It should be noted that compart-
ment size flexibility does not necessarily bring flexibility 
to vehicle capacity; total vehicle capacity may be fixed 
while allowing flexible compartments. For other dimen-
sions, the distribution problem may involve a single 
product (SP) or multiple compatible (MCP) or incom-
patible (MICP) products. The depots in the problem 
may be single (SD) or multiple (MD) [26]. Finally, the 
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stressed the need for heuristic approaches for larger 
practical instances, although no such approach was 
presented. 

In the next section, we adapt the basic MCVRP 
model [41] with a modification in the subtour elimina-
tion constraints for ST | MSTC | IF,FC,FMC | MICP | 
SD | STP. We then propose multiple-trip (MT | MSTC 
| IF,FC,FMC | MICP | SD|STP)  and split-delivery (SLD 
| MSTC | IF,FC,FMC | MICP | SD| STP) extensions 
for constructing other acceptable routing alternatives 
for a feed distributer. Since the problem increases in 
practical applications, we propose heuristic approach-
es and lower bounds for all three variants in Section 
3. Comprehensive computational results, including 
both exact and heuristic performances, are presented 
in Section 4. Section 5 includes our conclusions and 
future research directions.

2.	FORMULATION
In this section, mathematical formulations of the 

problem are presented. The basic model, adapted 
from [41], is presented in Section 2.1, while multi-
ple-trip and split-delivery extensions are presented in 
Section 2.2. 

2.1	 The basic model

The basic problem modeled in this section does 
not allow a split delivery or multiple trips, represented 
as ST | MSTC | IF,FC,FMC | MICP | SD | STP. Identi-
cal vehicles are available and fully loaded at the single 
depot at the start of the planning period. An 8-hour 
shift is assumed for all vehicles. Each compartment of 
a vehicle is dedicated to a single type of product due to 

algorithms to solve the problem and its variants. For 
instance, El Fallahi et al. [32] proposed a memetic 
algorithm as a genetic algorithm hybridized with a lo-
cal search procedure for constructive heuristics and 
a tabu search [45] for path relinking. Abdulkader et 
al. [38] introduced a distance-constrained variant of 
the problem by applying a hybrid ant colony optimiza-
tion algorithm and local search procedures. Koch et al. 
[39] worked on the MCVRP with flexible compartment 
sizes and developed a genetic algorithm where each 
gene represents a customer location and their supply 
of a specific product type. The initial population was 
generated by a completely randomized procedure and 
savings method [43]. They used swap and insertion 
algorithms for mutations. Rabbani et al. [26] consid-
ered a distance-constrained variant of the MCVRP with 
heterogeneous vehicles, multiple depots and mixed 
open and closed tours, proposing a mathematical for-
mulation based on genetic algorithms as metaheuris-
tics for the solution. Genetic algorithms were used for 
initial solutions and the iterative swap procedure [44] 
was used for the improvement phase. Alinaghian and 
Shokouhi [40] introduced the MCVRP under multiple 
depot and split delivery assumptions. The authors de-
veloped a mathematical model and a hybrid algorithm, 
composed of an adaptive large neighborhood search 
and a variable neighborhood search for large scale in-
stances. 

Our study derives its roots from a real-life VRP of 
a local feed distributor. The basic VRP and its multi-
trip extension was modeled in an earlier study [41]. As 
the problem is clearly NP-hard, pilot experimentation 
revealed that only small-size instances could be solved 
to optimality within acceptable CPU times. The authors 

Table 1 – Recent MCVRP literature

Authors Year Problem

Van der Bruggen et al. [29] 1995 ST    | MMTC | HF, FC, FMC  | MICP | SD | STP 

Avella et al. [30] 2004 ST | MMTL | IF, FC, FMC    | MICP | SD | STP

Suprayogi et al. [31] 2006 SLD, MT  | MSV, MMTT, LBTT   | IF, FC, FMC    | MICP | SD | STP

El Fallahi et al. [32] 2008 SLD, ST    | MMTL | IF, FLC, FMC  | MICP | SD | STP

Mendoza et al. [33] 2010 ST   | MMTL                         | IF, FLC, FMC | MICP | SD | STP

Derigs et al. [25] 2011 ST   | MMTL                      | IF, FC, FMC   | MICP | SD | STP

Surjandari et al. [34] 2011 SLD, ST    | MMTL                     | HF, FC, FMC  | MICP | MD | MTP

Benantar and Oufi [35] 2012 TW, ST    | MMTL                      | HF, FC, FMC | MICP | SD | STP

Asawarungsaengkul et al. [36] 2013 SLD, ST   | MMTL                     | HF, FC, FMC  | MICP | SD | STP

Lahyani et al. [15] 2015 SLD, ST    | MSV, MMTL            | HF, FC, FMC  | MICP | SD | MTP

Coelho and Laporte [37] 2015 SLD, ST    | MSTC                    | IF, FC, FMC  | MICP | SD | MTP

Abdulkader et al. [38] 2015 ST   | MSTC                    | IF, FC, FMC | MICP | SD | STP

Koch et al. [39] 2016 ST   | MSTC                    | IF, FC, FLMC  | MICP | SD | STP

Rabbani et al. [26] 2016 ST   | MSTC                     | HF, FC, FLMC  | MICP | MD | STP

Alinaghian and Shokouhi [40] 2017 SLD, ST    | MSV, MSTL             | IF, FC, FMC | MICP | MD | STP
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The Objective Function 1 minimizes the sum of the 
fixed vehicle cost and the fuel cost. A vehicle can serve 
customers only if it is in use (2). Capacity restrictions 
are enforced through Constraint 3, while Constraint 4 
ensures one type of product in each compartment/
silo. Each customer can be served by only one vehi-
cle; hence, no split deliveries are allowed, which is 
described by Constraint 5. Constraints 6 and 7 satisfy 
the flow balance of vehicles’ routes, while 8 and 9 en-
sure that the entrance and exits to/from the depot are 
equal to the total number of vehicles used. Continuity 
of routes is guaranteed through Constraints 10 and 11. 
Constraints 12–14 calculate travel times for feasible 
routes. Time and route variables are linked through 
Constraints 15–17. Constraint 18 guarantees time-feasi-
ble routes in terms of the 8-hour vehicle shifts. Con-
straints 21–23 define the values of decision variables 
as binary or real non-negative.

We replace the all-subtour elimination constraint 
that was used in the model presented in the paper 
[41] with Constraints 19 and 20, which are subtour  

product incompatibility. Loading and unloading times 
are included in the traveling time. Each customer or-
ders one type of product and, since there is no split 
delivery, the customer demand cannot exceed the ve-
hicle capacity. The parameters and decision variables 
are defined below:
fk			  -	fixed cost for vehicle k (USD), k=1,…,K
Clk		 -	capacity of compartment l of vehicle k [tons], 
				    l=1,…,L, k=1,…,K
Dip	 -	demand of customer i for product type p [tons], 
				    i=1,…,N, p=1,…,P
sij		  -	distance from customer i to customer j [km],  
				    i, j=1,…,N
\ 	 	 -	 fuel cost [USD/km]
Tk		  -	 time capacity of vehicle k [min], k=1,…,K
Tij		 -	 time from customer i to customer j [min],  
				    i, j =1,…,N
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3.	SOLUTION APPROACH
The MCVRP model and its two extensions are 

solved to optimality for small-size test problems, using 
IBM ILOG CPLEX 12.6. While obtaining optimal solu-
tions, subtours including four or more customers are 
checked after obtaining the initial optimal solution, 
and further necessary subtour elimination constraints 
are added as cuts to the initial model. For the basic 
model, optimal solutions could not be obtained with-
in reasonable computation times for instances of 20 
or more customers. For multiple-trip and split-delivery 
extensions, even a group of 15 customers was large 
enough for obtaining exact solutions. Therefore, the 
heuristic approaches for the basic, multiple-trip and 
split-delivery variants are developed and explained in 
the following subsections. 

3.1	 Construction and improvement heuristics

In the construction heuristics for the basic prob-
lem, the customers are selected in a random manner 
and assigned to the same vehicle, as long as there 
is enough capacity. If no more customers can be as-
signed to the same vehicle, a new vehicle is opened 
to be used. The construction procedure continues un-
til all customers’ demands are assigned to vehicles. 
The vehicles visit the customers in the order they are 
assigned, hence, an initial route for each vehicle is 
formed automatically as the assignments are being 
made. Our improvement phase starts with a modi-
fied variable neighborhood search (mVNS) algorithm, 
which consists of swap and insertion moves to im-
prove the initial route of each vehicle shown in Figure 3.

A VNS is based on the systematic change of the 
neighborhood during the search [42]. A greedy re-
move/insert type heuristic with an mVNS substage is 

elimination constraints that include only 2-node and 
3-node subtours. Our initial numerical experiments 
show that these constraints eliminate the majority of 
the resulting subtours at a small computational cost. 
Therefore, we included only these constraints in the 
model, as opposed to the highly time-consuming one 
used in [41]. Further subtour constraints for four or 
more customers are added to the model whenever 
subtours appear in the optimal solution, which will be 
explained in Section 4. 

2.2	 Multiple trips and split delivery

The multiple-trip extension of the problem is denot-
ed as MT | MSTC | IF,FC,FMC | MICP | SD|STP based 
on our taxonomy. This extension allows a maximum of R 
trips per vehicle during the working day. A trip index is de-
fined as r= 1,…,R, and the number of vehicles in the mod-
el is replaced by k=1,…,K, K+1,…,2K,…,2K+1,…,RK.  
With this representation, indices K+1,…,2K denote 
the 2nd trip of the K vehicles, 2K+1,…,3K denote the 
3rd trip, etc. Constraint 24 then ensures that a vehicle 
can make its next tour only if it performs its previous 
one. To satisfy the time constraint for a vehicle per-
forming multiple trips, Constraint 18 is replaced by 18’ 
in the model.
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When split delivery is allowed, the problem be-
comes SLD | MSTC | IF,FC,FMC | MICP | SD| STP. A 
customer’s demand can be met through a delivery by 
several vehicles, hence, Constraint 5 needs to be omit-
ted from the model. A vehicle index is added to deci-
sion variables u, z and v, and Constraints 6 and 7 are 
modified as stated below. Constraint 25 is added to en-
sure flow balance. Another change handles fulfillment 
of a customer’s demand through a new continuous 
non-negative decision variable qki between 0 and 1, 
representing the percentage of customer i’s demand 
met by vehicle k. Constraint 3 is then replaced by 3’ to 
accommodate this change. Constraint 26 ensures that 
a vehicle can satisfy a demand percentage of a cus-
tomer only if it visits that customer. Demand of each 
customer is met via the additional Constraint 27, and 
the new decision variable is defined by Constraint 28. 
Constraints 15–17 are also updated to handle relations 
between vehicle visits and time used. The modified 
constraints are listed below.
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The solution approach has similar construction and 
improvement steps, but the algorithm also considers 
possible ways of demand splitting and assigning each 
portion to a different vehicle. This assumption consid-
erably increases the complexity of the algorithm.

3.2	 Lower bounds

We were able to show the efficiency of our heuris-
tic results for small-size instances by comparing them 
with the optimal values. Since the problem is NP-hard, 
in order to test our heuristic model for large-size prob-
lem instances, we need to compute some lower bound 
values of the objective function. Three lower bounds 
are developed for the problem. For the base model, a 
lower bound on total fixed cost is computed by multi-
plying the total number of vehicles with the fixed cost 
of a vehicle. To find a bound for the number of vehi-
cles, the total amount of demands for each type of 
product , :; :D i customers p product typeip

i
b l/ is divided by 

the compartment capacity (C) and the upper bound 
integer value is taken as the number of compartments 
needed for a certain product type. The total number of 

compartments needed for all products C

Dip
i

p

f pf p/
/  is 

then divided by the number of compartments that can 
fit on vehicles (four in practice), giving a bound on the 
total number of required vehicles:

# #

/
Vehicles Compartments

D Cip
ip= f
b l p//

For the multiple-trip extension, a maximum of two 
trips is assumed per vehicle per day as a reasonable 
and practical assumption. Hence, a lower bound on 
the number of needed vehicles is found by dividing 
the number of vehicles found above by two and taking 
the integer upper. For the split-delivery model, lower 
bound is the same as the base model. There are three 
different lower bounding methods for the routing cost, 
as explained below.

LB1: The first bound tries to find the minimum dis-
tribution distance by seeking customers’ neighbors 
and by forming clusters equal to the lower bound on 
the number of vehicles (computed as above). The pro-
cedure starts with node 1 and selects two of its near-
est customers. This is applied to each node, so that 
each customer is connected to its two closest neigh-
bors. Repetitions are removed; if a customer appears 
in more than two clusters, only the minimum two dis-
tances for that customer are kept while the rest are 
erased. The next step is to enforce depot connection 
arcs. The number of entrances/exits from/to depot 
should be equal to the bound of the number of vehi-
cles. For each vehicle, the nearest customers from the 
depot are selected as tour start nodes. Selected cus-
tomers’ previous connections are removed and they 

used subsequently. For this purpose, the vehicles are 
sorted in an increasing order according to their total 
capacities. The first customer’s demand is removed 
from the first vehicle. Then, starting with the last vehi-
cle and moving towards the first, the algorithm checks 
whether the remaining capacity is sufficient (for the 
same type of product) for inserting the removed de-
mand. If there is such a vehicle, the initial and the 
changed route costs are calculated for both vehicles. 
The switch is performed if there is a saving in cost and 
the remaining capacities of the vehicles are updated. 
The routes of both vehicles are then improved through 
the mVNS algorithm as the visited nodes are changed. 
The displacement starts from the first customer of the 
first vehicle, and the procedure tries to find room in 
the last vehicle. Since it is not easy to empty a vehi-
cle loaded to its maximum capacity, the aim of the al-
gorithm is to maximize the total amount of demands 
served by that vehicle, with the hope of reducing the 
number of vehicles used. The algorithm continues 
with the next customer of the first vehicle in the same 
manner. After all the customers that could be removed 
are processed, total savings are computed. It should 
be noted that the fixed cost of an emptied vehicle is 
also included in the savings if all its customers can be 
moved to other vehicles. The improvement procedure 
described above is outlined in Figure 4. 

The solution approach for the multiple-trip problem 
is the same as for the basic model, with the additional 
consideration of multiple trips per day. Hence, to com-
pletely remove a vehicle from the schedule and elimi-
nate its fixed cost, all trips of the same vehicle should 
be empty. In the case of a split delivery, one or two 
vehicles can meet a customer’s demand. Due to prac-
tical considerations, the percentage of a customer’s 
demand served by any vehicle should be greater than 
a threshold, which is called a minimum splitting ratio. 

Figure 3 – Procedure for mVNS
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Number of customers (N) directly affects the 
problem size and its levels are determined as 10, 
15, 20, 50 and 100. Each customer orders a single 
product among 4 types of products. The demand of 
each customer is generated from three predete- 
rmined demand levels according to vehicle capacity, 
which is 16 tons. U[1,8] indicates that demands are 
generated between 1 ton and 8 tons from a discrete 
uniform distribution. U[a,b] denotes that the random 
variable U has the discrete uniform distribution with a 
finite number of equally spaced and equally probable  

are connected to depot. The sum of all arc distances 
is multiplied by the fuel cost, providing a lower bound 
for total route cost.

LB2: A second lower bound is obtained by solving 
an assignment problem without depot and subtour 
elimination constraints to optimality using CPLEX. This 
bound provides an optimal customer-vehicle assign-
ment while ignoring feasible tours. To add the depot 
connections on the assignment solution, we follow the 
same procedure as in LB1. 

LB3: The last lower bound is obtained by solving 
the original model with a 5-minute computational time 
limit. 

4.	NUMERICAL RESULTS
A computational study is carried out to evaluate 

the performance of our mathematical formulation and 
heuristic algorithms. In Table 2, the parameters and 
their levels used in numerical tests are listed.

Sorting vehicles in increasing order
according to their total capacities

Selection of i-th customer
in k-th vehicle

Selection of (K-s)-th
vehicle

Dip≤R(K-s)p

Remove customer i to the vehicle (K-s)-th
and calculate Ck and CK-s

CK=CK+CK-s-Ck

Remove customers to initial
position for negative changes

of CK-s-Ck

All customers are
checked in vehicle k

Ck=0

f≥CK

Close the vehicle k

k=k+1

k=k+1
s=s+1

k≠(K-s)

i=i+1

K - number of vehicles
Dip - demand of customer i for product type p
R(K-s)p - remaining capacity for product type p in vehicle (K-s)
Ck - changed route costs of vehicle k
CK-s - changed route costs of vehicle (K-s)
CK - total change of route cost
f - fixed cost of a vehicle

Figure 4 – Flowchart of the improvement phase

Table 2 – Factors and Levels

Factors Levels

# of customers (N) 10, 15, 20, 50, 100

Demand U[1,8], U[1,16], U[4,12]

Fixed cost USD 200, USD 400
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solved to optimality using the base model, whereas 
10-customer instances could be solved for other ex-
tensions. 

Table 3 presents computational results for the base 
model, where each row represents ten instances of 
the same setting. Due to dominant fixed costs of ve-
hicles as compared to fuel cost, optimal solutions try 
to keep the number of vehicles used at the minimum 
feasible number. The lowest average objective values 
belong to the U[1,8] setting, since the highest number 
of orders can be loaded onto the same vehicle. The 
numbers of vehicles for U[1,16] and U[4,12] settings 
are similar. U[1,16] has a higher variance; some vehi-
cles can carry orders of many customers while  some 
visit only one customer, increasing the routing cost. 
Hence, U[1,16] instances yield higher objective values. 
As expected, low-demand-low-variance setting (U[1,8]) 
has significantly higher computation times. Since ve-
hicles can carry many orders, an increased number of 
assignment combinations increases CPU times in this 
setting. Following the reverse reasoning, U[4,12] yields 
the fastest solutions. The combinatorial nature of the 
problem prevails as the number of customers increas-
es, and the instances cannot be solved in reasonable 
times for more than 20 customers. The suggested 
heuristic algorithms, coded in C++ integrated with  

outcomes with integer parameters a and b, where a<b. 
One of the options which may occur is that the val-
ue of the demand generated from one of the demand 
levels is equal to the half capacity of a vehicle and 
the distribution range is low. This option is called low-
demand-low-variance setting. Considering demand 
value and distribution range, we can have two more 
options, high-demand-high-variance setting (U[1,16]) 
and high-demand-low-variance setting (U[4,12]). The 
fuel cost is assumed to be a=1.4 USD/km in all set-
tings, while the fixed cost of using a vehicle is set at 
one of two levels, either USD 200 or USD 400. For the 
number of vehicles, the total demand is divided by the 
vehicle capacity to yield the first level of the parame-
ter V. The second and third levels are taken as V+1 
and V+2. For the multiple-trip extension, a maximum 
of two trips is assumed per vehicle per day. In the 
case of the split delivery, a customer’s demand can 
be split among a maximum of two vehicles, and the 
splitting ratio is not less than 25%. The coordinates 
of customers are generated over a grid (-200000m, 
+200000m) divided into 16 equal zones. To reflect a 
realistic scatter considering the regional demand, 12 
low-density (HD) and 4 high-density (LD) zones are  
defined, where a single high-density zone can con-
tain up to 4 times more customers than a low-density 
one. The number of customers in a low-density zone 
is obtained through ( )

N
28 4 4 12$= +b l  and customer 

locations are assigned to zones according to their ca-
pacities. The depot is at the origin (0, 0), as shown in 
Figure 5. Euclidian distances are used.

Ten instances are generated from each setting, to-
taling to 300 instances. Hence, a total of 900 runs was 
made for three models. All runs are performed on a 
PC with Intel® Core™ i5-3360M CPU @ 2.80GHz and 
8.00 GB RAM. Up to 15-customer problems could be 

Table 3 – Base model results for N=10, 15

Avg. obj. Avg. CPU [s] Max CPU [s] Min CPU [s] Avg K Max K Min K
N10_D1-16_FC400 4203.27 0.79 1.34 0.56 7 9 5
N10_D1-16_FC200 2903.27 0.65 1.31 0.30 7 9 5
N15_D1-16_FC400 6064.13 254.15 691.38 26.92 10 11 7
N15_D1-16_FC200 4224.13 493.73 2456.03 14.28 10 11 7
N10_D1-8_FC400 2609.85 1.16 3.52 0.28 4 4 3
N10_D1-8_FC200 1889.85 1.07 2.24 0.28 4 4 3
N15_D1-8_FC400 3551.98 330.34 686.00 9.28 5 6 4
N15_D1-8_FC200 2591.98 524.34 1187.32 12.11 5 6 4
N10_D4-12_FC400 4128.67 1.44 2.73 0.79 7 8 5
N10_D4-12_FC200 2868.67 1.62 2.05 0.95 7 8 5
N15_D4-12_FC400 5826.20 316.57 982.94 10.13 9 11 8
N15_D4-12_FC200 4099.75 356.22 934.25 8.63 9 11 8

(-200000, 200000) (200000, 200000)

(-200000, -200000) (200000, -200000)

LD

LD

LD

LD

LD

LD HD

HD

LD

LD

LD

LD

LD

LD

HD

HD

(0,0)

Figure 5 – Zones and customers on the grid
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CPLEX within hours was not possible, let alone within 
5 minutes. For this reason, the gaps in Best LB Gap % 
column are computed for larger instances using only 
the best of LB1 and LB2 as the lower bound. It should 
be noted that much higher gaps are observed immedi-
ately after this threshold. The increased gaps between 
the heuristic and Best LB for the larger instances can 
therefore be attributed not to the decreased perfor-
mance of our heuristics for these instances but to the 
evident weakness of LB1 and LB2 as compared to 
LB3. 

To better reveal this effect, a third column, LB Gap 
%, is added for each variant, which presents percent-
age gaps between heuristic solutions and the best 
of LB1 and LB2. In other words, this column lists the  

Visual Studio Express, obtained solutions much faster. 
Solution quality performance of heuristics is shown in 
Table 4 for all 300 instances for each model. 

Best UB gaps are computed as percentage gaps 
between optimal and heuristic solutions when optimal 
solutions are obtained. For the rest, lower bounds are 
used for comparison. Best LB gap % columns present 
the gaps between optimal solution and the best low-
er bound. In our computations, we observed that LB3 
consistently dominated the other two lower bounds for 
all three models when it could be computed. There-
fore, Best LB Gap % column lists the percentage gaps 
between the heuristic solutions and LB3 for 10-node 
and 15-node instances for the base model. However, 
for larger instances, obtaining a feasible solution from 

Table 4 – Performances of heuristics

Basic model Multiple-trip model Split-delivery model

  BEST LB 
GAP [%]

BEST UB 
GAP [%]

LB GAP 
[%]

BEST LB 
GAP [%]

BEST UB 
GAP [%]

LB GAP 
[%]

BEST LB 
GAP [%]

BEST UB 
GAP [%]

LB GAP 
[%]

N10_D1-16_FC400 0.00 0.00 15.98  0.00 0.00 23.99   2.19 1.21 13.97
N10_D1-16_FC200 0.00 0.00 23.09  0.00 0.00 31.17  3.06 1.01 21.46
N10_D1-8_FC400 0.00 0.00 20.65  0.00 0.32 37.96   0.00 0.22 22.41
N10_D1-8_FC200 0.00 0.00 31.31  0.00 0.40 40.86   0.00 0.31 34.01
N10_D4-12_FC400 0.00 0.00 21.14  0.00 0.62 27.88  6.59 1.50 13.82
N10_D4-12_FC200 0.00 0.00 28.99  0.00 0.80 35.27  4.77 1.45 21.23
N15_D1-16_FC400 0.00 0.00 22.58   8.26 31.66   17.14 19.94
N15_D1-16_FC200 0.27 0.00 31.00   8.98 40.93   23.34 29.25
N15_D1-8_FC400 0.08 0.14 20.39   13.47 38.41   14.02 23.44
N15_D1-8_FC200  0.18 0.52 30.66   11.02 28.45   19.24 36.73
N15_D4-12_FC400  0.07 0.00 25.84 14.41 33.39   14.03 17.87
N15_D4-12_FC200  0.00 0.00 35.10 20.69 44.48 23.42 29.31
N20_D1-16_FC400   10.40 21.84 9.80 13.86 17.66 18.66
N20_D1-16_FC200   12.36 29.39 15.66 23.68 25.95 27.60
N20_D1-8_FC400   16.95 24.95 25.07 27.15 19.86 24.16
N20_D1-8_FC200   24.91 36.86 34.97 39.59 30.37 36.45
N20_D4-12_FC400   14.42 27.17   19.46 19.84 19.38 19.63
N20_D4-12_FC200 17.86 35.66   27.01 31.87   29.31 29.81
N50_D1-16_FC400 25.73     37.67     24.33  
N50_D1-16_FC200 36.41     42.58     34.41  
N50_D1-8_FC400 38.14     71.98     38.19  
N50_D1-8_FC200 56.00     70.47     50.80  
N50_D4-12_FC400 30.71     36.80     25.62  
N50_D4-12_FC200 43.02     48.40     35.95  
N100_D1-16_FC400 29.13     40.74     28.28  
N100_D1-16_FC200 42.07     52.16     39.99  
N100_D1-8_FC400 45.59     76.72     44.08  
N100_D1-8_FC200 66.84     86.63     62.26  
N100_D4-12_FC400 29.56     43.56     30.48  
N100_D4-12_FC200   47.94     56.89     44.46  
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To illustrate the cost advantage of heuristic solu-
tions, Table 5 presents the percentage of improvement 
of multiple-trip and split-delivery objective values over 
the basic problem. 

It seems that the multiple-trip solutions can de-
crease the number of used vehicles considerably with-
out violating the 8-hour shift limit; the average savings 
over the basic problem reach up to 38% when the fixed 
cost is high. The split-delivery approach, on the other 
hand, tries to decrease routing cost by splitting cus-
tomer orders among vehicles, thereby resulting in rela-
tively small, but still valuable savings.

5.	 	CONCLUSION
In this study, we consider a vehicle routing problem 

with compartments under product incompatibility. A 
taxonomic framework was proposed for many variants 
of the VRP as a result of the extensive literature sur-
vey. In addition to the basic problem, the multiple-trip 
and split-delivery extensions are formulated. Since 
exact solutions could only be obtained for small in-
stances of the three variants, heuristic approaches are 
developed for solving practical larger instances of the 
problem. Simplistic lower bounds are also developed 
for comparison purposes. While the solutions with 
heuristics for small-size instances could be obtained 
in milliseconds, CPU time increased as the number of 
customers increased.

Our initial numerical tests show that the extensions 
bring considerable savings when compared with the 
basic model. The operational decision of performing 
multiple trips per vehicle substantially decreases the 
number of vehicle usage, and in turn, the total fixed 
cost. Although the split-delivery approach decreased 
the overall cost of the basic model, it was not found 
to be as effective as the multiple-trip approach. The 
results indicate that the heuristic approaches devel-
oped in this study may be adapted and used by various 
companies that are dealing with these types of prob-
lems and want good solutions computed effectively in 
reasonable computing times. 

percentage gaps when LB3 is not used. It can be clear-
ly seen that, in the absence of LB3, the gaps would 
get much worse, including for the smallest problem 
instances. 

The number of customers directly affects CPU time 
for the heuristics. Figure 6 shows the relation between 
the problem size and CPU times for the basic prob-
lem. U[1-8] setting for demand distribution has the 
highest CPU times, increasing parabolically after 50 
customers. The reason is that the improvement phase 
of the heuristic algorithm tries to combine customer 
demands while minimizing the number of vehicles 
used. Since many customer demands can fit into a ve-
hicle with low demand settings, finding a better route 
combination among the many customer locations in-
creases. As expected, a lower fixed cost yields higher 
computation times due to the trade-off between rout-
ing and vehicle costs. Multiple-trip and split-delivery 
variants have similar patterns in solution times. When 
it comes to multiple trips, the maximum solution time 
is observed to be 2292 s, while the average time (over 
all instances) is 1981. As might be expected, split  
delivery has the highest CPU times, going up to 3345 s 
for the largest instances, while averaging 2539 s over 
all instances. 
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Figure 6 – Average time performance of heuristics for the base problem

Table 5 – Savings over the basic model

Fixed cost 
[USD]

# of  
customers

Multiple-trip 
model

Split-delivery 
model

400

10 36.56% 2.61%

15 36.76% 3.74%

20 36.95% 3.96%

50 37.84% 4.54%

100 37.23% 4.79%

200

10 23.88% 2.41%

15 23.45% 2.61%

20 24.93% 2.80%

50 24.98% 3.43%

100 25.90% 3.83%
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Developing more sophisticated algorithms that can 
yield better results, including metaheuristics, is one of 
the future research directions. In such a case, it is im-
portant to keep in mind the quality-time trade-off for 
practical applications, as well as the applicability and 
ease-of-use of the solution approach by industry pro-
fessionals.
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ÜRÜN KARIŞMAMA KISITLARI ALTINDA ÇOK  
KOMPARTIMANLI ARAÇ ROTALAMA

ÖZET

Bu çalışma, bir aracın kompartmanlarında birbiriyle 
karışmaması gereken ürünleri içeren bir dağıtım problemine 
odaklanmıştır. Farklı müşteri taleplerini minimum lojistik 
maliyetiyle karşılamak için ürünler filodaki araçların farklı 
kompartmanlarında depolanır. Bu durum problemin Çok 
Kompartımanlı Araç Rotalama Problemi (ÇKARP) olarak 
modellenmesini gerektirir. Araç Rotalama Problemi (ARP) 
ve çeşitli varyantları hakkında geniş bir literatür olmasına 
rağmen, ÇKARP üzerine çok daha az araştırma bulunmak-
tadır. İlk olarak bu çalışmada ARP literatürü için yeni bir 
taksonomik çerçeve önerilmiştir.  Buna ek olarak, temel 
ÇKARP ile birlikte problemin çoklu sefer ve bölünebilir si-
pariş uzantıları için kesin çözümler elde etmek amacıyla 
yeni matematiksel modeller önerilmiştir. Son olarak, üç 
problem varyantının daha büyük örnekleri için sezgisel al-
goritmalar geliştirilmiştir. Geliştirilen sezgisel yöntemlerin 
performansını daha büyük problem örnekleri için optimum 
çözümlere karşı test etmek amacıyla bir alt sınırlama şeması 
da önerilmiştir. Hesaplamalı deneylerin sonuçları modellerin 
geçerliliğini ve algoritmaların gelecek vaat eden performan-
slarını göstererek raporlanmıştır.

ANAHTAR SÖZCÜKLER

Çok kompartımanlı araç rotalama problemi; karışamayan 
ürünler; bölünmüş dağıtım; çoklu sefer; matematiksel mo- 
delleme; sezgisel algoritmalar;
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