
ABSTRACT

Drinking-driving behaviors are important causes of road 
traffic injuries, which are serious threats to the lives and prop-
erty of traffic participants. Therefore, reducing the occurrenc-
es of drinking-driving behaviors has become an important 
problem of traffic safety research. Forty-eight male drivers 
and six female drivers who could drink moderate alcohol were 
chosen as participants. The drivers’ physiological data, opera-
tion behavior data, car running data, and driving environment 
data were collected by designing various virtual traffic scenes 
and organizing drivers to conduct driving simulation experi-
ments. The original variables were analyzed by the Principal 
Component Analysis (PCA), and seven principal components 
were extracted as the input vector of the Radial Basis Func-
tion (RBF) neural network. The principal component data was 
used to train and verify the RBF neural network. The Leven-
berg-Marquardt (LM) algorithm was chosen to train the pa-
rameters of the neural network and build a drinking-driving 
recognition model based on PCA and RBF neural network to 
realize an accurate recognition of drinking-driving behaviors. 
The test results showed that the drinking-driving recognition 
model based on PCA and RBF neural network could identify 
drinking drivers accurately during driving process with a rec-
ognition accuracy of 92.01%, and the operation efficiency of 
the model was high. The research can provide useful refer-
ence for prevention and treatment of drinking and driving and 
traffic safety maintenance.
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1. INTRODUCTION
With the development of the automobile industry, 

the world’s car ownership has risen sharply. Cars are 
convenient for people's livelihood, but they also bring 

serious traffic safety problems [1]. Statistics show that 
there were 104 production safety accidents in China 
during the period from January to February of 2016. 
Traffic accidents accounted for 61.54%, and the death 
toll percentage of traffic accidents was 58.61%, which 
was the highest death toll percentage among the vari-
ous accidents [2]. Drinking and driving is an important 
factor which increases traffic accident death rates re-
lated to young adults [3]. Thus, it has been a key issue 
in the traffic safety field to take effective measures to 
reduce or eliminate drinking and driving.

Many countries, including the United States, the 
United Kingdom, and China, have fully realized the 
urgency of drinking-driving governance currently, and 
have taken various methods to prevent drinking-driving 
behaviors, such as legislation, carrying out publicity, 
and education. The key to drinking-driving governance 
is whether to identify drinking-driving behaviors accu-
rately or not, and stop drinking and driving in time. The 
traditional passive drinking-driving recognition meth-
ods rely on traffic police and other law enforcement 
authorities to do alcohol tests by intercepting drivers. 
The passive drinking-driving recognition methods 
have not been adapted to current needs, because the 
number of cars has increased significantly. Thus, for 
drinking-driving prevention and traffic safety purposes, 
active drinking-driving recognition methods should be 
developed to identify drinking drivers automatically 
and accurately before or during the driving processes.

Some researchers studied several advanced ac-
tive drinking-driving recognition methods based on 
different techniques. In 2007, the alcohol key tech-
nique was first used by Svenska Aeroplan Aktiebolaget 
(SAAB) [4]. A miniature alcohol detection device was 
placed in the car key, and drivers had to complete 
the alcohol test by blowing into the car key before  
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behaviors. It has shown that the model can fuse the 
information of driver’s body, car, and the environment. 
In addition, it can recognize drinking-driving behaviors 
accurately and automatically at the same time during 
the driving process.

2. DRINKING-DRIVING RECOGNITION 
MODEL BASED ON PCA AND RBF 
NEURAL NETWORK
The design diagram of the drinking-driving recog-

nition model based on PCA and RBF neural network is 
shown in Figure 1.

Many original variables can be converted to sev-
eral uncorrelated principal components by PCA, and 
the major information of original variables can be pre-
served. Thus, PCA reduces the complexities of data 
analysis [15-16]. Multiple influencing variables of 
drinking-driving recognition were analyzed by PCA in 
order to improve the speed of network training. A vec-
tor consisting of obtained principal components was 
applied as the input vector of the RBF neural network. 
The PCA mathematical model is as follows: 

Z AV=  (1)

V=(v1,v2,...,vp) is the vector consisting p of original 
variables, which are driver’s body, car, and environ-
ment variables related to drinking-driving recognition. 
The data of V=(v1,v2,...,vp) are standardized data so 
the mean value is 0, and the standard deviation is 1. 
Z=(z1,z2,...,zi) consists of i principal components (i<p) 
and is the input vector of the RBF neural network; A is 
the principal component score coefficient matrix.

The RBF neural network includes three layers. The 
layers consist of neurons whose number is indefinite. 
The transformation function of hidden layer neurons is 
a radial basis function. The RBF neural network is the 
unity of the linear mapping and nonlinear mapping; 
the mappings between the input layer and hidden lay-
er are nonlinear, and the mappings between the hid-
den layer and output layer are linear. Thus, the RBF 
neural network has the advantages of fast learning 
and overcoming local minima [17]. 

In Figure 1, the input vector Z=(z1,z2,...,zi) of the RBF 
neural network is the result of PCA, which contains 
the most of driving behavior information. There is one 
input layer, one hidden layer, and one output layer. 
The number of input layer neurons is i (the number 
of principal components). Considering the speed and 
accuracy of the training, the number of hidden layer 
neurons is designed to be 12. The radial basis func-
tion is used as the activation function of hidden layer 
neurons. The input vector is mapped to hidden space 
directly, rather than through the connection based on 
weight value. The Gaussian function was chosen as 
the radial basis function, and the function formula is 
as follows:

starting cars. However, the method was easily dis-
missed for failing to determine whether alcohol-based 
gases were exhaled by drivers or not. In 2009, YC Wu 
used cameras to capture driver’s face images to com-
pare them with images of driver’s face in sober condi-
tion to determine whether the driver had been drinking 
or not [5]. However, this method was easily affected 
by environmental factors such as illumination, so its 
accuracy was poor. The driving state can be reflected 
by driving behaviors and continuity, and noninvasive-
ness of driving behavior data can provide new ideas 
on drinking-driving recognition methods. Therefore, 
drinking-driving recognition methods based on driving 
behaviors are an important aspect in studying active 
drinking-driving recognition methods [6-7]. In 2014, 
Xiaohua Z [8] obtained the data of drivers’ subjective 
feelings and driving behaviors under different blood 
alcohol concentration (BAC) levels using a driving sim-
ulator. The characteristics of the drinking-driving be-
haviors and car motion were analyzed based on the 
experimental data. Relevant data on average speed, 
speed standard deviation, and lane line position was 
analyzed, whereby standard deviation changed ob-
servably after drinking. Whether the drivers were in 
the drinking-driving state or not could be detected 
based on changes of the three variables.

Driving behavior factors influencing the recognition 
of drinking and driving are various, and there are com-
plex relationships among the various factors, so the 
nonlinear fitting capacity of the drinking-driving recog-
nition model should be high. The RBF neural network 
[9-11] is an adaptive dynamic system that is intercon-
nected by many neurons. It is a type of a multi-level 
neural network that converges faster. The non-linearity 
and high robustness of the RBF neural network makes 
it an effective tool for solving complex pattern recogni-
tion problems. However, the learning speed of the RBF 
neural network is strongly influenced by total input 
data, and PCA can reduce the amount of input data by 
reducing the dimensions of affected factors and the 
multi-collinearity between factors. Therefore, PCA and 
the RBF neural network model were used in this paper 
to achieve accurate recognition of drinking-driving be-
haviors. To simplify the RBF neural network and avoid 
long training and local minima, the LM algorithm [12-
14] was used to train the neural network, rather than 
the gradient descent method.

In this paper, the information collection system for 
the driver’s body, car, and the environment was used 
to gather the physiological data, operation behavior 
data, car running data, and driving environment data 
of drivers in human factor experiments and driving 
simulation experiments. Some variables influencing 
drinking-driving recognition were chosen to be ana-
lyzed by PCA, and a drinking-driving recognition model 
based on PCA and the RBF neural network was estab-
lished for automatic identification of drinking-driving 
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driving state value and expected driving state value. The  
sample data is used to train the RBF neural network 
until the desired error is met, and the drinking-driving 
recognition model is established.

3. DATA ACQUISITION AND CHOICES OF 
VARIABLES

3.1 Acquisition of experimental data

Participants
Given that male drivers are more likely to be drunk 

driving than female drivers, and young drivers are 
more impulsive and take more risks than older driv-
ers, we focused on young and male drivers. 54 drivers 
were selected as participants and numbered, 48 male 
drivers and 6 female drivers among them. Their aver-
age age was 27 years. The cumulative driving mileage 
was more than 50,000 kilometers, and the partici-
pants had driving experience and stable driving habits. 
All the participants were in good physical and mental 
condition, and they could drive manual cars masterly. 
They were able to handle alcohol and complete the ex-
periments after drinking.

Experimental apparatus
The experimental apparatus is shown in Figure 2, 

including the human factors experimental apparatus 
for gathering drivers’ physiological information, the 
driving simulator for producing virtual traffic scenes, 
car running and driving environments, and for obtain-
ing the drivers’ operation behavior data, as well as a 

expg Z C D Z C2
1

a a
a

a
2z = - = - -^ bh l  (2)

In Formula 2, za is output value of hidden layer neu-
rons (a); g(x) is Gaussian function; f  is Euclidean 
norm; Z=(z1,z2,...,zi) is input vector; Ca=(ca1,ca2,...,cai) is 
the central parameter vector of the Gaussian function 
of hidden layer neurons (a); Da=(da1,da2,...,dai) is vari-
ance vector of the Gaussian function of hidden layer 
neurons (a).

There are three neurons in the output layer, 
which represent three types of driving states. Out-
come Y=yj (j=1,2,3) is the output driving state value 
of the model, Y'=yj (j=1,2,3) is the expected driving 
state value, y1=(1,1,1) represents the normal driving 
state, y2=(0,0,1) represents the drinking-driving state 
(0.02%≤BAC≤0.08%), and y3=(0,0,0) represents the 
drunk driving state (BAC≥0.08%). The mapping be-
tween hidden layer and output layer is linear, the out-
put function of output layer neurons is as follows: 

y wb ba a
a 1

12
z=

=
/  (3)

In Formula 3, yb is the output value of the output 
neuron b; wba is the connection weight between the 
output neuron b and hidden neuron a; za is the output 
value of the hidden neuron a. 

The sample data spread forward along the neural 
network and reach the output layer through the pro-
cesses of all hidden neurons. In the end, three types 
of driving states can be obtained. The parameters of 
the RBF neural network are amended according to the 
method which can reduce the error between output 
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Figure 1 – Combination model framework of PCA and RBF neural network
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shift, distance from leading car) was obtained. All 
drivers were organized to perform driving simulation 
experiments six times under every driving state. The 
valid data obtained in one experiment of every driver 
under every driving state was one data set, so 54 ∙3 
∙ 6=972 data sets were obtained, which included plen-
ty of information on drivers’ physiology, cars, and driv-
ing environments. 

3D virtual driving scenes had been designed based 
on a driving simulator to provide realistic visual per-
ception, auditory perception, and tactile sensation for 
the drivers. The driving scenes were from a common 
urban road environment, including straightaways, left 
and right curves with radiuses of 800 meters, 400 me-
ters, and 200 meters, and crossroads. Traffic events 
including car-following and overtaking were set to mo-
tivate various driving operations. The design of the ex-
perimental road is shown in Figure 3.

3.2 Variable extractions

3.2.1 Variable selection

The influencing factors of drinking-driving recog-
nition are various. With reference to correlational re-
search [18-19], 18 common variables of driving be-
haviors had been selected, and the symbols and units 
of the variables are shown in Table 1. 

The definitions of the variables are as follows:

J n J1
m i

i

n

1
=

=
/  (4)

H n H1
m i

i

n

1
=

=
/  (5)

breathalyzer tester for identifying the driver’s BAC lev-
el. In addition, wine, purified water, and other materi-
als were also needed in the experiments. 

Human factors experimental apparatus

Driving simulator Breathalyzer tester

Figure 2 – Experimental apparatus

Experimental procedures
To exclude the influence of fatigue, drugs, and oth-

er impact factors, a time was selected to experiment 
in which the drivers were in good condition. Partici-
pants wearing the human factors experimental ap-
paratus were required to conduct driving simulation  
experiments in normal driving state A (BAC=0), drink-
ing-driving state B (BAC=0.03±0.01%), and drunk-driv-
ing state C (BAC=0.09±0.01%). All the data on par-
ticipant physiology (heart rate, dermal electric), cars 
(velocity, acceleration), and the environment (lane 
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Figure 3 – The experimental road
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In the above formulas: Ai is the acceleration value 
at the second i.

nR R1
m i

i

n

1
=

=
/  (15)

nR R R1
S i m

i

n
2

1
= -

=
^ h/  (16)

In the above formulas: Ri is the front wheel angle 
at the second i; Ri is 0 when the steering wheel is 
straightened; Ri is negative when the steering wheel 
is turned left; Ri is positive when the steering wheel is 
turned right; drivers’ steering wheel operation charac-
teristics can be reflected by the front wheel angle.

nL L1
m i

i

n

1
=

=
/  (17)

nL L L1
S i m

i

n
2

1
= -

=
^ h/  (18)

nB B1
m i

i

n

1
=

=
/  (19)

nB B B1
S i m

i

n
2

1
= -

=
^ h/  (20)

In the above formulas: Li is distance from the lead-
ing car to the second one in car-following scenes – the 
distance was measured from the front bumper of the 
experimental car to the tail bumper of the contiguous 
leading car; Bi is experimental car’s distance from the 
lane middle at the second i – the experimental car’s 
distance from the lane middle was measured from the 
right edge of the experimental car to the lane middle;  

In the above formulas: the dermal electric and 
heart rate values are gathered at every second; Ji is 
the dermal electric value at the second i; Hi is heart 
rate value at the second i.

T n T1
m i

i

n

1
=

=
/  (6)

In the above formula: Ti is the visual reaction time 
value at the second i, which is from the driver receiving 
visual stimuli to making action response.

F n F1
Um Ui

i

n

1
=

=
/  (7)
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U Ui

i
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=
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n
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i

n
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=
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In the above formulas: FUi is drivers’ accelerator 
pedal pressure value at the second i; FDi is drivers’ 
brake pedal pressure value at the second i; the pedal 
pressure value is normalized from 0 to 1 (the pressure 
value is 0 when drivers do not tread the pedal, and the 
pressure value is 1 when drivers tread pedals to the 
maximum).

nV V1
m i

i

n

1
=

=
/  (11)

V n V V1
S i m

i

n

1

2= -
=
^ h/  (12)

In the above formulas: velocities of experimental 
cars are gathered at every second; Vi is velocity at the 
second i.

Table 1 – Symbols and units of variables

Variable Symbol Units Variable Symbol Units

Mean value of dermal electric Jm μΩ Mean value of acceleration Am m/s2

Mean value of heart rate Hm bmp Standard deviation of acceleration AS m/s2

Mean value of visual reaction time Tm s Mean value of the front wheel angle Rm rad

Mean value of accelerator pedal 
pressure FUm N Standard deviation of the front wheel 

angle RS rad

Standard deviation of accelerator 
pedal pressure FUS N Mean value of distance from leading 

car Lm m

Mean value of brake pedal 
pressure FDm N Standard deviation of distance from 

leading car LS m

Standard deviation of brake pedal 
pressure FDS N Mean value of distance from the lane 

middle Bm m

Mean value of velocity Vm m/s Standard deviation of distance from 
the lane middle BS m

Standard deviation of velocity VS m/s Mean value of completing overtaking 
time Cm s
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3.3 PCA

SPSS was used to carry out the PCA for the 18 vari-
ables. KMO (Kaiser-Meyer-Olkin) was 0.61>0.5; the 
Bartlett spherical test rejected the original hypothesis 
of the unit correlation matrix, P<0.001, and the PCA 
conditions were met. The sample data of the 18 initial 
variables were normalized and analyzed by PCA. The 
scree plot is shown in Figure 4.

In the above figure, the eigenvalues of the first sev-
en components were higher, and the eigenvalues of 
the components behind the seventh component were 
smaller, so that the first seven components were se-
lected as the principal components based on the in-
flection points of the curve and eigenvalues.

The variance explanations and the cumulative con-
tribution rates of the principal components are shown 
in Table 3.

Bi is negative when the experimental car’s right edge 
is on the left side of the lane middle; Bi is positive 
when the experimental car’s right edge is on the right 
side of the lane middle. 

nC C1
m i

i

n

1
=

=
/  (21)

In the above formula: Ci is the overtaking comple-
tion time at the second i. The overtaking completion 
time was kept from the moment the experimental car 
began to accelerate to its return to the original lane.

According to a correlation analysis, the above 18 
variables were related to the driving state, and there 
were correlations between them. Therefore, their di-
mensions could be reduced by PCA to extract the 
principal components as the input vector of the RBF 
neural network which included major information on 
driving behaviors. The experimental data of driving be-
havior variables are partly shown in Table 2.

Table 2 – Partial experimental data of driving behavior variables

Time [s] Car 
label

Mileage 
[m]

Distance from the 
lane middle [m]

Velocity 
[km/h]

Front wheel 
angle [rad]

Brake pedal 
pressure [n]

Accelerator pedal 
pressure [n]

1 1 761.61 1.71 4.77 0 0.31 0.19

1 2 797.12 1.50

1 3 790.13 1.50

2 1 766.05 1.68 4.45 0 0 0.66

2 2 800.14 1.50

2 3 792.23 1.50

3 1 772.47 1.63 6.43 0 0 1

3 2 803.16 1.50

3 3 794.33 1.50

Notes: there were three cars in the virtual driving scenes, car labeled 1 represented the experimental car that was operated by 
participants, cars labeled 2 and 3 represented virtual cars controlled by computers, and virtual cars were at a fixed speed. The driving 
simulator collected data at every second, and the experimental data of this table was captured over 3 seconds.

Scree plot
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Figure 4 – Scree plot of each ingredient



Sun Y, Zhang J, Wang X, Wang Z, Yu J. Recognition Method of Drinking-driving Behaviors Based on PCA and RBF Neural Network

Promet – Traffic & Transportation, Vol. 30, 2018, No. 4, 407-417 413

4. MODEL TRAINING AND RECOGNITION 
RESULT ANALYSIS

4.1 Model training

The algorithm code was programmed in Matlab. 
The 972 experimental data groups were analyzed by 
PCA, and then 922 experimental data groups were 
extracted randomly as the training sample data. The 
training sample data was imported after normaliza-
tion into the RBF neural network to train the neural 
network. The remaining 50 experimental data groups 
were imported as the test sample data into the RBF 
neural network model which was trained completely; 
the output driving state values of the model were com-
pared with expected driving state values to verify the 
model accuracy. The process of model training and 
validation is shown in Figure 5.

According to Table 3, the cumulative contribution 
rates of the first seven principal components reached 
91.16%, including major information of the original 
variables. Therefore, these seven principal compo-
nents were chosen to compose the input vector of the 
RBF neural network. The formula of the principal com-
ponents is as follows:
z J H T F F F

F V V A A R
R L L A B C

i i m i m i m i Um i U i Dm

i DS i m i S i m i i m

i S i m i S i m i i m

S

S

S

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

m m m m m m

m m m m m m

m m m m m m

= + + + + + +
+ + + + + + +
+ + + + + +

 (22)

In the above formula: zi represents the principle 
component i(i =1,2,...,7) .

The score coefficients matrix of the principle 
components on each original parameter is shown in 
Table 4. The seven principle components’ data could 
be determined as the input sample data of the RBF 
neural network using the principal component formula 
and the original variables’ data.

Table 3 – The total variance explanations of the principal components

Principal  
component

Contribution 
rate [%]

Cumulative  
contribution rate [%]

Principal  
component

Contribution 
rate [%]

Cumulative  
contribution rate [%]

Z1 38.64 38.64 Z5 7.82 81.53
Z2 14.31 52.95 Z6 5.18 86.71
Z3 12.25 65.20 Z7 4.46 91.16
Z4 8.51 73.71

Table 4 – Score coefficients matrix of principle components

Components

Z1 Z2 Z3 Z4 Z5 Z6 Z7

m1 0.138 -0.011 0.026 -0.013 -0.091 0.094 -0.152

m2 0.122 0.110 0.102 0.012 -0.051 0.086 -0.285

m3 0.135 0.054 0.018 0.095 -0.065 0.042 0.016

m4 0.134 0.048 -0.017 0.011 -0.195 0.107 0.034

m5 -0.026 0.341 -0.059 -0.071 0.118 0.171 -0.178

m6 -0.101 -0.005 0.059 0.134 -0.033 0.601 0.173

m7 -0.009 0.122 0.259 -0.379 -0.109 -0.109 0.395

m8 -0.049 0.003 0.289 -0.069 0.386 0.159 -0.327

m9 0.053 0.061 0.097 0.105 0.456 -0.517 -0.012

m10 0.139 0.051 0.011 -0.006 0.039 0.100 -0.083

m11 0.070 -0.258 -0.003 -0.213 0.230 -0.078 0.145

m12 0.011 -0.328 0.041 -0.186 -0.101 0.034 0.016

m13 0.009 0.098 0.186 0.367 -0.058 -0.179 0.690

m14 -0.137 -0.040 -0.034 0.063 0.120 0.035 0.049

m15 0.055 -0.119 -0.294 0.297 0.169 0.010 0.105

m16 0.082 -0.003 -0.014 0.005 0.383 0.519 0.302

m17 -0.039 -0.102 0.227 0.377 -0.122 -0.051 -0.452

m18 -0.055 0.153 -0.315 -0.114 0.035 -0.159 -0.057
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In the above formula: , ,Y y i 1 2 3'
i= =^ h  is 

the modulus of expected driving state vector; 
, ,Y y i 1 2 3i= =^ h  is the modulus of model output 

driving state vector; N is the total number of test sam-
ple data groups.

The MSEs of the RBF neural network’s training, val-
idation, and testing are shown in Figure 6. According to 
Figure 6, there were 94 cycles of network training; the 
best MSE of validation was 0.032 at the eighty-eighth 
cycle; the model recognition error was small. 

Through calculation, the training time of RBF neu-
ral network was 1.17 seconds, the speed of model cal-
culation was relatively higher; the recognition accuracy 

To obtain better network output, the network was 
trained and the parameters were optimized by an LM 
algorithm. The LM algorithm is a nonlinear optimiza-
tion method which fuses the Newton method and gra-
dient descent method. This algorithm has the capabili-
ty of local convergence and global searching and uses 
approximate second derivative to improve the speed of 
network training. The parameter optimizing method of 
the LM algorithm [20] is as follows:

h h
h

h
J h J h I J h h

k k

T

1

1n dD
D= +

= - +

+

-^ ^ ^ ^h h h h6 @)  (23)

In the above formula: hk, hk +1 respectively repre-
sent the vectors composed by the weight values for 
the times k and k+1; Dh is the weight value increment.  
J(h) is Jacobian matrix; JT(h)J(h) is Hessian matrix; I 
is unit matrix. n(0<n<1) is learning rate; if n is high-
er, the LM algorithm is similar to the gradient descent 
method; if n=0, the LM algorithm is the Newton meth-
od. During the optimization procedure, n is a dynamic 
parameter. If a given n can reduce the error, n will de-
crease, otherwise it will increase.

4.2 Analyses of model recognition results 

The evaluation indicator of model recognition er-
rors (D) was mean square error (MSE), and the recog-
nition accuracy of the model could be obtained based 
on MSE. The MSE formula is as follows:
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5. DISCUSSION
The drinking-driving recognition model was estab-

lished based on the driving behavior data of drivers. 
The original variables were analyzed by PCA, and  
seven principal components were obtained. The prin-
cipal components were the characteristic parameters 
of drinking-driving behaviors, which were used as the 
input vector to train the RBF neural network and build 
the drinking-driving recognition model. This way, the 
drinking-driving behaviors could be recognized and 
prevented during the driving process.

The influencing parameters in past studies had 
not been very adequate, leading to less than compre-
hensive analyses. The model in this paper could im-
prove recognition accuracy by analyzing the drivers’ 
physiological data, operation behavior data, car run-
ning data, and driving environment data comprehen-
sively. The variables which influenced the recognition 
of drinking-driving behaviors the most were studied 
further. The driving behavior parameters’ differences 
among drivers with different BAC levels were studied 
through variance analysis. According to the results, 
four variables of drivers with different BAC levels 
showed significant differences: the mean value of ac-
celerator pedal pressure (F(2,51)=8.784, p<0.05), the 
mean value of velocity (F(2,51)=7.614, p<0.05), the 
standard deviation of acceleration (F(2,51)=8.153, 
p<0.05), and standard deviation of the front wheel 
angle (F(2,51)=5.452, p<0.05). The results of the vari-
ance analysis indicated that these four variables influ-
enced the recognition of drinking-driving behaviors the 
most.

was 92.01%, which indicated the recognition accuracy 
of the model was high and the model could recognize 
whether the driver had been drinking or not.

After preprocessing, the 50 test sample data 
groups were imported into the trained RBF neural net-
work model to obtain the model output driving state 
vector. To verify the accuracy of the drinking-driving 
recognition model based on PCA and the RBF neu-
ral network, the moduli of model output driving state  
vectors , ,Y y i 1 2 3i= =^ h  were compared 
to the moduli of expected driving state vectors 

, , .Y y i 1 2 3'
i= =^ h  A comparison of model output 

driving state vectors with expected driving state vec-
tors is shown in Figure 7.

In Figure 7, there were only four test sample data 
groups whose output driving state values did not meet 
expected driving state values. This means that the 
model output driving states were closely related to the 
expected driving states, and the fitting degree of the 
model was good.

Based on Figure 6, a consequence could be ob-
served that the best MSE of the validation was 0.032, 
which indicates that there were small errors between 
the model output driving states and the actual driving 
states. In addition, according to Figure 7, most sample 
data could be recognized correctly by the proposed 
model, for there were only four data groups out of fifty 
getting the wrong outcomes. It can be concluded that 
the drinking-driving recognition model based on PCA 
and RBF neural network was able to accurately and 
efficiently identify whether the drivers had been drink-
ing or not.
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基于PCA与RBF神经网络的酒驾行为识别方法

摘要

酒驾行为是造成道路交通伤害的重要原因，严重威胁
交通参与者的生命财产安全，因此，减少酒驾行为的发生
成为交通安全研究的重要问题。选取能饮用适量酒精的
48位男性驾驶员和6位女性驾驶员作为实验参与者。通过
设计各种虚拟交通场景，组织驾驶员进行驾驶模拟实验，
采集驾驶员的生理、操作行为、车辆运行及行驶环境数
据。采用主成分分析(PCA)处理原始变量，将获得的7个主
成分作为径向基函数(RBF)神经网络的输入向量，利用主
成分的数据来训练和验证RBF神经网络。选择LM（Leven-
berg-Marquardt）算法训练网络参数，构建基于PCA和RBF
神经网络的酒驾识别模型，实现对酒后驾驶行为的准确识
别。测试结果表明，基于PCA和RBF神经网络的酒驾识别
模型能在驾驶过程中准确识别饮酒驾驶员，识别准确率为
92.01%，模型的运算效率较高。该研究可为防治酒后驾
驶，维护交通安全提供了有益借鉴。

关键词：

交通安全；酒后驾驶行为；识别方法；主成分分析；径向
基函数神经网络
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