
ABSTRACT

Departure time choice is critical for subway passen-
gers to avoid congestion during morning peak hours. In this 
study, we propose a Bayesian network (BN) model to capture 
departure time choice based on data learning. Factors such 
as travel time saving, crowding, subway fare, and departure 
time change are considered in this model. K2 algorithm is 
then employed to learn the BN structure, and maximum like-
lihood estimation (MLE) is adopted to estimate model pa-
rameters, according to the data obtained by a stated prefer-
ence (SP) survey. A real-world case study of Beijing subway is 
illustrated, which proves that the proposed model has higher 
prediction accuracy than typical discrete choice models. An-
other key finding indicates that subway fare discount higher 
than 20% will motivate some passengers to depart 15 to 20 
minutes earlier and release the pressure of crowding during 
morning peak hours.
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1. INTRODUCTION
Passenger congestion causes a safety hazard 

during morning peak hours in subway stations. Capac-
ity improvement is indeed an effective way to solve the 
problem; however, it is an impossible task at present 
because of its long construction period, high cost, and 
physical restrictions of stations [1]. A new method of 
analyzing departure time choice behavior and adjust-
ing the attributes such as travel time and travel cost to 
guide travelers to change their departure time is put 
forward, aiming to decrease the total volume of travel 
demand during peak hours [2-3]. 

There are three conventional theories to model 
travel choice behaviors: expected utility theory, pros-
pect theory, and regret theory [2-10]. For departure 
time choice, the expected utility theory has been  

successfully adopted together with a discrete choice 
model, including multinomial logit (MNL) [3-4], nested 
logit (NL) [5], mixed logit (ML) [6-7], and probit models 
[8]. Bajwa [5] studied the departure time choice of car 
and rail commuters using NL, cross-nested logit, and 
ML models. Thorhauge et al. [3] analyzed the depar-
ture time choice of drivers and public transport com-
muters using the structural equation model and MNL, 
which suggested that fixed start time of work had a 
strong effect on departure time choice. Unfortunately, 
these models cannot address the nonlinear feature of 
departure time choice in subways in a quality manner.

The Bayesian network (BN), different from the dis-
crete choice model with linear constraints, is a new 
approach to model travel choice behavior [11-14]. One 
of its major advantages is the intuitive and graphical 
representation of the causal relationships between 
data, which allows for better understanding [12]. Zhu 
et al. [11] proposed a mixed BN to model departure 
time and mode choice behavior of car users, which 
performed better than the NL model. Nozick et al. [13] 
developed a BN model for the travel mode choice prob-
lem, which identified key factors that influenced travel 
decision behaviors, such as underlying socioeconom-
ic attributes and level of service. Nonetheless, there 
are not yet enough studies focusing on departure time 
choice by BN.

The aim of this paper is to develop a BN method to 
model departure time choice of subway passengers. 
We first conducted a D-optimal design SP survey and 
collected enough valid data to estimate the proposed 
BN model. Then, the K2 algorithm was employed to 
learn the model structure, and MLE was adopted to 
obtain its parameters from this data. Further, two 
different structures of BN are proposed to verify our 
method from the point of prediction accuracy, com-
pared with discrete choice models. 
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volume is high and passenger flow control measures 
are taken during peak hours. According to the survey 
result as shown in Table 1, we have:
1) If passengers choose usual departure time during 

peak hours, they will face serious crowding and 
long travel time.

2) If they choose earlier or later departure times, they 
may enjoy some travel time saving, as well as less 
crowding while having to afford another time cost. 
Several trip-related attributes were investigated 

from a sample of 180 passengers using the Likert 
scale. Then, subway fare, crowding, travel time saving, 
and departure time change were selected as attri-
butes of the stated choice (SC) experiment using the 
TOPSIS (technique for order preference by similarity 
to ideal solutions) method, and SC experiment was 
optimized using the D-optimal method [15]. Twelve 
choice sets were then generated, and one is shown in 
Figure 1, where respondents were required to choose 
their preferred departure time according to scenarios 
of subway fare, travel time saving, and crowding.

This paper is organized as follows: Section 2 pres-
ents a brief introduction of BN; Section 3 provides a 
new BN approach that models departure time choice 
of subway passengers, where algorithms to determine 
model structure and parameters are also developed. A 
discussion on preferences of subway passengers un-
der different attribute levels is provided in Section 4. 
Conclusions are drawn in Section 5, as well as future 
research directions.

2. DEPARTURE TIME CHOICE DATA 
COLLECTION

2.1 SP survey design

To collect the departure time choice data, we de-
signed a SP survey. A passenger flow survey of Beijing 
Subway was first conducted to identify the factors of 
departure time choice and their relations from 6:30 am 
to 9:00 am during April to June 2015, involving more 
than 30 subway stations where inbound passenger  

Table 1 - Results of passenger flow survey in Beijing Subway

Period Travel time cost Crowding 
(in the most serious scenario)

Crowding 
(in the least serious scenario)

Peak hours
(lasting for
30~50 minutes)

It will cost extra 5~10 
minutes because of 
passenger flow control  
and a large number  
of passengers.

More than 20 passengers in a 
queue in front of a train door. 

6~10 passengers in a queue in 
front of a train door.

Off-peak hours

It will save 5~10 minutes 
because of decrease 
passengers flow and save 
travel time about 10%~20%.

6~10 passengers in a queue in 
front of a train door. 

Less than 5 passengers in a 
queue in front of a train door. 

Note: Average travel time is 52 minutes according to the statistics of Beijing Subway.

Choice Subway fare Travel time saving Crowding

Full fare

30% discount

20% discount

Usual departure 
time

Departure 20 min 
earlier than usual

Departure 20 min 
later than usual

20% less

10% less

10~20 passengers
in a queue at train 
doors.

6~10 passengers
in a queue at train 
doors.

No more than 5
passengers in a 
queue at train 
doors.

Figure 1 – A scenario choice set in the survey questionnaire
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variables are learned through the K2 algorithm [16]. 
The BN parameters are estimated by the MLE method 
to calculate the conditional probability distribution.

Data collection

BN structure learning K2 algorithm

Maximum likelihood 
estimation

BN parameter learning

BN models

Figure 4 – Flowchart of BN model specification

3.1 BN structure learning

Five nodes are assumed to be independent and 
created in the BN structure according to the variables 
mentioned in Section 2.2. The departure time choice 
node is the final node, and the other four nodes are 
randomly ranked. Because the node sequence de-
termines the BN structure, we propose two typical  
sequences for the sake of simplicity: (1) [X1, X2, X3, 
X14, X5], and (2) [X2, X3, X4, X1, X5]. The two associ-
ated models are denoted by BN_ONE and BN_TWO, 
respectively.

2.2 Data collection and variables definition 

The proposed SP survey was conducted in several 
Beijing subway stations where passenger flow control 
measures were taken between 7:00 am and 9:00 am 
from November 2016 to May 2017. The data from a 
total of 1,860 passengers was collected on weekdays. 
To verify our sample, we also considered passenger 
socioeconomic attributes in the survey. Compared 
with the 2010 census data, there are similar distribu-
tions of gender and age, as shown in Figure 2, which 
proves that the survey data is representative. A sum-
mary of departure time choice is illustrated in Figure 3. 
It reveals passenger willingness to depart earlier, later, 
or as usual when confronted with fare discount, travel 
time saving, and less crowding.

The variables of departure time choice are shown 
in Table 2, and how to model the relationship among 
these factors will be discussed in the following sec-
tions. Note that the code column includes the alterna-
tive values of variables.

3. DEPARTURE TIME CHOICE MODELING VIA 
BAYESIAN NETWORK
The modeling process of departure time choice 

via BN is given as shown in Figure 4. Enough sample 
data should be first collected by the survey, as shown 
in Section 2. Then, the relationships between these  
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Figure 2 – Socioeconomic variable distribution

Figure 3 – Distribution of departure time choices
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Table 2 – Variables description

Variables Description Code

Departure time change (X1)

Departure 25 minutes earlier 3

Departure 20 minutes earlier 2

Departure 15 minutes earlier 1

Usual departure time 0

Departure 15 minutes later -1

Departure 20 minutes later -2

Departure 25 minutes later -3

Subway fare (X2)

Full fare 1

10% discount 2

20% discount 3

30% discount 4

Travel time saving (X3)

0% 1

10% 2

15% 3

20% 4

Crowding (X4)

No more than 5 passengers in 
a queue in front of a train 
door.

1

6~10 passengers in a queue 
in front of a train door. 2

11~20 passengers in a queue 
in front of a train door. 3

More than 20 passengers in a 
queue in front of a train door. 4

Departure time choice (X5)

Usual departure time 1

Departure earlier than usual 2

Departure later than usual 3
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One of the CPTs P(X5=1| X4=1, X2, X1) for node X5 
in BN_ONE is given in Table 3. Taking P(X5=1|X4=1, 
X2=2, X1=3) for example, the probability of choosing 
to depart at usual time is 0.6774 under the conditions 
of first level of crowding, 25 minutes earlier than usual 
and 10% discount on fare.

Based on the CPTs, the joint probability distribution 
of decision node in BN_ONE model is computed as fol-
lows:

, , ,

,
, ,

P X x X x X x X x
P X x P X x X x
P X x X x X x
P X x X x X x X x4

1 1 2 2 4 4 5 5

1 1 2 2 1 1
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^
^
^
^

^h
h
h
h

h
 (1)

Then, the joint probability distribution between X5  
and X1, X2, X4 is given using junction tree algorithm 
[19] respectively, as follows:

,
, , ,

P X x X x
P X x X x X x X x

x Xx X

5 5 1 1

5 5 1 1 2 2 4 4
4 42 2

= =
= =
=

= = =
!!

^
^
h

h//  (2)

The results of the BN structure are obtained by 
the K2 algorithm using the BNT toolbox [17], shown in 
Figure 5 and Figure 6, respectively. Note that the result 
of BN_ONE indicates that X5 is dependent on X1 and  
X2 in both BN models, which indicates that departure 
time change and subway fare are two important fac-
tors to decide the departure time choice. In addition, 
X5 is directly related to X4, unlike in BN_TWO. That is, 
the structure of BN_ONE considers crowding as a more 
important factor of departure time choice. Also, X5 is 
independent of X3 in both BN models, which suggests 
that travel time saving has less impact on departure 
time choice than the other three factors. 

3.2 BN parameter learning

MLE is employed to calculate the conditional prob-
ability distribution according to the BN structure. Be-
cause all variables are discrete, the conditional prob-
ability distribution can be expressed as conditional 
probability tables (CPT). 

Subway fare (X2)

Crowding (X4)

Departure time
change (X1)

Departure time
choice (X5)

Travel time
saving (X3)

Figure 5 – Structure learning result of BN_ONE

Subway fare (X2)

Crowding (X4)

Departure time
change (X1)

Departure time
choice (X5)

Travel time
saving (X3)

Figure 6 – Structure learning result of BN_TWO
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BN_ONE performs better than BN_TWO, which shows 
that the structure of the BN model greatly determines 
its performance.

False positive rate

MNL
BN_ONE
BN_TWO
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Figure 7 – ROC curve of MNL BN_ONE and BN_TWO

4.2 Analysis of influence on departure time 
choice

Different from the linear utility function of the dis-
crete choice model, the relationships between two 
variables can be explained by joint probability in the 
BN model. Because of its better performance, BN_
ONE is employed to analyze the factors of departure 
time choice.

The joint probability distribution for departure time 
choice and departure time change is illustrated in 
Figure 8, and three points are concluded as follows. 
First, higher probability of choosing usual or earlier de-
parture time can be seen with scenarios of departing 
15~25 minutes later (blue, red, and green bars), which 
indicates strong willingness of subway passengers  
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4. RESULT ANALYSIS

4.1 Comparison with other models

To verify the prediction accuracy of the BN models, 
MNL is developed based on additional observations, 
and the parameter estimation of travel time saving, 
crowding, scheduled delay early (SDE), scheduled 
delay late (SDL), and subway fare in MNL is given in 
Table 4. 

Receiver operating characteristic (ROC) curve is 
introduced to measure the accuracy, whose key index-
es (i.e., false positive rate (FPR) and true positive rate 
(TPR)) are defined as follows:

TPR True positive
True positive

False negative= +  (5)

PR False positive True negative
False positive

F = +  (6)

The ROC curve is illustrated in Figure 7, where the 
area under the curve (AUC) ranges from 0.5 to 1. Spe-
cifically, the values of AUC are 0.7480, 0.8203, and 
0.8012 for MNL, BN_ONE, and BN_TWO, respective-
ly. The criteria of AUC are displayed in Table 5, and it 
shows that the three models are accurate in predic-
tion. Usually, a higher AUC value indicates a more accu-
rate prediction. Therefore, BN_ONE and BN_TWO have 
more reliable prediction accuracy than MNL. Further, 

Table 4 – MNL parameter estimation 

Parameters MNL T-statistics
bTS -0.0461 -0.74
bCROWD -1.1621 -13.26
bSDE -1.4228 -20.97
bSDL -3.2025 -21.09
bFARE -1.0396 -19.30

Note: SDE=max (ususl departure time - early departure time, (0); 
          SDL=max (late departure time - usual departure time (0).

Table 5 – Criteria of AUC

AUC Criteria
0.9~1 Excellent

0.7~0.9 Accurate
0.5~0.7 Less accurate

<0.5 Inaccurate

Table 3 – CPT for node X5 in BN_ONE

X4=1

                           X2
     X1

1 2 3 4

3 0.0000 0.6774 0.9871 0.0000 
2 0.0000 0.0000 0.0000 0.0000 
1 0.0000 0.0645 0.0000 0.0000 
0 0.0000 0.0000 0.0000 0.0000 

-1 0.6774 0.0000 0.0097 0.0000 
-2 0.0000 0.0516 0.8000 0.0000 
-3 0.0000 0.0000 0.0000 0.0000 
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depart earlier. Second, if passengers enjoy a 10% 
or lower discount on subway fare, the probability of 
choosing to depart earlier decreases (green and pur-
ple bars), which reveals that less than 10% discount is 
not attractive. Hence, a fare discount deeper than 20% 
before peak hours will motivate passengers to depart 
earlier, and trip cost has been proven as an important 
factor for departure time choice behaviors [18]. 

As for crowding shown in Figure 10, two points are 
concluded as follows. First, if passengers are faced 
with a scenario with the first level of crowding, an in-
crease of the probability of choosing to depart earlier 
by about 5.0% (blue bar) is observed. If passengers 
are faced with the second level of crowding, the prob-
ability for choosing to depart at usual time increases 
by about 6.6% (red bar). These are due to the fact that 
less crowding means getting a chance to have a seat 
[19]. Second, if the crowding becomes serious, about 
10.0% increase of probability (green and purple bar) 
for choosing earlier departure time is observed, which 
reveals that serious crowding has an influence on  

to avoid schedule delay [2]. Secondly, if passengers 
are faced with a scenario of departing 25 minutes ear-
ly, the probability of choosing early departure time will 
decrease to 0.4% (grey bar), which reveals that pas-
sengers are unwilling to afford extra time cost to de-
part early. Thirdly, if departure time change is 20 min-
utes or less, an increase of probability of about 5% for 
choosing to depart early is observed, which indicates 
that more passengers will change their departure 
time by less than 20 minutes. Therefore, motivating 
passengers to depart early no more than 20 minutes 
before peak hours is more feasible against departing 
late.

Regarding subway fare as shown in Figure 9, two 
points are summarized as follows. First, if passen-
gers are faced with a 30% discount, an increase of  
probability of about 13.7% (blue bar) for choosing ear-
lier departure time is observed. And if passengers are 
faced with a 20% discount, an increase of probability 
of about 9.5% (red bar) is observed, which indicates 
that higher  fare discount will attract passengers to  

30%
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Departure earlier 

than usual
Departure later 

than usual
Departure at
usual time
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Figure 8 – Joint probability distribution of departure time choice and departure time change
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30% discount

20% discount
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Figure 9 – Joint probability distribution of departure time choice and subway fare
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Figure 10 - Joint probability distribution of departure time choice and crowding
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基于贝叶斯网络的出行时间选择建模-以北京地铁
为例

摘要

出行时间选择对于地铁乘客避开高峰时段拥堵至关重
要，本文提出了一种基于贝叶斯网络的出行时间选择模型
构建方法。首先，模型考虑了旅行时间节省、拥挤度、地
铁票价和出行时间调整量四个因素；进而结合收集的SP
调查数据，采用K2算法进行贝叶斯网络的结构学习，并
利用极大似然估计进行参数学习；最后，以北京地铁为案
例，验证了本文提出的贝叶斯网络模型比典型的离散选择
模型具有更高的预测精度；并对票价的敏感性进行了分
析，进一步为地铁管理者提供了客流组织建议：八折及
以上的票价优惠将有利于促使乘客提前15~20分钟提前出

行，以减缓早高峰的车站拥堵压力。

关键词

出行时间选择；贝叶斯网络；拥堵；地铁乘客
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