
ABSTRACT

Safety is the key point of railway transportation, and rail-
way traffic accident prediction is the main content of safety 
management. There are complex nonlinear relationships 
between an accident and its relevant indexes. For this rea-
son, triangular gray relational analysis (TGRA) is used for 
obtaining the indexes related to the accident and the deep 
auto-encoder (DAE) for finding out the complex relationships 
between them and then predicting the accident. In addition, 
a nonlinear weight changing particle swarm optimization al-
gorithm, which has better convergence and global searching 
ability, is proposed to obtain better DAE structure and param-
eters, including the number of hidden layers, the number of 
neurons at each hidden layer and learning rates. The model 
was used to forecast railway traffic accidents at Shenyang 
Railway Bureau, Guangzhou Railway Corporation, and Nan-
chang Railway Bureau. The results of the experiments show 
that the proposed model achieves the best performance for 
predicting railway traffic accidents.
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1. INTRODUCTION
An accident affecting normal train operation is 

called a railway traffic accident, such as conflict, derail-
ment, fire, or explosion. Railway is the main artery of 
Chinese economy related to production development, 
standard of living, and social welfare. It occupies a 
very important position in Chinese transportation 
systems. Given that railway transportation is charac-
terized by high speed, high density, and heavy loads, 
traffic security is facing new demands and challenges. 
Transportation enterprises must compensate for loss-
es incurred when goods are lost, short, deteriorated, 
contaminated, or damaged [1]. Accurate prediction 
of railway traffic accidents plays a crucial role in rail-
way safety warning systems and reduces the losses of 
transportation enterprises.

Generally speaking, three kinds of accident predic-
tion methods have been frequently used in accident 
safety analysis: fault tree analysis, Petri nets, and 
Bayesian network. However, these methods analyze 
the accident in the local view, focusing on point-to-
point or part-to-part analysis, which are insufficient for 
complicated railway accidents [2]. MA [2] proposed 
the use of complex networks to deal with the relation-
ships between factors causing railway accidents. The 
accident safety analysis methods mentioned above 
only focus on analyzing the relationships between the 
causes and accidents or among the causes. Therefore, 
the number of railway accidents cannot be predicted 
well by these methods. Besides, these methods are 
too complex.

At present, there are few studies on railway traffic 
accident prediction, and research is often concentrat-
ed on analyzing accidents in railway and road intersec-
tions [3][4][5][6]. In addition, there are also studies 
focused on analyzing high-speed railway accidents. 
Wen [7] analyzed train operation conflict prediction in 
terms of high-speed railway safety. Studies on railway 
traffic accidents at ordinary speed are scarce, despite 
the necessity of railway traffic accident prediction.

Many models have been used for prediction: linear 
regression, the time series method [8], gray system 
theory [9][10], support vector machine [11][12], sys-
tem dynamics [13], and artificial neural network [14]
[15][16]. There are complicated nonlinear relation-
ships between the accident and the influencing fac-
tors, meaning that linear regression does not predict 
accidents accurately. The time series method is good 
at predicting series with regularity, whereas accidents 
are uncertain and unexpected, and this method is not 
suitable for accident prediction. The gray system theo-
ry is simple, computes fast, and it can present a good 
result for short-term forecasting, but it is not ideal for 
the fluctuation system. The support vector machine 
features good nonlinear mapping, which transforms 
high-dimensional data into low-dimensional data, but 
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pre-training and the learning rate of back-propagation 
algorithm during fine-tuning. (iii) In order to find the 
appropriate number of layers and neurons of hidden 
layers quickly, IPSO is proposed, which features good 
global search ability and fast convergence speed. At 
Shenyang Railway Bureau, Guangzhou Railway Corpo-
ration, and Nanchang Railway Bureau traffic accidents 
are forecast through IPSO-DAE. Additionally, triangular 
gray relational analysis (TGRA) [24] is applied to find 
the indexes related to railway traffic accidents.

The remainder of the paper is organized as follows. 
Section 2 briefly describes the methods this paper has 
used, including IPSO. DAE and experimental procedure 
are described in Section 3. Section 4 reports and dis-
cusses the empirical results, followed by conclusions 
in Section 5.

2. METHODS AND MODEL

2.1 Nonlinear weight-changing particle swarm 
optimization algorithm

Particle swarm optimization (PSO) is a heuristic 
algorithm. The PSO algorithm first randomly initializes 
the position and velocity of a random population of 
particles. Each particle i is defined by its position vec-
tors  Xi

t in the space of the parameters to be optimized 
and by a random velocity Vi

t. In the following iteration, 
the particle moves according to its velocity and is eval-
uated according to the fitness function f(X), which is 
related to the problem to be optimized. The value of 
the fitness function is compared with the best previ-
ously obtained value. The best value ever obtained 
for each particle is stored as pbesti, which is actually 
the personal optimum searching, and the best value 
among all pbesti is stored as gbest, which is actually the 
global optimum searching. The velocity of the particle 
is then updated by:

V w V c rand pbest X c rand gbest Xi
t

i
t

i i
t

i
t1

1 2$ $ $ $ $= + - + -+ ^ ^h h  (1)

X X Vi
t

i
t

i
t1 1= ++ +  (2)

where w is the inertia weight; rand generates a ran-
dom number between 0 and 1; c1, c2 are the velocity 
coefficients.

According to Equation 1, it is well established that   
w controls the convergence and exploration ability ef-
fectively. Equation 1 actually determines that the par-
ticle velocity changes in a linear way. It has two prob-
lems: (i) if particle swarm searches optimum value at 
the beginning, it is hoped to converge to global opti-
mum quickly, but invariant w decreases the conver-
gence speed of the algorithm; (ii) in late operation of 
the algorithm, invariant w leads to the decline of local 
search ability and decrease of particle diversity. There-
fore, two ways are proposed to improve them:

this method is difficult to implement for large-scale 
training samples, and it is not suitable for problems 
of multiple classification. System dynamics can be 
used to analyze qualitatively and quantitatively the re-
lationship among the factors in the system and reflect 
the actual situation. However, it is heavily dependent 
on builder’s understanding of the system movement 
mechanism. Artificial neural network is character-
ized by good self-adaptability, self-organization, and 
self-learning, which overcomes the shortcomings of 
other forecasting methods in solving nonlinear, uncer-
tain, and time-varying systems, and makes the fore-
cast more accurate.

While artificial neural networks are still being im-
proved, they are suitable for various tasks. Back-prop-
agation neural network (BPNN) is one of the most 
maturely studied neural network algorithms. It has 
good self-learning, self-adaptation, robustness, and 
generalization capacities. However, the back-propa-
gation algorithm has some disadvantages, such as 
poor rate of convergence, and getting stuck in local 
minimum easily. Furthermore, the back-propagation 
algorithm is based on the gradient information of er-
ror function. When problems are complex, or the gra-
dient information is hard to obtain, it may be helpless 
[17]. In order to solve these downsides, Hinton et al. 
improved the previous shallow structure of neural net-
work and put forward the concept of deep learning and 
its training strategy, creating the deep auto-encoder 
(DAE) [18]. DAE eliminates the huge workload of man-
ual extraction, of characteristics from large amounts 
of data and improves extraction efficiency. It shows a 
strong capacity to learn the essential features of input 
data from a few labeled samples and a large number 
of unlabeled data, and hierarchically represents the 
characteristics that have been learned. Bo et al.[19], 
Li et al.[20], and Ong et al. [21] used auto-encoders 
to predict students’ performance, the release of NOx, 
and PM2.5, respectively. The students’ performance 
indicates the student final examination score. These 
studies obtained optimal predictive results. However, 
in these studies the number of hidden layers, the num-
ber of neurons in each layer and learning rates were 
decided by subjective or multiple experiments, and 
this affected the ability of extracting data features for 
auto-encoders. In recent years, Kuremoto et al. [22] 
and Shao et al. [23] used particle swarm optimization 
(PSO) to optimize the number of neurons of a deep 
belief network, which largely reduced the subjectivity. 
This paper is also an effort to use this method to op-
timize DAE.

This paper mainly provides the following three in-
novations: (i) DAE is applied to predict railway traffic 
accidents. (ii) The improved PSO (IPSO) is used for DAE 
to decide the number of hidden layers, the number of 
neurons of each hidden layer, the learning rate of each 
hidden layer when reconstructing input data during 
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2.2.1 Basic auto-encoder

It is necessary to introduce the basic auto-encoder 
before constructing a deep auto-encoder. According to 
[26], a one-layer auto-encoder is taken as an example 
which consists of an encoder and a decoder (Figure 2). 
The mapping function is usually non-linear, and the fol-
lowing is a common form:

exph f x W x b1
1

i i
i1 1

= = + - +^ ^ ^h hh  (5)

where W1 is the encoding weight; b1 is the correspond-
ing bias vector. The decoder seeks to reconstruct the 
input xi from its hidden representation hi. The transfor-
mation function has a similar formulation:

expx g h W bh1
1'

i i
i2 2

= = + - +^ ^ ^h hh  (6)

where W2, b2 are the decoding weight and the decod-
ing bias vector, respectively. The auto-encoder model 
aims to learn a useful hidden representation by mini-
mizing the reconstruction error. Thus, given N training 
samples, the parameters W1, W2, b1, and b2 can be 
resolved by the following optimization problem:

, minL x x N x x1' '
i i i i

i

N

1

2

= -
=

^ h /  (7)

where L is reconstruction error function. The deep au-
to-encoder is constructed by stacking multiple one-lay-
er auto-encoders. That is, the hidden representation 
of the previous one-layer auto-encoder is fed as input 
of the next one.

Output layer

Hidden
layer

Input
layer

Decoder

Encoder

x1 x2

x1 x2

xi

xi

+1

+1

hnh2h1

Figure 2 – Basic auto-encoder

2.2.2 Pre-training of DAE

The purpose of pre-training is to increase the per-
formance of initialized weights and bias. The input 
layer and the hidden layers of DAE are initialized by 
unsupervised method, then the layer by layer greedy 
algorithm is used to train each hidden layer into an au-
to-association unit in order to get the input data recon-
structed. The activation function for DAE here is the 
sigmoid function. The detailed procedure is as follows:
Step 1: The first layer of the neural network is trained 
by reconstructing input samples according to Equations 
5-7;
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where wmax is the maximum inertia weight, and wmin 
is the minimum inertia weight; tmax is the maximum 
iteration time. The values of Equation 4 are shown in 
Figure 1. In the expression above, at the beginning of 
operation (Figure 1), w close to wmax guarantees the 
global search capability of the algorithm. With the in-
creasing of t, nonlinear decrease of w guarantees the 
local search capability. When operating near the end, 
w decreases rapidly. Then the balance between glob-
al search and local search capability can be adjusted 
flexibly.
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Figure 1 – The differential of w

In order to make the PSO expand search space that 
is constantly narrow with iteration and help particles 
jump out of the best position that has been searched, 
a genetic algorithm mutation method is used here for 
maintaining particle diversity. After velocity and posi-
tion of the particle are updated, it may be initialized 
according to probability p.

2.2 Deep auto-encoder

In 2006, Hinton improved the structure of a previ-
ous auto-encoder, and DAE was created [18]. DAE is 
pre-trained firstly by an unsupervised, layer by layer, 
and greedy algorithm and then fine-tuned using the 
back-propagation algorithm to optimize all parame-
ters of a whole neural network. This method improves 
the performance of a neural network significantly and 
reduces the probability of easily falling into a local 
optimum. DAE extracts characteristics from non-la-
beled and complex high-dimensional data, and then 
the structure of a deep learning neural network that 
presents the distributed features of original data is ob-
tained [25].
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in any range, which enables prediction beyond the 
expected number of accidents. A DAE, containing two 
hidden layers and training steps to be completed, is 
shown in Figure 3.

3. THE PROPOSED MODEL AND 
EXPERIMENT PROCEDURE

3.1 Optimized deep auto-encoder

In this paper, we use the IPSO mentioned in Section 
2.1 to decide three kinds of hyper DAE parameters: (i) 
the number of neurons of each hidden layer; (ii) the 
learning rate of each hidden layer when reconstruct-
ing input data during pre-training; (iii) the learning rate 
of back-propagation algorithm during fine-tuning. The 
number of hidden layers and neurons at each hidden 
layer has a direct impact on fitting ability and predict-
ing performance of DAE. The learning rate of each 
hidden layer when reconstructing input data during 
pre-training affects the performance of input data re-
construction. The learning rate of the back-propaga-
tion algorithm during fine-tuning influences the final 
prediction results of the model. Traditionally, these 
parameters were decided by multiple experiments or 
experience, which limited the prediction ability of the 
model. Therefore, it is necessary to use IPSO to opti-
mize these parameters.

In this paper, the DAE has j(j=1,2,3,4) hidden 
layer(s), then each particle can be expressed as  
X(n1, n2,... nj,f1

P,f2
P,..., fj

P, fF), nj represents the num-
ber of neurons in the j-th hidden layer, fj

P represents 
the learning rate of the j-th hidden layer when recon-
structing input data during pre-training, fF represents 
the learning rate of the back-propagation algorithm 
during fine-tuning.

Data is divided into training samples, validation 
samples, and test samples. The fitness function of 
IPSO is as follows:

.

.
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where yt
j and yv

k represent the excepted output val-
ues of training samples and validation samples, re-
spectively. y t

jV and y v
kV  represent the output values of 

training samples and validation samples, respective-
ly. Most previous studies only used the fitting error of 
training samples as fitness function, which may lead 
to an overfitting model with sub-optimal performance. 
The validation error of validation samples reflects the 
predictive performance of the trained model directly, 
so here the fitness function includes the fitting error 
of training samples and validation error of validation 
samples. In this study, the error of training samples 
and the error of verification samples have the same 
weight, that is, 0.5, and their sum is used as the fit-
ness function of the model.

Step 2: The output of each hidden layer is taken as the 
input of the next layer. The next layer is trained by re-
construction of the input, and the error between input 
and output is controlled in a definite scope;
Step 3: Repeat Step 2 until all hidden layers are 
trained;
Step 4: The output of the last hidden layer is used 
as the input of the last layer of neural network, and 
the output of the last layer is sample labels. Then the 
weights and bias at the last layer of the neural network 
are initialized.

2.2.3 Fine-tuning of DAE

Building a DAE requires fine-tuning, and the 
back-propagation algorithm is usually used to accom-
plish this task. The input layer, the output layer, and all 
the hidden layers of the encoder are considered as a 
whole, then a supervised learning algorithm is used to 
further adjust the trained neural network. The detailed 
procedure is as follows:
Step 1: The neural network is initialized using the 
weights and bias that have been obtained by pre-train-
ing;
Step 2: Sample data is used as the input of the neural 
network, and the back-propagation algorithm is ap-
plied to train neural network;
Step 3: Compute the error between sample label and 
output of the neural network, then adjust the weights 
and bias of the neural network according to errors.
Step 4: Repeat Step 2 and Step 3 until the error meets 
requirement, or the iteration time is achieved.

It is important to note that the mapping function of 
the output layer is linear:

W h by o i o= +V  (8)

where yV  represents the output of DAE; Wo and bo rep-
resent the weights and bias of output layer. This linear 
function not only does not affect the fitting ability of 
the model, but also makes the output of the model 
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Figure 3 – The structure of a trained DAE
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indexes related to railway traffic accidents from 1999 
to 2013. The data was found in the China Railway 
Yearbook and divided into training samples, validation 
samples, and test samples. The data for the first elev-
en years were taken as the DAE training samples, the 
data for the twelfth and thirteenth years as validation 
samples, and the data for the last two years as test 
samples.

Railway traffic accidents are divided into four 
grades: extremely serious, serious, large, and general. 
Death toll, number of serious injuries, and direct eco-
nomic loss were selected as the main indexes for ac-
cident ranking. Specific classification bases are shown 
in Table 1. If one of the 3 indexes is achieved, the cor-
responding grade of the accident is formed.

Because extremely serious and serious accidents 
are highly random, sudden, and occur infrequently, 
they are classified as abnormal data and are not in-
cluded in the total number of accidents. Although large 
accidents occur much more rarely than general acci-
dents, they do happen a few times every year. Gener-
al accidents occur often and break railway operation, 
therefore accidents in this article include only large 
and general accidents.

3.2 Experiment procedure

The flow chart of the optimization process is shown 
in Figure 4. A summarized IPSO algorithm used to de-
cide the structure of DAE is shown as follows:
Step 1: Decide the population size of particles and lim-
itation of iteration number.
Step 2: Initialize the start position Xi

0 and the start ve-
locity Vi

0 of each particle.
Step 3: Evaluate each particle using the fitness func-
tion (Equation 9) mentioned above, and find the best 
position of the particle pbesti from its history, and the 
best particle position of the swarm gbest.
Step 4: Renew positions and velocities of particles by 
Equation 1 and Equation 2, respectively.
Step 5: If the fitness function converged, or t reaches 
the maximum value, finish the algorithm. Otherwise, 
return to Step 3.

4. EXPERIMENTS AND RESULTS ANALYSIS
In this paper, data includes railway traffic acci-

dents recorded at Shenyang Railway Bureaus, Guang-
zhou Railway Corporation, and Nanchang Railway Bu-
reau from 1999 to 2013. Besides, data also includes  

Input training and validation samples

Initialize IPSO

Train DAE using particle 1 Train DAE using particle 2

End IPSO

Use the best particle to design DAE

Decide the best particle of group and the best 
historic particle

Update the position and velocity of each particle

Train DAE using particle S...

Compare fi tness

Satisfy termination condition?
No

Yes

Figure 4 – The flow chart of the optimized DAE using IPSO
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Chengdu Railway Bureau (CDRB), Kunming Railway 
Bureau (KMRB), Lanzhou Railway Bureau (LZRB), and 
Urumqi Railway Bureau (URB).

Due to limited article length, it is impossible to pre-
dict accidents for each railway bureau. Therefore, the 
accidents of the 12 railway bureaus are clustered, and 
a railway bureau in each class is randomly selected for 
accident prediction. After data is normalized according 
to Equation 10, railway traffic accidents are clustered 
using the K-means clustering method, in which Euclid-
ean distance is used. In this paper, railway traffic acci-
dents are clustered into 3 groups.

The clustering results are shown in Figure 5. As can 
be seen, the first class has the most railway bureaus. 
Its trend shows a large number of accidents in 1999, 
which decreased from 2000 to 2007, and increased 
again after 2008. The second class includes 3 rail-
way bureaus. Its trend shows a large number of acci-
dents in 1999, which decreased from 1999 to 2002, 
and was the least in 2003, then increased gradually. 
The third class contains two railway bureaus, whose 
trend shows a large number of accidents in 1999, de-
creased each year until it grew suddenly in 2003, de-
creased greatly in 2008, and increased gradually af-
ter 2008. On the whole, the number of accidents was 
relatively large in 1999, which had a certain connec-
tion with the running speed increasing for the second 
time in October 1999. The increased speed required  

4.1 Data pre-processing

Data normalization
The data, including railway traffic accidents and 

influencing indexes, are normalized by the following 
formula:

y y y x x yx x
max min min

min
minmax

$= - -
- +^ h  (10)

where y and x are the normalized value and original 
value, respectively. xmax and xmin represent the max-
imum value and the minimum value of original data 
series, ymax and ymin represent the maximum value 
and the minimum value after normalization. In order 
to make the model fit better and calculate error conve-
niently, here ymax=0.9, ymin =0.1.

Selection of railway bureaus
In 2005, the railway system was reformed, from 15 

railway bureaus to 18. Twelve of those railway bureaus 
did not change their jurisdiction. Therefore, the pre-
2006 data for the twelve unchanged railway bureaus 
can be used. The twelve railway bureaus include Har-
bin Railway Bureau (HARB), Shenyang Railway Bureau 
(SYRB), Hohhot Railway Bureau (HORB), Jinan Railway 
Bureau (JNRB), Shanghai Railway Bureau (SHRB), 
Nanchang Railway Bureau (NCRB), Guangzhou Railway 
Corporation (GZRC), Nanning Railway Bureau (NNRB), 

Table 1 – Classification bases for railway traffic accidents

Grade Death toll Serious injuries Economic losses (ten thousand yuan)

Extremely serious >30 >100 >10,000

Serious 10~30 50~100 5,000~10,000

Large 3~10 10~50 1,000~5,000

General <3 <10 500~1,000

SHRB
NCRB
JNRB
LZRB
NNRB
URB
HORB

CDRB
GZRC
KMRB

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

SYRB
HARB

Class 1 Class 2 Class 3

Year Year Year
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Figure 5 – Clustering results of traffic accidents of 12 railway bureaus
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The indexes affecting railway traffic accidents in-
clude: number of passengers dispatched (NPD), pas-
senger turnover volume (PTV), tonnage of freight dis-
patched (TFD), freight turnover volume (FTV), average 
daily output of freight locomotive (OFL), average daily 
number of car loadings (NCL), and operating mileage 
(OM). The calculation formula of average daily output 
of freight locomotive is as follows:

O N T

W Li i
i

I

1
$

$

= =
/

 (11)

where O represents average daily output of freight lo-
comotive; Wi and Li represent the weight and trans-
portation distance of the i-th freight, respectively; N 
represents the number of freight locomotives; and T 
represents the number of days.

The average daily number of car loadings refers to 
the sum of the average daily number of car loadings 
and the average daily number of car loadings and un-
loadings.

The relationship among these 7 indexes is shown 
in Figure 6. Railway traffic accidents are mainly affect-
ed by three indexes, namely, freight turnover volume, 
passenger turnover volume, and operating mileage. 
With the continuous increase of passenger and freight 
traffic volumes and operation mileage growth, the 
number of locomotives running has been increasing, 
which directly increases the probability of accidents. In 
addition, the increase in operating mileage promotes 
the increase of passenger and freight traffic volumes. 
In addition, average daily output of freight locomotive 
determines the capacity of freight transportation.

The correlation degrees between the 7 indexes and 
traffic accidents of the 3 railway bureaus are shown 
in Tables 2-4. From the tables, we can see that the  

improvements to the infrastructure and stronger safe-
ty inspection. After that, the running speed was in-
creased several times (the third time in October 2000, 
the fourth time in October 2001, and the fifth time in 
April 2004), but all railway bureaus carried out a series 
of safety inspection activities, and the number of acci-
dents was reduced effectively. In 2008, a large area in 
China was affected by freezing rain and snow disaster, 
which posed a serious threat to the safety of railway 
operation. In September 2008, the financial crisis 
caused freight traffic decline in China, until 2009, then 
freight volumes continued to rise. The increase of pas-
senger volumes and freight volumes led to a railway 
traffic increase, which had a certain influence on the 
increase of accidents.

Finally, SYRB, GZRC, and NCRB have been selected 
randomly from these 3 classes as experimental exam-
ples. If the predictive accuracies of the three railway 
bureaus are high, to a certain extent, the model pro-
posed in this paper is suitable for prediction of traffic 
accidents in other railway bureaus.

4.2 Selection of related indexes

For the correlation analysis in this paper, TGRA is 
applied. Compared with Deng’s gray relational degree 
[24], triangular gray relational degree is not only easy 
to apply but also has a better division to multiple time 
series.

Based on the gray relation theory, the closer to 1 
the triangular relational degree is, the higher is the 
similarity degree of two sequences; the closer to 0 the 
triangular relational degree is, the lower the similarity 
degree of two sequences is.

Operating mileage

Average daily output of freight locomotive

Average daily number of car loadings

Tonnage of freight dispatched

Freight turnover volume

Railway traffi c accidents

Passenger turnover volume

Number of passengers dispatched 

Figure 6 – The relationship among 7 indexes
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4.3 Test of the proposed IPSO

In order to test the effectiveness of the proposed 
algorithm, 4 test functions are used to compare con-
vergence and global search capability. The global op-
timums of these 4 functions are achieved when their 
variables equal 0, and all global optimums equal 0. 
Here are the 4 test functions [27]:

: ,F f0 100 100i
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i
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correlation degrees between the 7 indexes and acci-
dents of SYRB are higher than 0.7; the correlation de-
grees between the 7 indexes and accidents of GZRC 
are higher than 0.86; and the correlation degrees 
between the 7 indexes and accidents of NCRB are 
higher than 0.65. In addition, there are high correla-
tions between indexes. The correlations between the 
7 indexes of SYRB are above 0.78, GZRB above 0.8, 
and NCRB above 0.75. Although there are high cor-
relations between indexes, the indexes are not exact-
ly the same. It is the difference between indexes that 
has a different effect on accidents. If only some of the 
indexes are used for prediction, the accuracy of predic-
tion is likely to be affected. Moreover, these 7 indexes 
reflect the different aspects of railway transportation. 
Therefore, all of them are used to forecast railway traf-
fic accidents.

Table 2 – The correlation degrees between accidents of SYRB and indexes

SYRB NPD PTV TFD FTV OFL NCL OM
SYRB 1.00 0.70 0.72 0.72 0.74 0.72 0.72 0.77
NPD 0.70 1.00 0.89 0.86 0.85 0.85 0.86 0.78
VTP 0.72 0.89 1.00 0.98 0.98 0.97 0.98 0.92
TFD 0.72 0.86 0.98 1.00 0.99 0.99 1.00 0.93
VTF 0.74 0.85 0.98 0.99 1.00 0.99 0.99 0.96
OFL 0.72 0.85 0.97 0.99 0.99 1.00 0.99 0.94
NCL 0.72 0.86 0.98 1.00 0.99 0.99 1.00 0.94
OM 0.77 0.78 0.92 0.93 0.96 0.94 0.94 1.00

Table 3 – The correlation degrees between accidents of GZRB and indexes

GZRB NPD PTV TFD FTV OFL NCL OM
GZRB 1.00 0.92 0.93 0.88 0.87 0.87 0.89 0.90
NPD 0.92 1.00 0.97 0.95 0.86 0.88 0.96 0.92
VTP 0.93 0.97 1.00 0.96 0.95 0.95 0.97 0.89
TFD 0.88 0.95 0.96 1.00 0.91 0.90 0.98 0.89
VTF 0.87 0.86 0.95 0.91 1.00 0.97 0.90 0.80
OFL 0.87 0.88 0.95 0.90 0.97 1.00 0.89 0.82
NCL 0.89 0.96 0.97 0.98 0.90 0.89 1.00 0.90
OM 0.90 0.92 0.89 0.89 0.80 0.82 0.90 1.00

Table 4 – The correlation degrees between accidents of NCRB and indexes

NCRB NPD PTV TFD FTV OFL NCL OM
NCRB 1.00 0.85 0.78 0.70 0.71 0.73 0.65 0.72
NPD 0.85 1.00 0.94 0.86 0.86 0.83 0.75 0.88
VTP 0.78 0.94 1.00 0.96 0.96 0.88 0.87 0.92
TFD 0.70 0.86 0.96 1.00 0.99 0.85 0.93 0.95
VTF 0.71 0.86 0.96 0.99 1.00 0.88 0.92 0.94
OFL 0.73 0.83 0.88 0.85 0.88 1.00 0.81 0.81
NCL 0.65 0.75 0.87 0.93 0.92 0.81 1.00 0.86
OM 0.72 0.88 0.92 0.95 0.94 0.81 0.86 1.00
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Parameters of the 4 PSO types are shown in 
Table 5. The number of particle swarms, particle di-
mensions, number of iterations, velocity coefficients, 
and maximum velocity for all PSO types are the same. 
What makes the IPSO different from the other PSOs is 
that it uses nonlinear inertia weights and mutation. Its 
maximum and minimum inertia weights are 0.9 and 
0.1, respectively, which are the same as for LDWPSO, 
and the mutation rate is 0.02. The inertia weight of the 
standard PSO is 0.2. The adaptation inertia weights of 
APSO are 0.9 and 0.5, and its adaptation coefficient is 
50, as determined according to [29].

The test results of the 4 PSO types are shown in 
Table 6. The lower the value in the table is, the bet-
ter the global searching capability of the algorithm. 
The proposed IPSO has the lowest test results, i.e., 
0.8949, 0.8931, 0.0114, and 0.028, which means 
its global searching ability is the best compared with 
APSO, LDWPSO, and PSO. Besides, the F3 test results 
of LWPSO and APSO are not better than PSO, which 
indicates that the universality of these two algorithms 
is not sufficient, and IPSO has higher applicability.

In addition, Figure 8 shows the global optimum 
trend of the 4 PSOs over iterations. The IPSO has the 
fastest convergence speed.
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In addition, Shi’s linear decrease weight PSO (LD-
WPSO) [28], Zhang’s adaptation weight PSO (APSO) 
[29], standard PSO, and, as proposed in this paper, 
IPSO have been tested and compared using the 4 
types of test functions. The inertia weight changes for 
the four types of PSO are shown in Figure 7.
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Figure 7 – Inertia weight changes for the 4 PSO types

Table 5 – Parameters of 4 PSO types

Abbreviation
Value

PSO LDWPSO APSO IPSO

Number of particle swarms - 10 10 10 10

Particle dimension - 10 10 10 10

Mutation rate p - - - 0.02

Number of iterations tmax 100 100 100 100

Velocity coefficient c1,c2 2 2 2 2

Inertia weight w 0.2 - - -

Maximum inertia weight wmax - 0.9 - 0.9

Minimum inertia weight wmin - 0.1 - 0.1

Adaptation inertia weight w0 - - 0.9 -

Adaptation inertia weight w1 - - 0.5 -

Adaptation coefficient k - - 50 -

Maximum velocity Vmax 1 1 1 1

Table 6 – Test results of the 4 PSO types

Function PSO LDWPSO APSO IPSO

F0 889.11 561.18 1,777.5 0.8949

F1 336.79 243.11 1,736 0.8931

F2 24.38 17.96 28.07 0.0114

F3 1.95 2.20 2.02 0.028
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4.4 Forecast results and discussion

4.4.1 Prediction model parameter setting

All experiments in this paper were operated by MAT-
LAB R2014a. In order to verify the predictive accuracy 
of the IPSO-DAE proposed in this paper, BPNN, Elman 
neural network (ELM), and radial basis function neural 
network (RBF) were used for comparing. The iteration 
times of BPNN are 1000, learning rate is 0.01, con-
vergence error is 0.0001. The parameters of ELM are 
the same as BPNN. The convergence goal of RBF is 0. 
The parameters of IPSO-DAE are shown in Table 7, and 
some of the IPSO parameters are the same as those 
in Table 5.

4.4.2 Traffic accident prediction for SYRB

The predictive results for SYRB are shown in 
Table 8. The structure in the table represents the struc-
ture of the neural network. For example, 7-56-39-61-
1 represents a neural network with 5 layers, and the 
number of neurons in the input layer is 7. The number 
of neurons in the first hidden layer 56, in the second 
hidden layer 39, in the third hidden layer is 61, and 
in the output layer it is 1. It should be noted that the 
experimental process of BPNN and ELM is intended 
to test the minimum validation error of the number of 
neurons in the range of 1 to 100, and then use the 
model with the minimum validation error to predict. 
The experimental process of RBF is intended to test 
the minimum validation error of the spread coefficient 
in the range of 0.01 to 2, and then use the model with 
the minimum validation error to predict. When the val-
idation error of RBF is minimum, the RBF structure is 
7-10-1, and the spread coefficient is 0.06. IPSO-DAE3 
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Figure 8 – The global optimum trend for the 4 PSO types over iterations

Table 7 – IPSO-DAE parameters

Abbreviation Value

The number of hidden 
layers j 1,2,3,4

The neurons of hidden 
layers nj(1≤nj≤100) Given by IPSO

Learning rate of  
pre-training fP

j Given by IPSO

Iteration times of 
pre-training - 100

Learning rate of  
fine-tuning fF Given by IPSO

Iteration times of 
fine-tuning - 1,500

Convergence parameter 
of DAE - 0.0001

Convergence value of 
IPSO fitness - 5

Population size of IPSO S 5
Iteration times of IPSO I 30

Table 8 – Accident prediction results for SYRB

Model Structure MAE MAPE [%]
IPSO-DAE3 7-61-1 16.23 8.10
IPSO-DAE4 7-27-11-1 16.81 7.85
IPSO-DAE5 7-56-39-61-1 9.49 4.08
IPSO-DAE6 7-66-36-86-18-1 16.66 7.35
BPNN 7-70-1 65.98 28.57
ELM 7-5-1 53.39 23.09
RBF 7-10-1 58.40 23.86
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finally fixed at 0.1949. Figure 9h shows the change of 
fitness function value of IPSO-DAE5, and eventually it 
reaches 12.13% after many iterations. In conclusion, 
combining DAE with IPSO makes the DAE parameters 
optimize, and the predictive performance of DAE im-
proves.

Figure 10 shows the change of weights and bias of IP-
SO-DAE5. Figures 10(a1)-10(a4) denote the weights and 
bias of the first, the second, and the third hidden layers 
as well as the output layer before pre-training. Figures 
10(b1)-10(b4) represent their values after pre-training. 
Figures 10(c1)-(c4) show their values after fine-tuning. It 
can be seen that the weights and bias of the hidden 
layers changed greatly after pre-training, and the output 
layer did not change. Pre-training mainly optimizes the 
weights and bias of the hidden layers. After fine-tuning, 
all weights and bias change a little, which shows they 
are optimized by pre-training, and the auto-encoder 
solves the gradient vanishing of the back-propagation 
algorithm when there are many hidden layers.

4.4.3 Traffic accident prediction for GZRC

The predictive results for GZRC are shown in 
Table 9. When the validation error of RBF is minimum, 
the structure of RBF is 7-10-1, and the spread coeffi-
cient is 0.16. As can be seen: (i) Compared with oth-
er models, the predictive accuracy of IPSO-DAE4 is 
the highest (MAE is 8.52, MAPE is 5.33%), which is  
suitable for GZRC traffic accident prediction. (ii) The pre-

means that DAE has 3 layers, which includes a hid-
den layer. IPSO-DAE6 signifies that DAE has 6 layers. 
As can be seen from Table 8: (i) Compared with other 
models, the predictive accuracy of IPSO-DAE5 is the 
highest (MAE is 9.49, MAPE is 4.08%), which is suitable 
for SYRB traffic accident prediction. (ii) The prediction 
performance of IPSO-DAE3 is much better than that of 
BPNN, which shows that the weights and bias of DAE 
have been optimized by pre-training. (iii) The perfor-
mances of all types of IPSO-DAE are better than those of 
shallow models, including BPNN, ELM, and RBF, which 
shows that the deep learning model is more suitable for 
predicting railway traffic accidents that are sudden and 
random. (iv) The predictive performance of IPSO-DAE6 
is not optimal, which indicates that the increase of hid-
den layers does not mean that the predictive perfor-
mance will be better. The reason for this phenomenon 
may be overfitting.

Figure 9 shows the parameter trends of IPSO-DAE5’s 
optimal particle and fitness over iterations. Figures 
9a-9c represent the trend of the number of neurons 
of the first, the second and the third hidden layers,  
respectively. After several iterations, they are eventu-
ally fixed at 56, 39, and 61, respectively. Figures 9d-9f 
represent the change of learning rates of the first, the 
second, and the third hidden layers during pre-training, 
and they are eventually fixed at 0.2062, 0.1045, and 
0.1488. Figure 9g shows the change of learning rate 
of back-propagation algorithm for fine-tuning, which is 
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diction performance of IPSO-DAE3 is much better than 
that of BPNN, which shows that the weights and bias 
of DAE are optimized by pre-training. (iii) The prediction 
performance of IPSO-DAE6 is not optimal, which indi-
cates that the increase of hidden layers does not mean 
that the predictive performance will be better.

Figure 11 shows the parameter trends for IP-
SO-DAE4’s optimal particle and fitness over iterations. 
Figures 11a and 11b represent the number of neurons 
of the first and the second hidden layers, respectively. 
After several iterations, they are eventually fixed at 80 
and 23, respectively. Figures 11c and 11d represent the 
change of learning rates of the first and the second 
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Table 9 – Accident prediction results for GZRC

Model Structure MAE MAPE [%]
IPSO-DAE3 7-54-1 25.99 16.12
IPSO-DAE4 7-80-23-1 8.52 5.33
IPSO-DAE5 7-47-39-42-1 15.47 9.96
IPSO-DAE6 7-8-95-50-63-1 16.87 10.45
BPNN 7-10-1 26.84 16.59
ELM 7-20-1 11.46 7.00
RBF 7-10-1 62.83 39.34
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els, the prediction accuracy of IPSO-DAE3 is the high-
est (MAE is 9.63, MAPE is 7.47%), which is suitable 
for NCRB traffic accident prediction. (ii) The predictive 
performance of IPSO-DAE3 is much better than that of 
BPNN, which shows that the weights and bias of DAE 
are optimized by pre-training. (iii) The prediction per-
formance of IPSO-DAE6 is not optimal, which indicates 
that the increase of hidden layers does not mean that 
the predictive performance is better.

Figure 13 shows the parameter trends for IP-
SO-DAE3’s optimal particle and fitness over iterations. 
Figure 13a represents the number of neurons of the 
hidden layer. After several iterations, it is eventually 
fixed at 52. Figure 13b represents the change of learn-
ing rates of the hidden layer during pre-training, and 
it is eventually fixed at 0.4357. Figure 13c shows the 
change of learning rate of the back-propagation algo-
rithm for fine-tuning, which is finally fixed at 0.4603. 
Figure 13d shows the change of the fitness function 
value of IPSO-DAE3, and eventually it reaches 28.35% 
after many iterations.

Figure 14 shows the change of weights and bias 
of IPSO-DAE3. Figures 14(a1) and 14(a2) denote the 
weights and bias of the hidden layer and the output 

hidden layers during pre-training, and they are eventu-
ally fixed at 0.1019 and 0.3194. Figure 11e shows the 
change of learning rate of the back-propagation algo-
rithm for fine-tuning, which is finally fixed at 0.4457. 
Figure 11f shows the change of the fitness function 
value of IPSO-DAE4, and eventually it reaches 14.6% 
after many iterations.

Figure 12 shows the changes of weights and bias 
of IPSO-DAE4. Figures 12(a1)-(a3) denote the weights 
and bias of the first, the second hidden layer, and the 
output layer before pre-training. Figures 12(b1)-(b3) rep-
resent their values after pre-training. Figures 12(c1)-
(c3) show their values after fine-tuning. The change of 
weights and bias is the same as in Figure 10, so it is not 
necessary to describe the phenomenon and analysis 
in detail.

4.4.4 Traffic accidents predicting of NCRB

The predictive results of NCRB are shown in 
Table 10. When the validation error of RBF is minimum, 
the structure of RBF is 7-10-1 and spread coefficient 
is 0.02. As can be seen: (i) Compared with other mod-
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Table 10 – Accident prediction results for NCRB

Model Structure MAE MAPE [%]

IPSO-DAE3 7-52-1 9.63 7.47

IPSO-DAE4 7-65-29-1 11.15 8.36

IPSO-DAE5 7-61-64-63-1 13.81 10.62

IPSO-DAE6 7-62-21-29-46-1 16.66 13.09

BPNN 7-15-1 20.34 15.40

ELM 7-95-1 68.81 52.98

RBF 7-10-1 14.50 11.32



Feng F, Li W, Jiang Q. Railway Traffic Accident Forecast Based on an Optimized Deep Auto-encoder

392 Promet – Traffic & Transportation, Vol. 30, 2018, No. 4, 379-394

analyzing relationships between indexes and acci-
dents. It is not sufficient for accident prediction to only 
analyze these relationships. This paper attempts to re-
veal these relationships and then predict railway traffic 
accidents.

In the past, the structure of DAE was obtained by 
experience or multiple tests, which is time-consuming 
and laborious. Given this, IPSO is proposed for finding 
a better DAE structure, including the number of hidden 
layers and neurons at each hidden layer, the learning 
rate of each hidden layer when reconstructing input 
data during pre-training, and the learning rate of the 
back-propagation algorithm during fine-tuning. There 
are several main findings after the experiments, as fol-
lows: (i) The proposed IPSO has a better global search-
ing ability and higher convergence speed. (ii) The opti-

layer before pre-training. Figures 14(b1) and 14(b2) rep-
resent their values after pre-training. Figures 14(c1) and 
14(c2) show their values after fine-tuning. The change 
of weights and bias is the same as in Figure 10, there-
fore it is not necessary to describe the phenomenon 
and analysis in detail.

The above three experiments show that predicting 
different classes of rail traffic accidents requires dif-
ferent numbers of layers of the DAE, i.e., class 1 traffic 
accident forecast uses a 3-layer DAE, class 2 uses a 
4-layer DAE, and class 3 uses a 5-layer DAE.

5. CONCLUSIONS
Railway traffic accident prediction is one of the 

research hotpots in the field of accident prediction. 
Studies about accident prediction mainly focus on  
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mized DAE, one of the deep learning models, is more 
suitable for predicting railway traffic accidents that are 
sudden and random. (iii) Predicting different classes 
of rail traffic accidents requires different numbers of 
DAE layers. (iv) IPSO can optimize the DAE parameters 
and then improve the DAE’s predictive accuracy. (v) 
The increase of hidden layers in DAE does not mean 
that the predictive performance will be better. 

Although this paper only forecasts accidents for 
three railway bureaus, they represent three classes 
of accidents, which means that IPSO-DAE can also 
be used to predict traffic accidents of other railway 
bureaus. Moreover, changing the flight range of par-
ticles of IPSO and the number of DAE’s hidden layers 
enables applying IPSO-DAE to predictive problems in 
other research fields. It needs to be pointed out that 
using more relevant indexes and better deep learning 
models may lead to better predictive results. This can 
be done in future research.
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基于优化深度自动编码器的铁路行车事故预测

摘要

安全是铁路运输的重点，铁路行车事故预测是安全管
理的主要内容。事故与相关因素之间有复杂的非线性关
系，因此三角灰色关联分析(TGRA)被用来得到与事故相关
的因素，深度自动编码器(DAE)被用来发现事故与因素之
间的复杂关系并用来预测事故。此外，本文提出了一种具
有更快收敛性和更好全局搜索能力的非线性权重变化的粒
子群优化算法，用来获得更优的DAE结构和参数，包括隐
含层层数、隐含层神经元数和学习率。该模型对沈阳铁路
局、广州铁路公司、南昌铁路局的铁路行车事故进行了
预测。实验结果表明提出的模型能较好地预测铁路行车事
故。
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铁路行车事故；深度自动编码器；粒子群优化算法

REFERENCES

[1] Feng F, Xu Y, Tang Z. Research on the charge rate of 
railway value-guaranteed transportation based on 
competitive and cooperative relationships. Advances 
in Mechanical Engineering. 2018;10(1): 1-11.

[2] Ma X, Li K, Luo Z, Zhou J. Analyzing the causation of a 
railway accident based on a complex network. Chinese 
Physics B. 2014;23(2): 1674-1056.

[3] Ross DA, Jodi LC. An alternative accident prediction 
model for highway-rail interfaces. Accident Analysis 
and Prevention. 2002;34(1): 31-42.



Feng F, Li W, Jiang Q. Railway Traffic Accident Forecast Based on an Optimized Deep Auto-encoder

394 Promet – Traffic & Transportation, Vol. 30, 2018, No. 4, 379-394

[26] Song C, Huang Y, Liu F, Wang Z, Wang L. Deep au-
to-encoder based clustering. Intelligent Data Analysis. 
2014;18(6): S65-S76.

[27] Suganthan PN, Hansen N, Liang JJ. Problem defini-
tions and evaluation criteria for the CEC 2005 special 
session on real-parameter optimization. Singapore: 
Nanyang Technological University. 2005: 1−50. Avail-
able from: http://decsai.ugr.es/~lozano/AEBs-Contin-
uo/Tech-Report-May-30-05.pdf

[28] Shi YH, Eberhart R. A modified particle swarm optimiz-
er. Proceedings of the IEEE International Conference 
on Evolutionary Computation; 1998 May 4-9; Anchor-
age, Alaska, USA: IEEE; 1999.

[29] Zhang J, Zhang J, Lok T, Michael RL. A hybrid particle 
swarm optimization-backpropagation algorithm for 
feedforward neural network training. Applied Mathe-
matics and Computation. 2007;185: 1026-1037.

Computing and Applications. 2016;27(6): 1553-1566.
[22] Kuremoto T, Kimura S, Kobayashi K, Obayashi M. Time 

series forecasting using a deep belief network with 
restricted Boltzmann machines. Neurocomputing. 
2014;137: 47-56.

[23] Shao H, Jiang H, Zhang X, Niu M. Rolling bearing fault 
diagnosis using an optimization deep belief network. 
Measurement Science and Technology. 2015;26(11): 
115002.

[24] Cheng G, Yin J, Liu N. Estimation of geophysical prop-
erties of sandstone reservoir based on hybrid di-
mensionality reduction with Elman neural networks. 
Applied Mechanics and Materials. 2014;668-669: 
1509-1512.

[25] Bengio Y, Delalleau O. On the expressive power of 
deep architectures. Algorithmic Learning Theory. 
2011;6925: 18-36.


