
ABSTRACT

Due to the increase of congestion on highways, providing 
real-time information about the traffic state has become a 
crucial issue. Hence, it is the aim of this research to build 
an accurate traffic speed prediction model using symbolic 
regression to generate significant information for travellers. 
It is built based on genetic programming using Pareto front 
technique. With real world data from microwave sensor, the 
performance of the proposed model is compared with two 
other widely used models. The results indicate that the sym-
bolic regression is the most accurate among these models. 
Especially, after an incident occurs, the performance of the 
proposed model is still the best which means it is robust and 
suitable to predict traffic state of highway under different 
conditions.
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1. INTRODUCTION
According to the Urban Mobility Scorecard Annual 

Report in 2015 by INRIX, traffic congestion continues 
to be one of the biggest challenges in many major cit-
ies worldwide. For example, congestion caused each 
commuter in Washington DC to travel 82 hours more 
and burn 35 gallons of fuel extra which amounted to 
an average value of $1,834 per traveller. In order to re-

duce the congestion, in the last decades, a large num-

ber of roads were built. However, this approach did not 
give the expected results and did not entirely solve the 
problem. A better solution would be to fully use the ex-

isting roads and provide real-time traffic information to 
the travellers. With the useful information, travellers 
could choose when to start their trips and which routes 
to take the least times. For traffic information to have 

beneficial effects, short-term traffic speed prediction 
is important, because in the Advanced Traveler Infor-
mation System (ATIS) the traffic state is represented 
by the speed. In fact, current traveller information ac-

tivities are being hampered by the lack of capacity to 
predict future traffic state [1].

Formally, given a sequence of values {X1,X2,…,Xt} 

of some observed traffic parameters (such as speed 
or occupancy) from sensors in the transportation 
network, the prediction problem is defined to predict 
the future values Xt+i (i=1,2,…n) and the objective 
is to build a prediction model that can minimize the 
gaps between prediction values and actual values. 
Throughout the years, many researchers have devel-
oped a wide variety of traffic prediction models from 
different perspectives. In general, the models can be 
grouped into statistics-based and computational intel-
ligence-based models [2]. 

In statistics-based models, the linear regression 
basically assumes a linear combination of covariates 
and has a simple structure that can be found in [3-5]. 
In these studies, some techniques were implemented 
to enhance the accuracy such as stepwise method 
and varying coefficients. On the other hand, time-se-

ries approaches were widely used based on the works 
of Box and Jenkins who popularized a specific class 
of the method. They comprise combinations and gen-

eralizations of autoregressive moving average (ARMA) 
models [6]. Starting from this work, different types of 
models originated including autoregressive integrated 
moving average (ARIMA) [1, 7], seasonal ARIMA (SARI-
MA) [8, 9], vector ARMA (VARMA) [10, 11], space-time 
ARIMA (STARIMA) [12], etc. Kalman filter is another 
statistical model that has been used to predict traffic 
parameters by various researchers [13-15]. This ap-

proach uses time series methods predicting the future 
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egies, colony optimization, differential evolution, and 
many others [27]. Among these techniques, genetic 
programming developed by Koza is the most popular 
because it is easy to understand and uses probabilis-

tic selection rules, not the deterministic ones [28].
There are various successful applications of sym-

bolic regression in prediction. For example, it was ap-

plied to predict wind energy production and got a reli-
able prediction for the renewable energy [29]. It was 
also used to predict the oil production and validated it 
on both synthetic and real data, and made reliable re-

sults [30]. A novel symbolic regression was introduced 
to predict elastic modulus of self-compacting concrete 
[27]. In [31] it was used to predict syngas yield produc-

tion. After comparison the results showed that multi-
gene genetic programming is better than single-gene 
genetic programming. In the area of transportation, 
GP was used to build models for real-time crash pre-

diction on highways [32]. It was used to input the miss-

ing value in the intelligent transportation system [33]. 
Also, GP was applied to evaluate the performance of 
the pavement, where it was used to develop models to 
predict pavement rutting [34].

To reduce the congestion caused by accidents, one 
can look for the influencing factors [35] and the sever-
ity of the damages. In this paper a different approach 
is taken. A task is set to build some models that can ef-
fectively utilize the huge amount of data and accurate-

ly predict the traffic state. We propose a novel symbolic 
regression method for traffic speed prediction which is 
built based on a popular evolution algorithm, genetic 
programming [28]. The contributions of this study are: 
(1) the proposed model does not only make up for the 
disadvantages of both statistics-based models and 
computational intelligence-based models, but also 
makes full use of their advantages; (2) the proposed 
model is evaluated with the data from the real world 
and the sensitivity of the input is analysed.

2. METHODOLOGY

2.1 General description of SR

Let y be the vector of true values and ŷ the vec-

tor of prediction values for the traffic data. The struc-

ture of the symbolic regression can be presented as 
in Figure 1: where for each id{1,…,G}: b0 and bi are 

the parameters that can be estimated by the least 
squares method; ti is the (N·1) vector of outputs from 
the i-th GP tree; N is the sample size.

The symbolic regression shown in Figure 1 can be 

applied through the following four simple steps: (1) 
generate the initial random population; (2) evaluate 
the fitness of individuals; (3) conduct genetic oper-
ators; (4) select the best model among outputs. The 
detailed explanations of each procedure are given in 
the following:

traffic parameter by continuously updating the select-
ed state variables. With the transition equation, the se-

lected state vector is developed based on the past and 
current observations along with an optimal estimation 
state vector [16]. From the previous studies, it can be 
summarized that the statistics-based models have sol-
id and widely accepted mathematical foundations that 
give them ability to provide more insight in the rela-

tionship among variables. However, its disadvantages 
are also obvious. The main drawback of this approach 
are the strong assumptions which are not practically 
relevant to the realistic traffic flow [17].

In recent years, the applications of computational 
intelligence-based models were the focal point in lit-
erature including Neural and Bayesian Networks [18, 
19], Support Vector Regression (SVR) [20], k-nearest 
neighbours [21, 22], regression trees [23, 24], etc. 
This type of models was considered as inevitable, 
particularly as most classical approaches have been 
shown inadequate under unstable traffic conditions 
and complex road settings when and where it is need-

ed [25]. Research has proven that computational in-

telligence-based models are statistically superior to 
linear statistical models because they are more flexi-
ble, more robust and more appropriate for capturing 
the complexity and uncertainty of traffic flow than tra-

ditional statistics-based models [17]. However, despite 
the numerous research papers in traffic prediction 
that utilize computational intelligence-based models, 
researchers often used them blindly, ignoring some 
of their shortcomings. First of all, this type of models 
are “black-box” because they cannot provide specific 
algorithms and the relationship between variables is 
difficult to interpret. In addition, the over-fitting prob-

lem is quite common when applying computational 
intelligence-based models with complex structure to 
training set with relatively small sample size. Getting 
a nearly perfect performance for the training set can 
lead to a large performance drop for the testing set 
[26].

Symbolic regression (SR) uses a function discovery 
approach for modelling relationships in the dataset. 
Unlike traditional regression methods in statistics that 
fit parameters to an equation with a predefined form, 
symbolic regression tries to develop the algorithm by 
simultaneously searching both the parameters and 
the forms. As a result, the output form of a symbolic 
regression is a formula that is simple and interpreta-

ble. Moreover, it is not necessary to give a prior as-

sumption between the explanatory variables and the 
response variable as well as on the model structure. 
Additionally, it is not limited by the sample size and 
the important variables are automatically selected into 
the model. In recent years, a variety of evolution algo-

rithms have been used to identify symbolic regression 
including genetic programming (GP), evolution strat-
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2.2 Complexity

The complexity of an expression is decided by its 
structure such as tree depth, tree nodes, component 
function nonlinearity and number of variables. F. Smits 
proposed using the sum of the complexity of the tree 
structure and all sub trees as a metric that can reflect 
the characteristic of the model [37]. The criterion is 
defined as the total number of nodes in the structure 
and each sub tree. The less complex the expression 
is, of course, the better. Figure 3 shows the computing 
processes of two different simple structures with three 
nodes.

5 = 1 + 1 + 3

6 = 1 + 2 + 3

Figure 3 – Example of the computing processes

The complexity of expression xdΩ is computed by

( ) ( )f px xj
j

m

1

1

=

=

/  (1)

where pj(x) is the total number of nodes in the j-th sub 
tree of expression x, j=1,…,m. In Figure 3, the second 
structure is more complex with f1(x)=6.

2.3 Fitness

The fitness evaluates how good a model is. Basi-
cally, two types of measures, root mean squared error 
(RMSE) and the R2, are usually used during building 
the model. R is the correlation coefficient of observed 
values and predicted values for expression x:

1) Generate the initial random population
A population of random individuals is generated using 
the input variables as well as a specified function set 
such as sin, tan, cos, log, or exp, and so on. The pa-

rameters are randomly generated from the predefined 
bounded interval [-10, 10] [36]. In this stage, node 
functions, size of population, maximum depth of tree 
and maximum number of genes need to be set to con-

trol the generation.
2) Evaluate the fitness of individuals
Then each generation individual is evaluated by calcu-

lating the correlation coefficient R of observed values 
and predicted values and the bigger R corresponds to 
the better individual.
3) Conduct genetic operators
Once the fitness of individual is obtained, the genet-
ic operations are conducted. The operators including 
crossover and mutation are shown in Figure 2. Next, 
the new individuals are sent to step 2. In this stage, 
the total number of the cycles needs to be set.
4) Select the best model among outputs
Finally, it returns a large number of models which dif-
ferently describe the specifics of the datasets. In the 
last stage, it is a difficult task to select the best model 
while balancing a trade-off between performance and 
complexity. In this paper, we convert this task into a 
multi-objective optimization problem and solve it us-

ing Pareto front. The two objectives of the optimization 
problem are to minimize the complexity f1(x) and the 
fitness f2(x) of the expression xdΩ, where Ω is a feasi-
ble region, i.e. a set of all feasible solutions.

ŷ=b
0
+b

1
 Ã t

1
+b

2
 Ã t

2
+... ...+bG Ã tG

Figure 1 – The structure of the symbolic regression

Mutation

Crossover

Figure 2 – Mutation and crossover of GP



Linchao L, Fratrović T, Jian Z, Bin R. Traffic Speed Prediction for Highway Operations Based on a Symbolic Regression Algorithm

436 Promet – Traffic&Transportation, Vol. 29, 2017, No. 4, 433-441

F
it

n
e

s
s
 (

1
–

R
2
)

0.2

0.15

0.1

0.05

0
0 100 200 300 400 500

Complexity [C] 

Figure 4 – Example of the Pareto front set

3. PERFORMANCE ANALYSIS

3.1 Data and evaluation criteria

The data used in this paper are extracted from the 
monitoring system of Xi-Cheng freeway, Jiangsu, China 
which is 22 km and has three lanes in each direction. 
The point in Figure 5 represents the position of a mi-
crowave sensor which is selected as the object of this 
study.

Microwave

sensor

Figure 5 – Location of the microwave sensor (Source: 
Openstreetmap)

In the monitoring system, the speed is measured 
every five minutes in each lane. To obtain the speed 
v of a road section, an ensemble average algorithm is 
presented as follows:

v V V V
v V v V v V

1 2 2

1 1 2 2 3 3
=

+ +

+ +  (6)

where V1, V2, V3 is speed in lane 1, lane 2 and lane 3, 
respectively; V1, V2, V3 is volume in lane 1, lane 2 and 
lane 3, respectively.

The final dataset includes 5 weekdays from June 
8th 2015 to June 12th 2015. However, in the dataset, 
30 records (2.08%) are missing. To minimize the effect 
of the missing values, they are filled by the average 
of values measured at the same time of the day from 
other weekdays. The summarization of the data are 
shown in Table 1.

Full dataset is divided into two parts: a training 
dataset and a testing dataset. The training data-

set, including the first four days, is used to build the  
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where yi and yî are the i-th prediction value and mea-

sured value. y ̈ and ȳ  are the averages of prediction val-
ues and measured values, respectively.

When the measured value is low, RMSE always be-

comes sensitive, and therefore R2 is selected in this 
study and the fitness is defined as f2(x)=1-R2 for ex-

pression xdΩ, to qualify the accuracy of the model.

2.4 Pareto front

To find the balance of complexity and fitness, Pa-

reto front is widely used in the multi-objective optimi-
zation. In the last stage of the symbolic regression, a 
large number of models is obtained. The Pareto front 
considers all models to be equally important and the 
aim is to identify the non-dominated ones which can 
be conducted after some definitions.
Definition of Pareto dominance

We define a binary relation of Pareto dominance 
and write x1;x2 saying that the solution (expression) 
x1 dominates the solution (expression) x2 if both fol-

lowing conditions are true:

,

,

i f f
j f fj

x x
x x

1 2

1 2

i i

j

1 2

1 2

6
7 1
! #
! ^

^ ^
^h

h h
h) "" ,,  (3)

Definition of Pareto optimality
If no other solution dominates x*, it is said to be 

Pareto optimal. Notice that it is not necessarily unique. 
In the mathematical form

x x x*b ! (X  (4)

where Ω is a feasible region.
Definition of Pareto front

For a given multi-objective optimization problem, a 
Pareto front (frontier, boundary) P is a set consisting of 
all Pareto optimal vectors:

{ | ' ' }P x x x xb! ! (X X=  (5)

The Pareto front is a set of non-dominated points. 
In other words, there are no other points better than 
the points of the Pareto front in both complexity and 
fitness. In particular, the point in the lower left of the 
Pareto front (high accuracy and low complexity) is 
the best solution to the multi-objective optimization 
problem. An example of the technique is presented in 
Figure 4. All models are plotted with 1-R2 as the vertical 
axis, and the expressional complexity as the horizontal 
axis. The Pareto front is highlighted in green and the 
point with a red circle is the solution to the problem.
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to compare against SR for the following two reasons. 
First, ARIMA is a statistics-based model and SVR is 
a computational intelligence-based model. They can 
represent traffic prediction models from the main per-
spectives. Second, ARIMA and SVR were proven to be 
more accurate than other models among the above 
two types of models in previous studies. The SR model 
is detailed in section 3 because it is the focus of this 
paper. The formulations of ARIMA and SVR were not 
given because they were only used for comparison. We 
added references in which the readers can find the de-

tail procedures of the ARIMA and SVR models used in 
this study [17].

3.3 Parameter selection

The parameters of ARIMA model are p, d, q - p is 
the order of autoregression; d is the order of differ-
entiation, and q represents the order of the moving 
average. They can be obtained by the autocorrela-

tion function and partial autocorrelation (PACF) plots. 
In the SVR, radial basis function is selected as ker-
nel and two parameters γ, C are set with grid search  

prediction models. The last day presents a testing 
dataset to evaluate the performance of the models 
with root mean square error (RMSE) and mean abso-

lute percentage error (MAPE). RMSE and MAPE are 
accuracy measurements commonly used to evaluate 
traffic prediction models. They are defined in the fol-
lowing expressions:

RMSE N v v1
i i

i

N
2

1

= -

=

^ hK/  (7)

%MAPE N v
v v1

100
i

i i

i

N

1

$=
-

=

K/  (8)

where vi is the measured value of the i-th time interval 
and ṽi  is the predicted value of the i-th time interval; N 
is the total number of the testing intervals.

3.2 Experiment design

Input is the data before the time when prediction 
starts and the length must be known in advance (as is 
shown in Figure 6). For ARIMA, its strength is to capture 
the temporal characteristic of the traffic speed, and 
the length is determined by parameters p and q. For 
SR and SVR, the input is set by the researchers. The 
length of input vector significantly affects the predic-

tion accuracy. It is necessary to analyse the influence 
of the length of the input data. In the first experiment, 
SR and SVR are built with different vectors having 1, 
2…, 10 lagged elements to study the relation between 
length of input and prediction accuracy.

In the second experiment, three different models 
are compared. ARIMA model is executed in R with the 
package ‘forecast’. SVR is executed in R with the pack-

age ‘e1071’. The code for the presented model SR is 
written in Matlab using the GPTIPS 2 tool box, which 
is available online [36]. These two models are used 

Table 1 – Summarization of the initial data

Date Minimum 1st quarter Median Mean 3rd quarter Maximum

1 50.56 82.19 88.99 89.65 97.54 101.65
2 35.09 83.63 86.71 92.36 94.25 99.50
3 50.76 86.25 85.61 89.85 93.13 99.81
4 47.73 81.85 86.16 90.42 92.87 99.55
5 30.95 81.43 86.46 84.07 90.48 100.74

Table 2 – Parameters of the symbolic regression

SR ARIMA SVR

Number of individuals in the generation=300 p=2 γ=1.95·10-3

Maximum amount of time to run=180 s d=1 C=8
Multi-gene option=true q=3

Maximum number of genes=4
Maximum depth of tree=5
Node functions={'times', 'minus', 'plus', 'square', 'sin', 'cos'}

Input Output

Input Output

Input Output
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Figure 6 – Input of the models



Linchao L, Fratrović T, Jian Z, Bin R. Traffic Speed Prediction for Highway Operations Based on a Symbolic Regression Algorithm

438 Promet – Traffic&Transportation, Vol. 29, 2017, No. 4, 433-441

prediction values of three models indicates that they 
can capture the general tendency of the real data. 

However, in some specific points the error of the 
three models is different. When the speed fluctuates 
within a small range but dramatically, the performance 
of the ARIMA appears to be worse shown by the green 
oval (Figure 8 a). SVR outperforms ARIMA and it seems 
to capture the sudden change of the speed (Figure 8 

b). Obviously, SR cannot only capture the pattern in 
normal period but also performs well under incident 
(Figure 8 c). 

To evaluate the performance of the models under 
different traffic conditions, the speed is divided into 
four regimes: 20-40 km/h, 40-60 km/h, 60-80 km/h 
and 80-100 km/h. For each regime, VAPE and RMSE 
are calculated (Table 3). The lowest RMSE and MAPE 
reflect that SR outperforms the ARIMA and SVR in all 
regimes, especially in 20-40 km/h and 40-60 km/h. 
In Figure 8 SR line of the predicted values follows the 
measured values while two other models show more 
discrepancy and higher MAE after an incident occurs.

4. CONCLUSION
In this study, a simple and interpretable symbolic 

regression based on genetic programming is proposed 
to predict the traffic speed. Using real world data-

set from Xi-Cheng freeway, Jiangsu, China, the mod-

el is compared with the traditional models SVR and 
ARIMA. The results show SR is the most accurate. It 
cannot only take advantage of the computational in-

telligence-based models but also it is interpretable. To 
evaluate the performance of the models in abnormal 
condition, the test day including an incident was used. 
The result shows that the presented model is good in 
predicting the traffic speed during all traffic states. In 
summary, the proposed traffic speed prediction model 
outperforms SVR and ARIMA.

In fact, traffic information retrieved by just one sen-

sor, as considered in this paper, is not enough to ac-

curately represent traffic conditions at an entire free-

way segment, unless such segment is small enough 
to ensure homogenous characteristics of traffic and 
infrastructure. In the future, we will obtain data from 
lots of sensors and the spatial information of the traf-
fic speed will be taken into consideration to enhance 
the accuracy. 

method. Coefficient C governs the relative importance 
of the penalty function; γ controls the width of the ker-
nel function. Initially, parameters are set in a large 
interval and then, with k-fold cross-validation, the in-

terval can be narrowed. In several cases, the best pa-

rameters are obtained. The parameters of SR are set 
considering the requirement of the prediction interval 
and to capture the non-linear pattern. Parameters of 
the algorithms are shown in Table 2.

3.4 Experiment 1: Analysis of the input length

The results of experiment 1 are presented in 
Figure 7. When the length of the input vector equals 
6, the MAPE of SR is the lowest. The SVR gets its low-

est MAPE as the length of the input vector is 5. At the 
beginning (length of input vector is less than 3), the 
MAPE of SR is higher than SVR. However, as the length 
increases after 3, the MAPE of SR becomes lower than 
the MAPE of SVR and both fluctuate in a narrow range.

From the time-consuming aspect, the training time 
and the testing time will increase with the increase 
of the input vector length. In practice, the prediction 
model of intelligent transportation system has strict 
requirements for its real-time. Accordingly, to consider 
the time-accuracy trade-off of the models and make a 
fair comparison, in the following section two models 
are trained with the same vector having 3 elements 
as input.

8,00%
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0,00%
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Figure 7 – The influence of the length of input vector

3.5 Experiment 2: Comparison of three models

The results of the three different models are shown 
in Figure 8 together with MAE (Mean Absolute Error). 
The oval shows the performance of the model when 
an incident happens. It results in a congestion and 
the speed dramatically changes. The fluctuation of the 

Table 3 – Evaluation criteria of the three models

Regimes
RMSE MAPE [%]

SVR SR ARIMA SVR SR ARIMA

20-40 11.20 6.20 19.15 5.06 2.30 7.19
40-60 7.22 4.32 17.46 4.18 2.48 10.36
60-80 5.38 2.53 7.74 4.55 2.16 6.42

80-100 1.89 1.55 2.91 2.06 1.66 3.18
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基于符号回归算法的高速公路速度预测研究

摘要 

随着高速公路交通拥堵的日益严峻，提供实时交通

状态信息有助于缓解该问题，因而受到了广泛的关

注。本论文利用符号回归算法构建高速公路速度预
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Figure 8 - Comparison of the three different models
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测模型，旨在向出行者提供更加准确的交通信息。
模型以遗传算法为基础构建回归簇，以模型复杂度
和精度为优化目标，利用帕累托前沿理论，求解出
最优回归。通过微波检测器获取的数据，将本文提
出的模型与传统的预测模型进行对比，结果表明：
本文提出的模型不仅在正常交通状态下具有较高的
精度，在交通事件发生时同样可以获取较好的预测
结果。表明，本文提出的模型具有较好的稳定性和
抗干扰性，可以应用于实践。
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