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EFFICIENCY LOSS OF MIXED EQUILIBRIUM BEHAVIORS 
WITH POLYNOMIAL COST FUNCTIONS

ABSTRACT

This paper investigates the efficiency loss of selfish rout-
ing simultaneously with user equilibrium (UE) player and 
Cournot-Nash (CN) players. The upper bound of the effi-
ciency loss of UE-CN mixed equilibrium with polynomial cost 
functions is obtained by the scaling method and the non-
linear programming method, respectively. It is shown that 
the upper bound of efficiency loss obtained by the scaling 
method only depends on the polynomial degree of the link 
travel cost function and the upper bound of efficiency loss 
obtained by the nonlinear programming method depends on 
the number of the CN players besides the aforementioned 
factors. The numerical tests validate our analytical results.
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1. INTRODUCTION

Concerning the routing choice behaviour in net-
works, Wardrop presented two famous principles: the 
user equilibrium (UE) and the system optimum (SO)1. 
The UE principle states that every traveller aims to 
minimize their own cost so that no traveller can re-
duce the cost by unilaterally changing their choice at 
the equilibrium. In the game theory version, the traffic 
assignment under the UE principle can be regarded as 
a non-cooperative Nash game with many infinitesimal 
users, and all users are competitive to each other. It is, 
in the game terminology, a non-atomic routing game. 
In the case of SO, it is assumed that there exists a 
central organization to minimize the total cost of the 
system, all users being cooperative and instructed by 
a single player. The above two principles only consider 

the two extreme cases, i.e., there are many infinitesi-
mal players in the UE principle and there is only one 
central player in the SO principle. Haurie and Marcotte 
investigated the network with some non-cooperative 
Cournot–Nash (CN) players, where the users belonging 
to the same player can fully cooperate with each other 
and different players will compete with each other2. 
The users of one CN player aim to minimize their own  
total cost while competing with the users of other play-
ers. Harker examined that the network users can be 
divided into different CN players and UE users and ob-
tained a new network equilibrium model3. Yang et al. 
considered such a situation in which the network has 
an additional player aiming to improve the overall sys-
tem performance by controlling part of flows and fur-
ther extended the above model4. Recently, Yang and 
Zhang studied the existence of anonymous link tolls 
in network with UE-CN mixed equilibrium behaviours5

It is well known that the UE is generally not identi-
cal with the SO as viewed from the total system cost. 
However, the gap between the SO and the UE in the 
worst case had been unknown for a long time. Pa-
padimitriou presented the efficiency loss (the price of 
anarchy) to measure the efficiency loss for the user’s 
selfish behaviour and defined it as the largest ratio be-
tween the total cost of Nash equilibrium and the total 
cost of an optimal solution achieved by centralized 
control6. Later, Roughgarden and Tardos introduced 
it into the traffic network and used it to quantify the 
difference between the UE and the SO7. Recently, re-
searchers have extended the above works in different 
aspects8-10. However, these researches are restricted 
to the non-atomic routing game, i.e. the routing game 
only has the UE player with homogeneous users. In 
addition to non-atomic routing games, Cominetti et al. 
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studied the efficiency loss in the atomic games with 
splittable flows11. Yang et al. investigated the efficiency 
loss of the selfish routing with the atomic CN players12.

However, few scholars studied the efficiency loss 
of the network simultaneously with UE player and CN 
players. In this paper, we study the efficiency loss of 
UE-CN mixed equilibrium. We suppose that all users 
following the UE principle in their routing decisions are 
considered as one single UE player and every CN play-
er controls a strictly positive splittable flow. Under this 
assumption, we use two methods to investigate the ef-
ficiency loss of the UE-CN mixed equilibrium.

2. MIXED EQUILIBRIUM OF THE 
UE AND CN PLAYERS

Let ,G N A= ^ h be a directed transportation network, 
where N  and A denote the sets of nodes and links, re-
spectively. U  represents the UE player (covering all users 
following UE principle) in the network. Let K  be the set 
of CN players in the network; WU  be the set of Origin-
Destination (OD) pairs where users obey UE principle; 
Wk  be the set of OD pairs where users are controlled by 
a CN player k K! . Define W WK

k K
k,/ ! , W W WU K,/ . 

Let dw  be the demand between OD pair w W! ; Rw  be 
the set of paths connecting OD pair w W! .

Other notations used in this paper are as follows: frw  
is the flow on path r Rw! , w W! ; 1ar

wd =  if the path 
r Rw!  traverses link a A! , and 0ar

w
=d  otherwise; vaU  

is the UE flow on link a; , , , ,v v vvU a
U

a
U
a
U

1 1g g/ - +^ h is the 
vector of link flows by UE player; vak  is the CN flow on 
link a; , , , ,v v vva a

U
a a

k1 g g/ ^ h is the vector of all flows on 
link a; , , , ,v v vvk a

k
a
k
a
k

1 1g g/ +-^ h is the vector of all link 
flows by CN player k ;

v va
K

a
k

k K
=

!

/
is the total flow by all CN players on link a; 

, , , ,v v v vK k k k1 1g g/ - +^ h; v v va a
U

a
K

= +  is the total flow 
on link a. Define ,v v vU K/ ^ h. Let t va a^ h denote the av-
erage cost of traversing link a A! . This cost function 
is assumed to be separable in link flows and twice con-
tinuously differentiable.

Suppose all OD demands are fixed. Thus, the fea-
sible sets of link flows by the UE player and the CN 
players can be defined as follows:
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All users in the UE player aim to minimize their per-
sonal travel costs under the current routing decisions 
of the CN players, which is equivalent to solve

min t v x xda a
Kv

a Av 0U U

a
U

+
! !X

^ h/ # , (3)

where the variables ,v a Aa
K !  are taken as fixed. If 

t va a^ h is strictly increasing, then the minimization prob-
lem (3) has a unique solution.

All users in the CN player k K!  aim to minimize 
the total travel cost of this specific player under the 
current routing decision of other players, i.e.,
min t v v v va a

U
a
k

a
k
a
k

a Avk k
+ +

! !X

-^ h/ , (4)

where
v v

,
a
k

a
i

i K i k
=

!!

- / .

In (4), vaU  and , ,v a A k Ka
k ! !-  are taken as fixed, 

,v k Ka
k !  as the variable. It is easy to show that if t va a^ h 

is convex, the minimization problem (4) has a unique 
solution.

The solution simultaneously satisfying the optimal-
ity conditions of the minimization problems (3) and (4) 
is called the UE-CN mixed equilibrium solution. The 
condition for simultaneous minimization of the prob-
lems (3) and (4) can be formulated as the following 
variational inequity (VI):3

Lemma 1 Suppose ,t v a Aa a !^ h  is strictly increas-
ing and convex, the vector ,v v, ,mix U mix K^ h is the UE-CN 
mixed equilibrium of (3) and (4) if and only if the fol-
lowing inequality holds
t v v v ,
a a

mix
a
U

a
mix U

a A

+-
!

^ ^h h"/
,t v v t v v v 0, , ,

a a
mix k

a
mix k

a a
mix

a
k

a
mix k

k K

$+ -
!

l^ ^^ ^h hh h1/
, , .k Kv vU U k k! ! !X X  (5)

where v v v, ,
a
mix

a
mix U

a
mix K

= + , a A! .
Since t va a^ h is strictly increasing and convex, the VI 

problem (5) has at least one solution. Define the vec-
tor of the link costs perceived by the UE and CN players 
on link a A!  as

, , ,t v t v v t v t v v t vc va a a a a a a a a a a a
K
a a

1 f= + +l l^ ^ ^ ^^ ^ ^h h h hh h h,
 (6)
where ,vv va a

U
a
K/ ^ h and K  is the number of 

CN players. For arbitrary two flows v va a! u , if 
, 0c cv v v v >a a a a
T
a a- -u u^ ^^ h hh  holds, where ,$ $  is in-

ner product, then the VI problem (5) has at most one 
solution.13 It is obvious that the VI problem (5) has a 
unique solution if t va a^ h is an affine and strictly mono-
tone function for each link a A! . When the link travel 
cost function is polynomial function, Boulogne et al. 
proved the uniqueness of the UE-CN mixed equilibri-
um.14 This is again described below.

Lemma 2 Suppose that the link travel cost function 
takes a polynomial form as t v t va a a a a

p
0 a= +^ ^h h , 

where ta0  is a nonnegative constant free flow travel 
cost on link a A! , aa  is a link specific nonnegative pa-
rameter, and p p0 < < *. If the number of Nash players 
in problem (5) is limited, then the solution is unique. 
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Here p K K3 1 1*
= - -^ ^h h where K  is the num-

ber of CN players in the network.
Let ,v v v, ,mix mix U mix K

= ^ h and ,v v a AA
mix

a
mix != ^ h  be 

the solution vector of the VI problem (5) and the vec-
tor of the aggregate link flow in the UE-CN mixed equi-
librium, respectively. Then, the total travel cost of the 
system can be written as 

T t v vvmix a a
mix

a
mix

a A
= =

!

^ ^h h/
.t v v t v v, ,

a a
mix

a
mix U

a A
a a
mix

a
mix k

k Ka A
= +

! !!

^ ^h h/ //
Let ,v v v, ,so so U so K

= ^ h and vvAso a
so

= ^ h, a A!  respec-
tively be the solution and the aggregate link flow of the 
following optimization problem:
min t v v
v a a a

a A!
!

X
^ h/ , (7)

where 
U k

k K
#X X X=

!

% .

If t va a^ h is strictly increasing and convex, then the prob-
lem (7) has a unique solution in terms of the aggregate 
link flows va. We use vaso  to denote the unique link flow 
solution of the problem (7). Note that the link flows 
v ,
a
so U  and , ,v k K a A,

a
so k ! !  may not be unique, but

v v v, ,
a
so

a
so U

a
so k

k K
= +

!

/
is unique. The efficiency loss of the UE-CN mixed equi-
librium can be defined as follows:

T
T

t v v

t v v

v
v
so

mix

a a
so

a
so

a A

a a
mix

a
mix

a At = =

!

!

^
^

^

^

h
h

h

h

/
/

. (8)

Since T vso^ h measures the minimal total travel cost 
of the system and T vmix^ h is the sum of all subsystems’ 
minimal travel costs, hence 1$t  holds. Next we fo-
cus on finding the upper bound of t.

3. BOUNDING THE EFFICIENCY LOSS 
OF UE-CN MIXED EQUILIBRIUM

Let ,v v v, ,so so U so K
= ^ h be a solution of the minimi-

zation problem (7). Note that v ,so U U! X , v ,so k k! X , 
k K! . Substituting v v ,

a
U

a
so U

=  and v v ,
a
k

a
so k

=  in the VI 
problem (5), for

T t v vvmix a a
mix

a
mix

a A
=

!

^ ^h h/
we can obtain the next chain of inequalities and equal-
ities:
T t v v t v vv , ,mix

a a
mix

a
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a A
a a
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a
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k Ka A
# + +

! !!

^ ^ ^h h h/ //
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t v v v t v v v, , ,
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! !!

l^ ^ ^h h h/ //
t v v t v t v va a

so
a
so

a A
a a
mix

a a
so

a
so

a A
= + +-

! !

^ ^ ^^h h hh/ /

  .v t v v v, , ,
a
mix k

a a
mix

a
so k

a
mix k

k Ka A
+ -

!!

l ^ ^h h//
For

v v va a
U

a
k

k K
= +

!

/ ,

if t v t va a a a a
p

0 a= +^ ^h h , then t v p va a a a
p 1a= -l ^ ^h h . It fol-

lows
T T v v vv v0 mix so

a a
mix p

a
so p

a
so

a A
# # + +a -

!

^ ^ ^ ^^h h h h h/

.p v v v v, , ,
a a

mix p
a
mix k

a
so k

a
mix k

k Ka A

1+ a -
!!

-^ ^h h//  (9)

If we can find an upper bound for the sum of the 
second and the third terms in the right-hand side 
(RHS) of (9), we then obtain the efficiency loss of the 
VI problem (5). Now, we derive the upper bound of (8) 
by the scaling method and the nonlinear programming 
method, respectively. The scaling method is intro-
duced as follows.

From inequality (9) we have
maxT T v v vv vmix so

a a
mix p

a
p
a

a Av
# a+ -

!
!

X
^ ^ ^ ^^h h h h h'/

  p v v v v, ,
a a

mix p
a
mix k

a
k

a
mix k

k Ka A

1+ a -
!!

-^ ^h h1//
maxT v v vv

0, 0, ,
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v v k K a A
a a
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a
p
a

a Aa
U

a
k
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^ ^ ^^h h h h'/
  p v v v v, ,

a a
mix p

a
mix k

a
k

a
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1+ a -
!!

-^ ^h h1// . (10)

Since the feasible region of v 0a
U $  and v 0a

k $ , 
k K!  for every link a A!  is larger than that of X , the 
last inequality of (10) is satisfied.

Consider the following inequality:

v v v v4
1, ,

a
mix k

a
k

a
mix k

k K
a
k

k K

2# #-
! !

^ ^h h/ /

v v4
1

4
1

a
k

k K
a

2 2# #
!

c ^m h/ , (11)

where the first, second and last inequalities are satis-
fied respectively due to

v v2
1 0,
a
k

a
mix k 2 $-` j , ,k K v 0a

k6 ! $  and

,v v v v 0a a
U

a
k

k K
a
U $= +

!

/ .

Since p v 0a a
mix p 1 $a -^ h , inequality (10) is equivalent to

maxT T v v vv vmix so
v a a

mix p
a
p
a

a A0a
# + +a -

$
!

^ ^ ^ ^^h h h h h'/

  p v v4
1

a a
mix p

a
a A

1 2+ a
!

-^ ^h h 1/ . (12)

Let F v v v p v v v4a a
mix p

a a
mix p

a a
p1 2 1= + -- +^ ^ ^ ^ ^h h h h h ,

0,va 3! + h6 . Obviously, F va^ h is continuous in do-
main, so the second term in the RHS of (12) has the 
maximum within ,v v0a a

mix! 6 @ as long as we can obtain 
F v 0a #l^ h  under the condition v va a

mix$ . It is easy to 
know

F v v p v v p v2 1a a
mix p

a
mix p

a a
p1= + - +-l^ ^ ^ ^ ^h h h h h ,
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F v p v p p v2 1a a
mix p

a
p1 1= - +- -m^ ^ ^ ^h h h h  and

F v p p p v1 1a a
p 2=- + - -n^ ^ ^ ^h h h h .

For v v 0a a
mix$ $ , we have F v 0a #n^ h , this means 

F van^ h decreases with the variable ,v va a
mix 3! + h6 . 

Then we have

F v F v p v p p v2 1a a
mix

a
mix p

a
mix p1 1# = - + =- -m m^ ^ ^ ^ ^h h h h h

p p v2 0a
mix p2 1 #=- + -^ ^h h . (13)

The inequality (13) shows that F val^ h decreases 
with the variable ,v va a

mix 3! + h6 . Since

F v p v2 0a
mix

a
mix p #=-l^ ^h h ,

we get F v F v 0a a
mix# #l l^ ^h h  under the condition 

v va a
mix$ . Thus, we conclude that the second term in 

the RHS of (12) has the maximum within ,v0 a
mix6 @. Re-

write the inequality (12) as
maxT T v v vv vmix so
v a a

mix p
a
p
a

a A0a
# a+ - +

$
!

^ ^ ^ ^^h h h h h'/

      p v v4
1

a a
mix p

a
a A

1 2+ a =
!

-^ ^h h 1/
 maxT v u v uvv

,
so

u a a
mix p p

a
mix p

a
mix

a A0 1
+ +a= -

!
!

^ ^ ^^h h h h
6 @'

/

      p v uv4
1

a a
mix p

a
mix

a A

1 2+ =a
!

-^ ^h h 1/

 maxT u p u u vv 4,
so

u
p

a a
mix p

a A0 1
2 1 1 #= + + a-

!
!

+ +^ ` ^h j h
6 @

/

 maxT u p u uv 4,
so

u
p

0 1
2 1# + + -

!

+^ `h j
6 @

      v t va a
mix p

a a
mix

a A
0+ =a

!

^^ h h/
 maxT u p u u T vv 4,

so
u

p mix
0 1

2 1# + + -
!

+^ ` ^h j h
6 @

. (14)

The first equation is satisfied as v uva a
mix

= , 
,u 0 1! 6 @. Because of (8), 1$t , so we have to define

max u p u u1 4,u
p

0 1
2 1 1

3/- + - +
!

+ -
`c jm

6 @

in the case
max u p u u4 1

,u
p

0 1
2 1 $+ -

!

+` j
6 @

.

Thus we have the following theorem:

Theorem 1 Suppose that link travel cost function t va a^ h, 
a A!  is a polynomial function and p is the highest de-
gree of the polynomial function, ,v v v, ,mix mix U mix K

= ^ h, 
v ,mix U U! X , v ,mix k k! X , k K!  is a solution of problem 
(5) and ,v v v, ,so so U so K

= ^ h, v ,so U U! X , v ,so k k! X , k K!  
is a solution of problem (7). Then the efficiency loss t 
of the UE-CN mixed equilibrium satisfies

max u p u u1 4,u
p

0 1
2 1 1

#t - + -
!

+ -
`c jm

6 @
. (15)

Corollary 1. If all link travel cost functions are affine 
functions, then the efficiency loss of the VI problem (5) 
is not greater than 3/2.
Proof: Let p 1=  in Theorem 1, then

max maxu p u u u u4 4
3

3
1

, ,u
p

u0 1
2 1

0 1
2

+ =- - =
! !

+` `j j
6 6@ @

when u 3
2

= .

From (15), we have

2
3#t .

The above analyses show that in the scaling meth-
od, the efficiency loss of the UE-CN mixed equilibrium 
is irrelevant to the number of CN players in the net-
work.

Next, we use the nonlinear programming method 
to further discuss the efficiency loss. In order to get 
the upper bound for the sum of the second and third 
terms in the RHS of (9), we first investigate the follow-
ing nonlinear programming:
max v v v
v a a

mix p
a
p
a0a
+a -

$
^ ^^ h h h"

  ,p v v v v a A, ,
a a

mix p
a
mix k

a
k

a
mix k

k K

1 !a+ -
!

-^ ^h h1/ . (16)

Let
G v v vva a a

mix p
a
p
a= +a -^ ^ ^^h h h h

  p v v v v, ,
a a

mix p
a
mix k

a
k

a
mix k

k K

1+a -
!

-^ ^h h/ .

Since the Hessian matrix of G va^ h is negative semi-
definite matrix, function G va^ h is a concave function 
of the variables v 0a

U $  and v 0a
k $ , k K!  in the case 

p 0> . Then we conclude G va^ h has a global maximum. 
Let a

Um  and a
km , a A!  be the Lagrange multipliers as-

sociated with v 0a
U $  and v 0a

k $ , k K! . Then we get 
the first-order optimality conditions of (16) as follows:
v p v1 0a a
mix p

a a
p

a
Ua a m- + + =^ ^ ^h h h , (17)

0a
U $m , v 0a

U
a
Um = , (18)

v p v1a a
mix p

a a
p+ +a a-^ ^ ^h h h

  0p v v ,
a a

mix p
a
mix k

a
k1+ + =a m-^ h , k K! , (19)

, v0 0a
k

a
k
a
k$m m = , k K! . (20)

Combining (17) with (18), we have

v p v1
1

a a
mixp

1

$
+

c m .

For each given link, we can find that problem (16) 
reaches the maximum with one and only one of the 
following two conditions:

v p v1
1

a a
mixp

1

+
= c m , (21)

v p v1
1>a a

mixp
1

+
c m . (22)

If condition (21) holds, it is easy to get 0a
Um =  and 

v 0a
U $  from (17) and (18). Substituting (21) into (19), 

we obtain
p v v 0,
a a

mix p
a
mix k

a
k1a m+ =-^ h , k K! , (23)

which are fulfilled only for v 0,
a
mix k

=  and 0a
km = , k K! , 

according to (20). In that occasion, we have
v v v p v v v v, ,

a a
mix p

a
p
a a a

mix p
a
mix k

a
k

a
mix k

k K

1a a- + -
!

-^ ^^ ^ ^h h h h h/
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  v p v p v1
1

1
1

a a
mix p

p

a
mix

p p

a
mix

1 1
a= -

+ +
^ ccc ch m m m m

  p p v1
1

1
1

a

p

a
mix p

1
1a=

+ +
+c c ^m m h

  p
p

p t v v1 1
1 p

a a
mix

a
mix

1
#

+ +
c c ^m m h . (24)

The last inequality of (24) follows from the fact that 
t 0a0 $ , a A! .

If condition (22) holds, referring to (17) and (18), 
we have 0>a

Um  and v 0a
U

= . Next, we study the rela-
tion between the efficiency loss and the set K  through 
analyzing the following two cases.

Case 1: K 1= .
In this case, v va a

cn
=  where vacn denotes the flow 

of CN player on link a and V v,
a
mix cn

a a
mixl= , 0 1a# #l  

where by convention 1al =  if v v 0,
a
mix cn

a
mix

= = . Sub-
stituting v v, ,

a
mix k

a
mix cn

=  and v va a
cn

=  into (19), we get

v v p
p v1

1
a a

cn a
p

a
mix

1
= =

+
+ l

c m .

From (16), we have
max v v v
v a a

mix p
a
p
a0a
+a -

$
^ ^^ h h h"

  p v v v v, ,
a a

mix p
a
mix cn

a
cn

a
mix cn1+a - =-^ ^h h,

p
p

p
p v1 1 1

1
a a

a
p

a
mix p

1
1= +a l

l
-

+ +
+ +^ c c ^h m m h

  p p
p v1

1
a

a
p

a a a
mix p

1
1a

l
l l+

+
+

- =+c ^m h; E

va a a
mix p 1 #= a h +^ h

t v va a a
mix

a
mix# h ^ h ,  (25)

where

p
p

p
p1 1 1

1
a a

a
p1

=
+ +

+
+h l

l
-^ c ch m m

  p p
p

1
1 a

p

a a

1
+

+
+ l

l l-c m; E . (26)

The inequality of (25) is satisfied from the fact that 
t 0a0 $ , a A! .

Case 2: K 2$ .
When v v>, ,

a
mix k

a
mix k1 2, from (19) and (20) we can get 

<a
k

a
k1 2m m  and v v 0a

k
a
k1 2$ = . Let maxv v, ,

a
mix k

k K a
mix k

=
!

r
^ h and

v
v ,

a
a
mix
a
mix k

=b
r

, 
v
v ,

a
a
mix
a
mix U

c =

for a A!  with 0 1a# #b , 0 1a# #c , 0 , 1a a# #b c . 
From (19), it is easy to get 0v >a

kr  and v 0a
k

=  for k k! r . 
Since

v 0a
U

=  and v v va a
U

a
k

k K
= +

!

/ ,

we have

v v p
p v1

1
a a

k a
p

a
mix

1
= =

+
+br

c m , a A! . (27)

Therefore, we can obtain the followivng result from 
(16):
max v v v
v a a

mix p
a
p
a0a
+a -

$
^ ^^ h h h"

  p v v v v, ,
a a

mix p
a
mix k

a
k

a
mix k

k K

1+ =a -
!

-^ ^h h1/

p
p

p
p v1 1 1

1
a a

a
p

a
mix p

1
1=

+ +
+

+a b
b

- +^ c c ^h m m h

  p p
p v1

1
a

a
p

a a a
mix p

1
1+

+
+

=a
b

b b- +c ^m h; E

  p v v ,

,
a a

mix p
a
mix k

k K k k

1 2 #a-
!!

-

r

^ ^h h/
va a a
mix p 1# #a w +^ h ,

t v va a a
mix

a
mix# w ^ h , (28)

where

p
p

p
p1 1 1

1
a a

a
p1

=
+ +

+
+w b

b-^ c ch m m

p p
p p

K1
1

1
1a

p

a a
a a

1 2
b

b b
b c

+ +
+ - -

-
- -

c
^

m
h; E . (29)

The first and second inequalities of (28) follow from 
the fact that

v
K

v
1

1,

,

,

,
a
mix k

k K k k
a
mix k

k K k k

2 2
$ =

-! !! !r r

^ ch m/ /

K
v

1
1 a a

a
mix 2=

b c

-

- -^
^
h

h  and t 0a0 $ , a A! .

In this paper, we mainly consider the network with 
both UE and CN players. If K 1= , (24) or (25) will be 
satisfied when (16) gets the maximum. Let

,max p
p

p1 1
1

a

p

a

1
} h=

+ +
c cm m' 1, (30)

and
max
a A a} }=
!

. (31)

Thus, inequality (9) can be rewritten as
T T Tv v vmix so mix# + }^ ^ ^h h h. (32)

If K 2$ , (24) or (28) is satisfied when (16) has 
the maximum. Let

,max p
p

p1 1
1

a

p

a

1
p w=

+ +
c cm m' 1, (33)

and
max
a A ap p=
!

.  (34)

Then, inequality (9) can be rewritten as

T T Tv v vmix so mix# + p^ ^ ^h h h. (35)
Finally, we get the following theorem:

Theorem 2 Suppose the link travel cost function t va a^ h, 
a A!  is a polynomial function, ,v v v, ,mix mix U mix K

= ^ h, 
v ,mix U U! X , v ,mix k k! X , k K!  be a solution of the 
VI problem (5) and ,v v v, ,so so U so K

= ^ h, v ,so U U! X , 
v ,so k k! X , k K!  be a solution of problem (7). We have

(1) if K 1= , then 1
1#t
}-

;

(2) if K 2$ , then 1
1#t
p-

.

where K  is the set of CN players in the network, K  
is the number of CN players, }  is defined by equations 
(26), (30) and (31), p  by equations (29), (33) and (34).
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4. A NUMERICAL EXAMPLE

Consider a directed graph consisting of 4 nodes 
and 5 links (see Figure 1). The link travel cost func-
tions are defined as .t 1 81 = , t 02 = , t v3 3= , t 04 = , 

.t 2 65 = , respectively. There are two OD pairs, name-
ly (1,4) and (2,4) with fixed demands d 114 =  and 
d 124 = , respectively.

The SO link flow solution can be obtained by solving 
the following minimization problem:

. .min v v v1 8 2 61 3
2

5+ +^ h

s.t. v v 11 2+ =

 v v v2 4 3+ =

 v v 14 5+ =

 v 0i $ , , ,i 1 5f= .

for reaching the first minimum gives .v v 1 8 0U
3
1

3+ - =  
and the necessary condition

v
z 0
d
d
3
1
2 =

for realizing the second minimum leads to 
.v v2 2 6 0U

3
1

3+ - = . The UE-CN mixed equilibrium so-
lution is as follows:
v 0,mix cn
1 = , v 0,mix cn

2 = , .v 0 8,mix cn
3 = , .v 0 8,mix cn

4 = ,

.v 0 2,mix cn
5 = , v 0,mix U

1 = , v 1,mix U
2 = , v 1,mix U

3 = ,

v 0,mix U
4 = , v 0,mix U

5 = .
The aggregate link flow is v 0mix

1 = , v 1mix
2 = , 

.v 1 8mix
3 = , .v 0 8mix

4 = , .v 0 2mix
5 =  which generates 

the system’s total travel cost 3.76. Thus, the efficiency 
loss is 3.76 . .2 8 1 3429t = = .

Result . .1 3429 1 5#t =  satisfies the statement 
in Corollary 1. Based on the definition v v,

a
mix cn

a a
mixl= , 

0 1a# #l  where by convention 1al =  if 
v v 0,
a
mix cn

a
mix

= = . Then, 11l = , 02l = , .0 44443l = , 
14 5l l= = . Considering p 1=  and

p
p

p
p1 1 1

1
a a

a
p1

=
+ +

+
+h l

l
-^ c ch m m

  p p
p

1
1 a

p

a a

1
+

+
+ l

l l-c m; E ,

we get 01h = , 02h = , .0 32413h = , 04 5h h= = . 
For

,max p
p

p1 1
1

a

p

a

1
} h=

+ +
c cm m' 1

and
max
a A a} }=
!

,

we obtain
.0 251 2} }= = , .0 32413} = ,
.0 254 5} }= =  and .0 3241} = .

Thus, the bound becomes .1 1 47951#t }- =-^ h , 
according to Theorem 2. It should be noted that the 
computational burden of the scaling method is less 
than the nonlinear programming method, but the up-
per bound of efficiency loss given by the nonlinear 
programming method is more tight than that by the 
scaling method

5. CONCLUSIONS

In this paper, we have investigated the upper 
bounds of the efficiency loss in a network with both UE 
player and CN players, respectively, using the scaling 
method and the nonlinear programming method. The 
analytical results show that the upper bound obtained 
by each of the two methods depends on the polyno-
mial degree of the link travel cost functions. Further-
more, the upper bound by the nonlinear programming 
method is relevant to the number of CN players. The 
numerical results illustrate that our analytical results 
are reasonable and the scaling method is easier to 

1

2

33 4

5

12

4

Figure 1 - The network used in the example.

The optimal solution is v 1so
1 = , v 0so

2 = , 
v v 1so so
3 4= = , v 0vo

5 =  and the total travel cost is 2.8.
Suppose OD pair (1,4) is governed by users belong-

ing to UE player and OD pair (2,4) by the CN player. 
The UE-CN mixed equilibrium is obtained by solving the 
following two minimization problems simultaneously:

1.8 .min z x x v x x0 1 8d d d
v v v

1
0 0

3
1

0

U U U
1 2 3

= + + +^ h# # #
s.t. v v 1U U

1 2+ =

 v vU U
2 3=

 v 0i
U $ , , ,i 1 2 3= .

and
2.6 0min z v v v v vU

2 5
1

4
1

3 3
1
3
1

= + + +^ h

s.t. 1v v4
1

5
1

+ =

 v v4
1

3
1

=

 , , 0v v v3
1
4
1
5
1 $ .

i.e.,
. .min z v v v v1 8 1 8 2

1
v

U U U

0 1
1 3 3

1
3 3

2
U
3

= - + +
# #

^ h

and
. .min z v v v v2 6 2 6

v

U

0 1
2 3

1
3
1
3 3

1 2

3
1

= + +-
# #

^ h

The necessary condition

0
v
z
d
d
U
3

1 =



Promet – Traffic&Transportation, Vol. 22, 2010, No. 5, 325-331 331 

X.Yu, H. Huang: Efficiency Loss of Mixed Equilibrium Behaviors with Polynomial Cost Functions

implement than the nonlinear programming method, 
but gives a larger upper bound. This states that for 
getting a smaller upper bound of the efficiency loss, 
more factors should be taken into account. Our ongo-
ing study is to explore the efficiency loss of the UE-CN 
mixed equilibrium with elastic demand.
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摘要 
 
多项式路段成本函数下混合均衡行为的效率损失

研究了同时存在用户均衡(UE)局中人和Cournot-
Nash(CN)局中人时自私路径选择导致的效率损失问题．运
用放缩法和非线性规划方法分别得到了UE-CN混合均衡在
多项式成本函数下的效率损失上界．研究结果表明：运用
放缩法得到的效率损失上界值依赖于路段多项式成本函数
对应的最高次；运用非线性规划方法得到的效率损失上界
值不仅和路段多项式函数的最高次有关，而且还和CN局中
人的数目相关．数值试验验证了得到的解析结论．

关键词

效率损失，UE-CN混合均衡，变分不等式，路径博弈
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