X.Yu, H. Huang: Efficiency Loss of Mixed Equilibrium Behaviors with Polynomial Cost Functions

XIAOJUN YU, Ph.D. Student

E-mail: xjyu-myu@163.com

1. School of Economics and Management

Beijing University of Aeronautics and Astronautics
Beijing 100191, China

2. School of Mathematics and Statistics

Guizhou College of Finance and Economics
Guiyang 550004, China

HAI-JUN HUANG, Ph.D.

E-mail: haijunhuang@buaa.edu.cn

School of Economics and Management

Beijing University of Aeronautics and Astronautics
Beijing 100191, China

Science in Traffic and Transport
Original Scientific Paper
Accepted: Nov. 23, 2009
Approved: Sept. 15, 2010

EFFICIENCY LOSS OF MIXED EQUILIBRIUM BEHAVIORS
WITH POLYNOMIAL COST FUNCTIONS

ABSTRACT

This paper investigates the efficiency loss of selfish rout-
ing simultaneously with user equilibrium (UE) player and
Cournot-Nash (CN) players. The upper bound of the effi-
ciency loss of UE-CN mixed equilibrium with polynomial cost
functions is obtained by the scaling method and the non-
linear programming method, respectively. It is shown that
the upper bound of efficiency loss obtained by the scaling
method only depends on the polynomial degree of the link
travel cost function and the upper bound of efficiency loss
obtained by the nonlinear programming method depends on
the number of the CN players besides the aforementioned
factors. The numerical tests validate our analytical results.
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1. INTRODUCTION

Concerning the routing choice behaviour in net-
works, Wardrop presented two famous principles: the
user equilibrium (UE) and the system optimum (SO)*.
The UE principle states that every traveller aims to
minimize their own cost so that no traveller can re-
duce the cost by unilaterally changing their choice at
the equilibrium. In the game theory version, the traffic
assignment under the UE principle can be regarded as
a non-cooperative Nash game with many infinitesimal
users, and all users are competitive to each other. It is,
in the game terminology, a non-atomic routing game.
In the case of SO, it is assumed that there exists a
central organization to minimize the total cost of the
system, all users being cooperative and instructed by
a single player. The above two principles only consider

the two extreme cases, i.e., there are many infinitesi-
mal players in the UE principle and there is only one
central player in the SO principle. Haurie and Marcotte
investigated the network with some non-cooperative
Cournot-Nash (CN) players, where the users belonging
to the same player can fully cooperate with each other
and different players will compete with each other?.
The users of one CN player aim to minimize their own
total cost while competing with the users of other play-
ers. Harker examined that the network users can be
divided into different CN players and UE users and ob-
tained a new network equilibrium model®. Yang et al.
considered such a situation in which the network has
an additional player aiming to improve the overall sys-
tem performance by controlling part of flows and fur-
ther extended the above model®. Recently, Yang and
Zhang studied the existence of anonymous link tolls
in network with UE-CN mixed equilibrium behaviours®
It is well known that the UE is generally not identi-
cal with the SO as viewed from the total system cost.
However, the gap between the SO and the UE in the
worst case had been unknown for a long time. Pa-
padimitriou presented the efficiency loss (the price of
anarchy) to measure the efficiency loss for the user’s
selfish behaviour and defined it as the largest ratio be-
tween the total cost of Nash equilibrium and the total
cost of an optimal solution achieved by centralized
control®. Later, Roughgarden and Tardos introduced
it into the traffic network and used it to quantify the
difference between the UE and the SO’. Recently, re-
searchers have extended the above works in different
aspects®°. However, these researches are restricted
to the non-atomic routing game, i.e. the routing game
only has the UE player with homogeneous users. In
addition to non-atomic routing games, Cominetti et al.

Promet - Traffic&Transportation, Vol. 22, 2010, No. 5, 325-331

325




X.Yu, H. Huang: Efficiency Loss of Mixed Equilibrium Behaviors with Polynomial Cost Functions

studied the efficiency loss in the atomic games with
splittable flows'™. Yang et al. investigated the efficiency
loss of the selfish routing with the atomic CN players®?.

However, few scholars studied the efficiency loss
of the network simultaneously with UE player and CN
players. In this paper, we study the efficiency loss of
UE-CN mixed equilibrium. We suppose that all users
following the UE principle in their routing decisions are
considered as one single UE player and every CN play-
er controls a strictly positive splittable flow. Under this
assumption, we use two methods to investigate the ef-
ficiency loss of the UE-CN mixed equilibrium.

2. MIXED EQUILIBRIUM OF THE
UE AND CN PLAYERS

Let G = (N,A) be a directed transportation network,
where N and A denote the sets of nodes and links, re-
spectively. U representsthe UE player (coveringall users
following UE principle) in the network. Let K be the set
of CN players in the network; WY be the set of Origin-
Destination (OD) pairs where users obey UE principle;
W¥ be the set of OD pairs where users are controlled by
aCN player k € K. Define WX =u, . WK, W = WY U WX,
Let d,, be the demand between OD pair w € W; R, be
the set of paths connecting OD pair w € W.

Other notations used in this paper are as follows: f,,
is the flow on path re R,,, w € W; 6%, = 1 if the path
r € R, traverses link a € A, and 6, = O otherwise; v<
is the UE flow on link a; v/ = (-++,vy_,vZ,vY, 4, ++) is the
vector of link flows by UE player; vX is the CN flow on
link a; v, = (v5,v2, -, vk, ---) is the vector of all flows on
link a@; v = (---, vk ,,vE vE, . --) is the vector of all link
flows by CN player k;

V=D vk
keKk
is the total flow by all CN players on link a;
V= (VL VE VT L) v, = VY 4 v s the total flow
on link a. Define v = (v/,v"). Let t,(v,) denote the av-
erage cost of traversing link a € A. This cost function
is assumed to be separable in link flows and twice con-
tinuously differentiable.

Suppose all OD demands are fixed. Thus, the fea-
sible sets of link flows by the UE player and the CN
players can be defined as follows:

Vivi= Y Yo acA;

QU = WEWUrERw (1)
Zfrw=dw;ﬁWZO,reRw,weWU
reRry
Vivi= Y Shdlach

QF = weWKreRy keK. (2
>ty =dyf,=0reR,we W
reRry,

All users in the UE player aim to minimize their per-
sonal travel costs under the current routing decisions
of the CN players, which is equivalent to solve

vg
mian t, (v + x)dx, 3)
cAvO

VUGSZUa
where the variables vg,a € A are taken as fixed. If
t,(v,) is strictly increasing, then the minimization prob-
lem (3) has a unique solution.

All users in the CN player k € K aim to minimize
the total travel cost of this specific player under the
current routing decision of other players, i.e.,

min > t,(va + v; + vi)vs, (4)
Ve Ta

where
vi= D Vi
ieK,i#k

In (4), v¥ and v},a € Ak € K are taken as fixed,
vE k € K as the variable. It is easy to show that if t, (Va)
is convex, the minimization problem (4) has a unique
solution.

The solution simultaneously satisfying the optimal-
ity conditions of the minimization problems (3) and (4)
is called the UE-CN mixed equilibrium solution. The
condition for simultaneous minimization of the prob-
lems (3) and (4) can be formulated as the following
variational inequity (VI):3

Lemma 1 Suppose t,(v,),a €A is strictly increas-
ing and convex, the vector (V™Y v"™¥) s the UE-CN
mixed equilibrium of (3) and (4) if and only if the fol-
lowing inequality holds

Dt (v (vi-vit) +

acA

DB+ v v 2 0

kek
veQ'vie Q' ke k. (5)
where v = vl vk D g € AL

Since t,(v,) is strictly increasing and convex, the VI
problem (5) has at least one solution. Define the vec-
tor of the link costs perceived by the UE and CN players
onlink a € A as
Ca(Va) = (ta (Vo) ta (Va) + VA5 (Vo)) oos e (va) + VIt (v,),

(6)

where v,=(v5,v5) and |K| is the number of
CN players. For arbitrary two flows v,#V,, if
{(ca(Va) — Ca(Va)),Va— V) > O holds, where (, ) is in-
ner product, then the VI problem (5) has at most one
solution.®® It is obvious that the VI problem (5) has a
unique solution if t,(v,) is an affine and strictly mono-
tone function for each link a € A. When the link travel
cost function is polynomial function, Boulogne et al.
proved the uniqueness of the UE-CN mixed equilibri-
um.** This is again described below.

Lemma 2 Suppose that the link travel cost function
takes a polynomial form as t,(v,) = tyo+ @5(Va)P,
where t,, is a nonnegative constant free flow travel
costonlink a € A, a, is a link specific nonnegative pa-
rameter, and O < p < p". If the number of Nash players
in problem (5) is limited, then the solution is unique.
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Here p* = (3|K|— 1) /(| K| — 1) where | K | is the num-
ber of CN players in the network.

Let vmix — (Vmix,U' vmix,K) and lex _ (vg’ix),a c A be
the solution vector of the VI problem (5) and the vec-
tor of the aggregate link flow in the UE-CN mixed equi-
librium, respectively. Then, the total travel cost of the
system can be written as

mlx Zt (vaX)vmlx _

acA

— zt (vaX)vaxU+ z zt m/x

acA acAkekK
Let v*° = (v*°!,v**K) and v’ = (v5°), a € A respec-
tively be the solution and the aggregate link flow of the
following optimization problem:

m/x k

min D ta(Va)Vas (7)
aeA
where
Q='x [T
kek

If t,(v,) is strictly increasing and convex, then the prob-
lem (7) has a unique solution in terms of the aggregate
link flows v,. We use vZ° to denote the unique link flow
solution of the problem (7). Note that the link flows
v:®Y and v k € K,a € A may not be unique, but
vso — Vso U Vso k
a a + k;( a
is unique. The efficiency loss of the UE-CN mixed equi-
librium can be defined as follows:

Z t mlx mlx

T(Vmix) acA
= = : 8
o T(v*°) — E t, (VO)vs® (®)
acA

Since T(v*°) measures the minimal total travel cost
of the system and T(v™) is the sum of all subsystems’
minimal travel costs, hence p = 1 holds. Next we fo-
cus on finding the upper bound of .

3. BOUNDING THE EFFICIENCY LOSS
OF UE-CN MIXED EQUILIBRIUM

Let v = (v*>Y v*>¥) pe a solution of the minimi-
zation problem (7). Note that v®Ue QY, vs°k e QX,
k € K. Substituting vJ = v and v¥ = v:>* in the VI
problem (5), for

T(Vmix) — Zta (v;nIX)v;nix
acA
we can obtain the next chain of inequalities and equal-
ities:

TOV™) < D (vl + D0 Dt (v vee +

acA acAkeK
+ Z valx k m:x 20 k _ vgnix,k) _
acAkeK
= Zta (V;nix) V;o + z ngnikat'a (VéniX)(vgo,k _ V?iX'k) —
acA acAkeK
= DtV + (V) - L)V +
acA acA

+ Z Zv;nix,ktra (v;niX)(vso,k _ v;nix,k)_

acAkeK
For

U K
V, =V, + Zva,

kek
if t,(Va) = tao + @5 (Vo). then t',(v,) = aap(vo)P . It fol-

lows
0 < T(V™) < T(v) + Y, (VP = (vioP)VE +
acA
+ z a/ap(véniX)p-l zvénix,k(vaso,k _ v;nix,k)' (9)
acA keK

If we can find an upper bound for the sum of the
second and the third terms in the right-hand side
(RHS) of (9), we then obtain the efficiency loss of the
VI problem (5). Now, we derive the upper bound of (8)
by the scaling method and the nonlinear programming
method, respectively. The scaling method is intro-
duced as follows.

From inequality (9) we have

T(Vmix) < T(Vso) + I’J]eaé({ Z Uy ((v;nix)p - (va)p) Va
4 ZAa’aD mIX)p kZKlex k _ mlx k)}
max {za’ o (V3™ P = (VaP)Va

< T(v) +
vi=0vE=0,keKacA] jen
vgnx,k)}.

+ 3 (PP TV -
acA keK
Since the feasible region of v/>0 and vi>0,
k € K for every link a € A is larger than that of Q, the
last inequality of (10) is satisfied.
Consider the following inequality'

Z vgu’x,k (Vg m/x k) < z (vk)2 <

keKk kEK
1 2 _ 1
=2 =t
keK
where the first, second and last inequalities are satis-
fied respectively due to

@v“—vm’“‘) >0, VkE€ K,vE>0 and

(10)

(11)

v, =Vl + Zva,vu>0
keKk

Since a,p(vI™P 1 > 0, inequality (10) is equivalent to
T(V™) < T(v*°) + max {Z s (VTP — (ValP)Va +
VaZ acA
+ > ap(vipt

%(va)Q}. (12)

Let F(v,) = (vI™Pv, + ( VIPP (V)P — (Vo

v, €0, + o). Obviously, F(va) is continuous in do-
main, so the second term in the RHS of (12) has the
maximum within v, € [0,v2"] as long as we can obtain
F’(v,) < 0 under the condition v, = vI™ It is easy to
know

F'(va) = (V3™F + S0P v, = (0 + 1)V,
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F'(va) = SO/I"P* = (p + Dp(vap* and

F'(va) = =(p + D)p(p — 1)(vaf .
For v,= v >0, we have F"(v,)<O0, this means
F”(v,) decreases with the variable v, €[v]™, + ).
Then we have

F'(va) < F/3™) = SO = (p + Dp(vi™p =

=—(p* +p/2)(vI*Pt<o0. (13)
The inequality (13) shows that F'(v,) decreases
with the variable v, € [v]™, + ). Since
Fvi™) =-S5 <o,
we get F'(v,) < F'(v7™)< 0 under the condition
v, = v;". Thus, we conclude that the second term in
the RHS of (12) has the maximum within [0,v;"]. Re-
write the inequality (12) as

T < T0) a5 (02" — (1Pt

+ Z aap(vv;nix)pil%(va)z} =

acA

= TO%) + g 3, (v = P (P +

aceA

+ Z aap(véniX)p»l%(uvgnixy} —

acA

— S0 P2, p+1 mixyp+1
T(v )+ur2[%?<l](u+4u u )Za/a(va) <

acA
< S0 B 2 _ ,,p+1
<T(v )+U”Q[%ﬁ]<“+4“ u )
D (@, (vViPP + tao)va™ =
acA

(14)

mix

The first equation is satisfied as v, = uvy",
u €[0,1]. Because of (8), p = 1, so we have to define

(1 — max (u + %uz - u'”l))1 =+o00

< T(v*) + max (u P2y 1) T(v™),
uelo,1] 4

u€elo,1]
in the case
P o2 p+1)s
u@[%ﬁ](“+4“ u )_1.

Thus we have the following theorem:

Theorem 1 Suppose that link travel cost function t, (v,),
a € A is a polynomial function and p is the highest de-
gree of the polynomial function, v™ = (v™*U ymxK)
viRU e QU ymixk = OF ke K s a solution of problem
(5) and vso — (Vso,U,vso,K), vso,U c QU, vso,k c Qk, ke K
is a solution of problem (7). Then the efficiency loss o
of the UE-CN mixed equilibrium satisfies

P 2 pe1\\t
<(1 - P2
0= (1 Urg[z(a)?(l](u + a u-—u )) .

(15)

Corollary 1. If all link travel cost functions are affine
functions, then the efficiency loss of the VI problem (5)
is not greater than 3/2.

Proof: Let p = 1 in Theorem 1, then

max (u + %u2— u"”) = max (u - §u2) = %

uel0.1] uel0.1] 4
when u = 2
3
From (15), we have
3
<2
0= 5"

The above analyses show that in the scaling meth-
od, the efficiency loss of the UE-CN mixed equilibrium
is irrelevant to the number of CN players in the net-
work.

Next, we use the nonlinear programming method
to further discuss the efficiency loss. In order to get
the upper bound for the sum of the second and third
terms in the RHS of (9), we first investigate the follow-
ing nonlinear programming;

max{a, (VI - (o) +

A I Bl e (A v;"'X"‘)},a €A. (16
keK

Let
G(va) =y ((ngx)p - (Va)p)va +
(VP YV (vE = V).
keK

Since the Hessian matrix of G(v,) is negative semi-
definite matrix, function G(v,) is a concave function
of the variables v > 0 and v >0, k € K in the case
p > 0. Then we conclude G(v,) has a global maximum.
Let 1Y and A%, a € A be the Lagrange multipliers as-
sociated with v > 0 and v£ >0, k € K. Then we get
the first-order optimality conditions of (16) as follows:

2, (Vi™P — a,(p + 1)(v,f + A3 = 0, (17)
AY=0, %Y =0, (18)
a,(vi™P — aa(p + (Vo) +

+a,p(vIP vk L A =0, k €K, (19)
AL>0,AvE =0, ke K. (20)

Combining (17) with (18), we have

1 % mix
> (=
Va—<p+1> Va©

For each given link, we can find that problem (16)
reaches the maximum with one and only one of the
following two conditions:

_ 1 % mix
vo=(55g) v (21)

1 1” mix
Va><myva . (22)

If condition (21) holds, it is easy to get AY = 0 and
vY> 0 from (17) and (18). Substituting (21) into (19),
we obtain
a,p(vi™P vk 4 28 =0, k e K, (23)
which are fulfilled only for v"™* = 0 and X = 0, k € K,
according to (20). In that occasion, we have

a, (vI™p — (VaP)Va + a,p(vmp-t ng)ix,k (VK — ymiky
keK

328
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“3<( v ((p : 1) G ) ><pi 1)1/p‘/2""x
-efeteh] e

1 1/p . )
(25 ) k5] v

The last inequality of (24) follows from the fact that
t.o=0, a €A.

If condition (22) holds, referring to (17) and (18),
we have 12> 0 and vY = 0. Next, we study the rela-
tion between the efficiency loss and the set K through
analyzing the following two cases.

Case 1: |K|=
In this case, v, = v{" where vS" denotes the flow
of CN player on link @ and V™" = y,v™ 0 <y, <1
where by convention «, = 1 if vJ"™ = v/ = 0. Sub-
stituting v"™* = v and v, = vZ" into (19) we get
cn 1+ PK, 1/p mix
V, = Vg —( 1+p""> vy

(24)

From (16), we have
max{af (V™Y = (vaP)Va +
+ a,ap(v;n/xy;-lv;nix,cn (vgn _ V;nix,cn)} —
— _ L 1 + PK, 1/p mix\p+1
= a,(L— ) T2 ) (SEe) e
1/p )
ragp|(SHPee) " e e =

= a7, (v;nixywr 1 <

mixy , ,mix
)%

< Data (Vi
p \(1+ pr,\/P
'{a)<1+p)< 1+p ) *

where
1/p
+p[<1 + pl{"”) — /ca]/ca.

Mg = (1_
1+p (26)

The inequality of (25) is satisfied from the fact that
t,o= 0, a €A.

Case 2: |K|> 2.
When v > vI™¥ from (19) and (20) we can get
A< A2 and vie>vie = 0. Let vk = rpa&((vf’x"‘) and
S

B B v;mx,k B v;n/x,U
a mix "’ Va = mix
Va Va

forae A with 0<p,<1, O<y <1,0=<4,7,
From (19), it is easy to get v > 0 and vX = O for k ;é k.
Since
vi=0andv,=vy+ D v,
keK

we have

_ pBa + 1) ymi
V=V, _< T+p ,a€EeA.

Therefore, we can obtain the followivng result from
(16):
max{a, ((v;"f -

(27)

(Vaf)Va +

+ aap(vaX)p Z vm/x k (V le k)} —
keK

-l

1+
+ CZ;,D[( 1 +p§a _ ﬁa]ﬁa mIX)p+1
(VP S (P <
keEK k£k

S @S (vy" Pt S

< gut, (VWX (28)
where

bl

ep|(SE2 )" -p LT (29)

The first and second inequalities of (28) follow from

the fact that
Z (v;nix,k)Z ( Z lex k)
‘ keK k#k

keK k+#k
(1 - :Ba - 7a) mix\2
=——(v and t,o =
’K ‘ -1 ( a ) a0
In this paper, we mainly consider the network with
both UE and CN players. If | K | = 1, (24) or (25) will be
satisfied when (16) gets the maximum. Let

0, a€eA.

1
b= a2 2 ) o
and
¥ = maxi,. (31)
acA
Thus, inequality (9) can be rewritten as
T(v™) < T(v*°) + yT(v™). (32)

If [K|=2, (24) or (28) is satisfied when (16) has
the maximum. Let

_ p 1\
& = max{( 25 )] ) 83
and
= mgﬁa. (34)
Then, inequality (9) can be rewritten as
T(v™) < T(v°) + ET(V™). (35)

Finally, we get the following theorem:

Theorem 2 Suppose the link travel cost function t, (v,),
a €A is a polynomial function, v™ = (v™*U ymixK)
ViU e QU vk e QK ke K be a solution of the
VI problem (5) and v = (vSoY vsoHK) ysoUe QY
vk e QK k e K be a solution of problem (7). We have

1 .
1—1#’

(1)if |K| =1, then o <

(2)if|[K|= 2, then p < i 5
where K is the set of CN players in the network, | K |
is the number of CN players, ¢ is defined by equations

(26), (30) and (31), & by equations (29), (33) and (34).
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4. A NUMERICAL EXAMPLE

Consider a directed graph consisting of 4 nodes
and 5 links (see Figure 1). The link travel cost func-
tions are defined as t;, = 1.8, t, =0, t3 =vs, t, =0,
t; = 2.6, respectively. There are two OD pairs, name-
ly (1,4) and (2,4) with fixed demands d;, =1 and
d,s = 1, respectively.

The SO link flow solution can be obtained by solving
the following minimization problem:

min 1.8v, + (v3)> + 2.6vs

St V1+V2: 1
Vo+ V4 = V3
Va+vs=1

v,>0,i=1,..,5.

~—
P
-

Figure 1 - The network used in the example.

The optimal solution is vi°=1, v3°=0,
v’ = v;° = 1, v{ = 0 and the total travel cost is 2.8.

Suppose OD pair (1,4) is governed by users belong-
ing to UE player and OD pair (2,4) by the CN player.
The UE-CN mixed equilibrium is obtained by solving the
following two minimization problems simultaneously:

U U VU
minz, = f” 1.8dx+/v2 de+f 1.8(vi + x)dx
0 0 0
s.t. vigvd=1
vy = vy

vW>0,i=1,23.

for reaching the first minimum gives v3 + v§ — 1.8 = 0
and the necessary condition

az, _

dvi
for realizing the second minimum leads to
2v3 + v§ — 2.6 = 0. The UE-CN mixed equilibrium so-
lution is as follows:

VT’X’CH — 0, vénlx,cn — 0, vg‘IIX,Cn — 08, VZNX,CH — 08,

vgwx,cn — 0.27 VTIX,U — O, Véﬂ/x,u — 1Y ngx,u — 1Y

VZ')IX,U — mix,U — O

0, vg

The aggregate link flow is vi"™ =0, vi*=1,
viX = 1.8, vi™* =0.8, v = 0.2 which generates
the system’s total travel cost 3.76. Thus, the efficiency
lossis p = 3.76/2.8 = 1.3429.

Result o = 1.3429 < 1.5 satisfies the statement
in Corollary 1. Based on the definition vJ™® = g, vI™,
0<k,<1 where by convention x,=1 @if
ymxen — ymx — 0 Then, ;= 1, ky = 0, k3 = 0.4444,
k4 = k5 = 1. Considering p = 1 and

o p_\(1+pK,\l/P
7a=( Ka)(1+p><1+p> "

1+ pr, /P
e

we get 7, =0, 7,=0, 73=0.3241, 7,=75=0.

For
O e e

¥ = max,,
acA

and

we obtain

U =¥, = 0.25, ¢, = 0.3241,

¥, = s = 0.25 and ¢ = 0.3241.
Thus, the bound becomes o <(1—¥)* = 1.4795,
according to Theorem 2. It should be noted that the
computational burden of the scaling method is less
than the nonlinear programming method, but the up-
per bound of efficiency loss given by the nonlinear
programming method is more tight than that by the
scaling method

5. CONCLUSIONS

In this paper, we have investigated the upper
bounds of the efficiency loss in a network with both UE
player and CN players, respectively, using the scaling
method and the nonlinear programming method. The
analytical results show that the upper bound obtained
by each of the two methods depends on the polyno-
mial degree of the link travel cost functions. Further-
more, the upper bound by the nonlinear programming
method is relevant to the number of CN players. The
numerical results illustrate that our analytical results
are reasonable and the scaling method is easier to

and
minz, = 2.6v§ + Ovy + (V§ + v3)v3
s.t. vitvi=1
Vi=Vv3
v3,vi,va = 0.
ie.,
min z, = 1.8 — 1.8v§ + v3v§ + ;(vg’f
0<vi<1 2
and
min z, = 2.6 — 2.6v3 + v3vy + (v3)?
0<vi<1
The necessary condition
dz;
dvy
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implement than the nonlinear programming method,
but gives a larger upper bound. This states that for
getting a smaller upper bound of the efficiency loss,
more factors should be taken into account. Our ongo-
ing study is to explore the efficiency loss of the UE-CN
mixed equilibrium with elastic demand.
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