K. Veljanovska, K. M. Bombol, T. Maher: Reinforcement Learning Technique in Multiple Motorway Access Control Strategy Design

KOSTANDINA VELJANOVSKA, Ph.D.

E-mail: kostandina@rocketmail.com,

Sv. Kliment Ohridski University,

Faculty of Administration and Information

System Management

Partizanska bb, 7000 Bitola, Republic of Macedonia
KRISTI M. BOMBOL, Ph.D.

E-mail: kristi.bombol@uklo.edu.mk

Sv. Kliment Ohridski University,

Faculty of Technical Sciences

POB 99, 7000 Bitola, Republic of Macedonia
TOMAZ MAHER, Ph.D.

E-mail: tmaher@fgg.uni-lj.si

University of Ljubljana, Faculty of Civil and
Geodetic Engineering

Jamova 2, SI-1000 Ljubljana, Republic of Slovenia

Intelligent Transport Systems (ITS)
Preliminary Communication
Accepted: May 12, 2009
Approved: Mar. 19, 2010

REINFORCEMENT LEARNING TECHNIQUE IN MULTIPLE
MOTORWAY ACCESS CONTROL STRATEGY DESIGN

ABSTRACT

An appropriately designed motorway access control can
decrease the total travel time spent in the system up to 30%
and consequently increase the merging operations safety.
To date, implemented traffic responsive motorway access
control systems have been of local or regulatory type and
not truly adaptive in the real sense of the meaning. Hence,
traffic flow can be influenced positively by numerous intel-
ligent transportation system (ITS) techniques. In this paper
a contemporary approach is presented. It considers the
design philosophy of an optimal and adaptive closed-loop
multiple motorway access control strategy. The methodology
proposed uses the artificial intelligence technique - known
as reinforcement learning (RL) with multiple agents, and
applies the Q-learning algorithm. One segment of the mo-
torway network with three lanes in each direction and three
motorway entries was designed. The detectors and traffic
signals were placed at the entries (ramps). Traffic flows and
traffic occupancy on the main line as well as the traffic de-
mand on the motorway entries were taken as input model
variables. The output variables referred to the travel speed
on the corridor, the total travel time, and the total stop time.
VISSIM micro-simulator and direct programming of the simu-
lator functions were used in order to implement the RL tech-
nique. The peak hour was chosen for the time of simulation.

The model was tested in two phases. Its effectiveness
was compared to ALINEA. It was observed that the proposed
strategy was capable of responding both to dynamic sensory
inputs from the environment and to dynamically changing
environment. The model of the environment and supervision
were not required. The control policy changed as response
to the inherent system characteristic changes. It was con-
firmed that the strategy was truly adaptive and real-time re-
sponsive to the traffic demand on the corridor.
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1. INTRODUCTION

Recurrent and non-recurrent motorway congestion
leads to delays, reduced traffic safety, increased fuel
consumption, and serious air pollution as well. Such
congestion limits the motorway throughput at times
when it is most necessary, i.e. during the peak hour.
The throughput becomes even more critical when non-
recurrent congestion occurs. Building new motorways
will leave current motorway infrastructure insufficiently
utilized. On the contrary, traffic flows can be positively
influenced by numerous intelligent transportation sys-
tem (ITS) techniques.

The examples of motorway access control systems
are numerous. ALINEA [5, 11, 17, 18] is the first con-
trol strategy on a local level and is based on direct im-
plementation of classical control theory with feedback.
Other efforts include genetic fuzzy approach, artificial
neural networks, and two-level motorway access con-
trol approach [9, 21, 22].

All the existing motorway access control algo-
rithms, although traffic responsive, are not truly adap-
tive to traffic parameter changes [19, 20, 14]. Most of
them are of local regulatory type [4, 5]. Adaptive in this
sense is opposed to the common controversial inter-
pretation of the term in literature. It means more than
giving a real time traffic response only. Additionally,
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the control policy changes itself as a response to the
inherent systems characteristics. In other words, in or-
der to be truly adaptive, the system should be capable
of learning continuously [4].

In this respect, by implementing the information
technology methodology, i.e. the specific artificial in-
telligence technique, a truly adaptive strategy for mul-
tiple motorway access control can be designed and
developed. The main research hypothesis refers to the
statement that motorway access control can be a com-
pletely adaptive and optimal closed loop control strat-
egy that minimizes total travel time on the corridor.

This paper is an attempt to go a step further and
use the adaptive control strategy when the level of
traffic density necessary to be maintained is not pre-
defined - a situation wherein the strategy itself learns
how to minimize the total travel time spent in the sys-
tem. Furthermore, the agents continuously learn by
themselves and adapt to the environment changes
accordingly.

2. ARTIFICIAL INTELLIGENCE
TECHNIQUE USED

Reinforcement learning (RL) is a machine learning
technique which does not require supervised training
as itis the case with other learning techniques such as
neural networks. It is based on goal-directed learning
from interaction with an environment, i.e. what to do
or how to map situations or states towards actions in
order to maximize a numerical reward signal. By trying,
exploring, and exploiting actions in an iterative pro-
cess, the learner - the so-called autonomous agent,
senses and learns in its environment how to choose
the optimal action, or the actions that yield the cumu-
lative reward.

More specifically, the agent and the environment
interact at each sequence of discrete time steps
t=0,1,2,3.... At each time step, the agent, t, re-
ceives some representation of the environment’s
state, here expressed as s, € S (where S is the set of
possible states), and accordingly selects an action,
here expressed as a, € A(s;) (where A(s,) is the set of
actions available in state s,). One time step later, part-
ly - as a consequence of its action, the agent receives
a numerical reward, r,, 1 € R, and finds itself in a new
state, S;, . A trainer may provide a reward or penalty
to indicate the desirability of the resulting state. The
transition from state to state is expressed as
So =SS (1)

At each time step, the agent implements mapping
of the state representations and the probabilities of
selecting each possible action. This mapping is called
the agent’s policy. The most important features of the
agent are trial and error search and delayed reward.

In RL, the agent goal is formalized in terms of a
special signal called a reward that passes from the
environment to the agent. The agent tries to select
actions so that the sum of the discounted rewards it
receives gets maximized, here expressed as

Rt=rt+1+7rt+2+7/2ri+3+-~ = Zykriﬂurlr (2)
k=0

where R, is the expected discounted reward, r, is the
reward in the time step t, and y is the discount rate.

In particular, it chooses at to maximize the expect-
ed discounted return, where y is a parameter between
zero and one.

Almost all reinforcement learning algorithms are
based on estimating value functions i.e.-functions
of states (or state - action pairs) that estimate how
good it is for the agent to be in a given state. This is
explained in 2.1.

2.1 Q-Learning

One of the most important improvements in RL was
the development of an off-policy Temporal Difference
(TD) control algorithm known as Q-learning. This al-
gorithm, developed by Watkins, has been researched
most frequently, both theoretically and practically. This
is mainly due to its origination from the concept and
principles of Dynamic Programming (DP) [1]. Thus re-
lated to DP, Q-learning integrates planning and learn-
ing unlike other reinforcement algorithms [2]. One of
the most important features of this algorithm is that
it does not require a pre-specified model of the envi-
ronment upon which to base its action selection. In-
stead, only relationships between states, actions, and
rewards are learned. Almost all of the traffic control
methods, except the recent ones, usually require pre-
specified models of traffic flow to generate short-term
predictions of traffic conditions or to assess the im-
pacts of possible control decisions [3].

The Q-learning task can be defined as acquiring
optimal policy 7 by learning value function V" of the
optimal policy 7", provided by perfect knowledge of the
immediate reward function r and the state transition
function 6. When the agent knows the functions r and
0 used by the environment to respond to its actions,
then it can calculate optimal action for any state s as

7 (s) = arg max[r(s,a) + yV' (6(s,a))]. (3)

If the evaluation function Q(s,a) represents the
reward, which is received for executing action a from
state s and to which the value discounted by 7y is add-
ed, here expressed by

Q(s,a) = r(s,a) + YV (0(s,a)), (4)
then the agent will select optimal actions even when

it has no knowledge of the functions r and 9, that is
to say
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7' (s) = arg maxQ(s,a) (5)

In this case, independently of the policy being fol-
lowed, the learned action-value function Q directly ap-
proximates Q" that is to say the optimal action-value
function.

It is assumed that under certain conditions in a de-
terministic world (for MDP) estimated value for QA will
converge to true Q value. Different authors have made
some modifications of the original algorithm introduc-
ing learning rate a expressed by

Q(s,a) — Q(s,a) + a[r + ymax,Q(s',a’) — Q(s,a)], (6)

where Q(s,a) is the function of the action reward, «
is the learning rate (O < @ < 1), 7 is the decrease rate
parameter, Q(s',a") is the function of the new action
value a' for the new state s'.

Learning rule used in this research is defined by
Q-learning algorithm by Watkins for non-deterministic
processes [16]. This is the case because the probabil-
ity distributions both for the reward function r(s,a) and
for the transition function d(s,a) depend on s and a
only. They do not depend on previous states or actions
as it is a non-deterministic Markov decision process
(MDP). Since traffic is a stochastic process, in the
learning rule

Q(s,a) = r(s,a) + YV (d(s,a)) (7)
the non-deterministic environment has to be accom-
modated. The function of the action reward Q(s,a)
is redefined as a value expected from the previously

defined value for deterministic case. Hereby, the rule
becomes

Qn(s,8) — (1 = @) Qp1(s:@) +

. 8
+ a,|r + maxQ,.,(s',a")|. (&)

In equation (8), 0, (s,a) is a value expected from
the previously defined value for deterministic case of
the action function a for state s, @, is the learning rate,
0,.4(s',a") is the value expected from the previously
defined value of the new action a' for the new state s'.
The learning rate «,, is expressed by
_ 1

1 + visits,(s,a)

In the above equation s and a are the state and ac-
tion updated during the n-th iteration, and visits,(s,a)
is the total number of times that this state-action pair
has been visited up to including the n-th iteration. This
rule is suitable for deterministic case when «,, is 1. As
n increases «, decreases. By reducing «, at an ap-
propriate rate during training, convergence of Q values
can be achieved. In order to speed up the learning pro-
cess, fixed @, was used in our experiments.

9)

ap

3. MODEL TESTING

In order to test the control strategy, a few scenarios
were divided into two test cases in accordance with
the traffic parameters:

- the first test case - coordinated control and param-
eters measurements taken at the motorway exit,
with known traffic demand on the main line (Figure
1);

- the second test case - coordinated control and
measurements taken downstream at each mo-
torway entry, with unknown traffic demand on the
main line (Figure 2). During this test case two types
of scenarios were developed: 1 - testing when there
is no traffic congestion, 2 - testing when there is
traffic congestion in the corridor.
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Figure 1 - First test case layout
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Figure 2 - Second test case layout

In order to estimate the feasibility of the suggested
strategy for optimal adaptive coordinated control of
the motorway entry ramp, the results from the agents
that learn were compared to the results from the case
with no control strategy and to those from the case
with ALINEA control - the widely implemented control
strategy used as a regulator.

The results gained from the simulations with no
control strategy were taken as the base case and the
rest of the results that were compared to it were esti-
mated. Testing was conducted after sufficient number
of iterations with different numbers of states and after
Q-values convergence [4].
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Figure 3 - Delay comparison

The above presented strategy for optimal adaptive
coordinated motorway access control uses the so-
called look-up table. [4]

4. DISCUSSION

Within the first test case (coordinated motorway ac-
cess control, measurements at the exit of the corridor,
traffic demand known), improvements were as follows:
- savings in travel time up to 14.50%;

- delay decrease by 26%;
- average stop time per vehicle decrease by 37%;
- average number of stops per vehicle decrease by

35%, and
- the number of vehicles exiting the network increase

by 14%.

It is evident that this type of control strategy needs
a longer phase of learning for the agents, which makes
the strategy not efficient enough. Therefore, localized
motorway entry access was implemented, whereas
traffic parameters were measured on the mainline
downstream of each access (the second test case).
During this test case two types of testing (scenarios)
were performed:

1. testing with no traffic congestion present;
2. testing with traffic congestion present.

After performing tests with data showing no traffic
congestion present (Scenario 1), it was noticeable that
there were significant improvements regarding:

- delay (decreased by 30%) (Figure 3);
- average stop time per vehicle (reduced by 78%);
- average number of stops per vehicle (reduced by

80%) proving the smoothness of traffic flow;

longer traveling, evident travel time and delay de-
crease and a significant difference after one hour
of travel.

There was very little improvement in:

- travel time (reduced by 3.29%);

- number of vehicles exiting the corridor (increased

by 3%);

- speed change (increased by 0.33% only).

It was noticeable that the strategy followed real-
time traffic parameters change, particularly during the
transition from the state of congestion to the normal
state. The results from implementation of ALINEA for
the same effectiveness parameters were similar to the
corresponding results gained by the suggested control
strategy. This similarity could be explained with the
fact that there was no recurrent congestion on the cor-
ridor, which made this strategy inferior as compared
to ALINEA.

Regarding travel time savings, speed increase, and
the number of vehicles exiting the corridor, the results
gained with ALINEA were not very promising. This is
important because the ALINEA strategy implementa-
tion requires some parameter calibrations to be made
for the particular motorway and for the corresponding
traffic demand. However, the above coordinated con-
trol strategy testing can be performed on unknown
traffic demand. Therefore, in the case with no traffic
congestion, the suggested strategy could be imple-
mented with learning performed with traffic demand
similar to the one preceding the implementation.

During the second test case (with traffic conges-
tion on the corridor and with unknown traffic demand)
the Q-learning strategy shows extraordinarily good re-
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Figure 4 - Delay comparison

sults after relatively small number of iterations (about
1500). The outcome results were as follows:

- savings in travel time increase by 15%;
- delay decreases by 26% (Figure 4);
- average stop time per vehicle decreases by 38%;

- average number of stops per vehicle decreases by

35%;

- increase in the number of vehicles exiting the net-

work by 10%;

- speed increase by 9.85%.

Improvements were almost doubled compared to
the results with ALINEA implementation with the same
measures of effectiveness (8.41%, 13%, 20%, 19%,
6.22%, and 3.55%, respectively). It was obvious that
the strategy adjusted itself to the traffic conditions, i.e.
it is adaptive and responds to the real-time traffic de-
mand. Thus, the main research hypothesis stated at
the very beginning has been proven [4].

The best improvement was achieved in the case of
control implementation with data showing no conges-
tion (for the average stop time per vehicle and average
number of stops per vehicle).

Regarding all the measures of effectiveness, the
best results were gained when control strategy was
implemented on unknown traffic demand with conges-
tion. This shows that the suggested strategy is feasible
for coordinated motorway access control that is opti-
mal, adaptive, and traffic responsive.

After the testing with data where there is traffic
congestion and unknown traffic demand on the cor-
ridor, the strategy that uses Q-learning showed extraor-
dinarily good results after relatively small number of

iterations. Thus, its feasibility and efficiency have been
confirmed as well.

Suggested coordinated control strategy proves bet-
ter than ALINEA in relation to the average stop time
per vehicle and average number of stops per vehicle
during the peak hour. The evidence of this lies in the
smoothness of the traffic flow with no interruptions in
terms of stop-and-go. This leads to reduced fuel con-
sumption per vehicle, reduced air pollution, and re-
duced environmental pollution as well. [4]

5. CONCLUSION

Bearing in mind the results of the model testing, it
can be concluded that an optimal adaptive coordinat-
ed motorway access control is feasible for performing
multiple motorway access control.

This research opens broad possibilities for rein-
forcement learning technique implementation in traf-
fic control. Some of the steps in scientific research
to follow are to deal with coordinated control for non-
congested traffic, traffic signal control on isolated in-
tersections, and examination of the model efficiency
after implementation.

This research shows the implementation of real-
time traffic control strategy. Several facts confirm its
unigueness such as:

1. the strategy requires no environment modeling;
2. the strategy is truly adaptive;

3. supervision is not necessary,

4. no need for traffic parameters prediction;
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5. the best optimal control strategy, based on the cur-
rent traffic state only and on the current control
conditions, simplifies the approach;

6. the strategy can be implemented in real time since
the model requires neither simulation steps to be
performed nor any calculations to be made during
the implementation phase
Taking the above into account, the conclusion fol-

lows that the strategy is a firm basis for further re-

search in the area of the self-learning adaptive coordi-
nated traffic corridor control.
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ATCTPAKT

TEXHUKATA HA NTPUHYAHO YYEHE BO
MPOEKTUPAH-ETO HA COOGPAKAJHATA
KOHTPOAA HA ABTOIAT CO IMOBEKE MPUCTAINU

CO0ABETHO MpPOEKTMpaHa KOHTpoAa Ha npuctan Ha
aBTonar MOXe Aa ro HamaAu BKYrNnHOTO BpeMe Ha nartyBaHe
Bo cuctemor 3a 30% u nocAeAOBaTeAHO Aa ja 3ronemu
6e3besHOCTa Ha BAeBarbe Ha Bo3yAata. AoceraliHute
3aBUCHM CUCTEMM 3@ KOHTPOAA Ha CoobpaKajoT Ha npucTanot
Ha aBTonat 6ea 0A AOKaAEH MAU PETYAGTOPCKM T, LUTO 3HaYM
AeKa He b6ea LIeAOCHO aAanTMBHM BO BUCTMHCKOTO 3HaUYEHE
Ha 360poT.0TTyKa, Ha coobpaKkajHMOT TOK MOXE Aa Ce BAUjae
€0 6POjHM TEXHUKU HA MHTEAUTEHTHUTE TPAHCMOPTHU CUCTEMM
(UTC).

Bo oBOj TpyAa e npercrtaBeH COBpeMeH rpuctarn KoH
Ppuro30pujata Ha onTUMarHa W apanTUBHa KOHTPOAHA
cTparervja Ha mnoBeKenpucTaneH asTonaT CO 3aTBopeHa
Jjamka. lNpearoxeHata METOAOAOTMja ja KOPUCTU TEXHMKaTa
Ha BeluTayka MHTeAUreHumja, no3Hata Kako NPUHYAHO yYerse
(1Y) co noBeKeKkpaTHU areHT1 U ro npUMeHyBa aAropUTMOT
Ha Q-yyer-e.

lpoektupaHa belue epHa AeAHMLUa 04 Mpexara Ha
aBTonar Co TPU AEHTW BO CEKoja Hacoka M Tpu npuctana
(BA€3HU pamnu). bea noctaBeHW AETEKTOPU U CBETAOCHM
coobpaKkajHu 3HaUM Ha cute Tpu pamnu. Kako BAE3HMU
MNPOMEHAMBU BO MOAEAOT bea 3eMeHU: roAeMuHaTa Ha
coobpaKajH1 TOKOBM, ryCTMHaTa Ha cO0bpaKajoT Ha aBHMUOT
KopuAop M coobpaKkajHaTta nobapyBayka Ha rnpucTanuTe KOH
aBTonar. M3Ae3HuTe npoMeEHAMBU BEAMYMHU CE OAHECyBaa
Ha 6p3uHaTa Ha naTyBare Ha KOPMAOPOT, Ha BKYMHOTO
BpeMe Ha natyBake 1 Ha BKYIHOTO BpeMe Ha 3acTaHyBaH-€.
3a pa ce peanmsupa TexHukata Ha [1Y, ce npumeHu

muKkpocumyaatopot VISSIM v AMPEeKTHOTO nporpamuparse
Ha CUMYAaTOpCKuUTE QyHKUMKU. 3a BpeMe Ha CuMmyrauuja e
n36paH BPBHMOT yac.

Moaenor belue TectupaH BO ABe @a3u. Herosata
epukacHor belue cropeaseHa co ALINEA. Ce 3akayum
AEKa [MpearoXeHaTa cTpaternja Moxe Aa OAroBOpPM Ha
ANHaMUYKUTE BAE30BM OA CEH30pUTE Ha OKOAMHAaTa U Ha
AMHAMUYKUNIPOEMHAMBATa OKOAMHA. KOHTpoAata MOAMTUKA
camata Ce MeHyBalle Kako OAroBOp Ha [MPOMEHUTe Ha
WHXEPEHTHUTE CUCTEMCKU KapakTepucTnku. Ce noTBpAu
A€Ka cTpaTternjata € BUCTMHCKW aAanTMBHa M 3aBUCHA OA
coobpaKajHaTta rnobapyBayka Ha KOPUAOPOT BO PEAAHO
Bpeme.

KAYYHU 360POBU

lMpuctan Ha aBsTonat, coobpakajHu TOKOBM, KOHTPOAA,
cTparervja, BeluTayka MHTeAureHuuja, Q- yuerme, cumyaaumja
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