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OPTIMIZATION OF PARKING PUBLIC 
TRANSPORT VEHICLES IN OSTRAVA

ABSTRACT

A typical trait of public transport is a spatially scattered 
demand. A route net that is operated by a carrier (or several 
carriers) has to be adapted to the demand. Public transport 
vehicles that are not used during a period of a day are usu-
ally parked in defined parking lots that have a given capacity. 
When the vehicle goes from the place where its schedule 
ends (usually a terminus of the last connection served by 
the vehicle) to the place where the vehicle should be parked, 
a non-productive journey occurs. The same occurs at the 
beginning of the vehicle schedule as well. The main goal of 
the paper is to present a mathematical model that enables 
minimization of the total length of all the non-productive 
journeys. Functionality of the proposed mathematical model 
was tested in the conditions of a real bus public transport 
network.
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1. INTRODUCTION – WHY IS IT IMPORTANT 
TO SOLVE THE PROBLEM?

In 2005 an essential operating change occurred 
in the conditions of bus public transport in the city of 

Ostrava. Garages and parking places for vehicles lo-
cated in the central urban district Moravska Ostrava 
were closed down. This fact resulted in the need for a 
decision how the vehicles that had been parked in this 
locality should be assigned to other parking lots.

However, the problem of vehicle parking optimiza-
tion in public transport is not only the problem aris-
ing from such changes. Public transport operation is 
a dynamical process that is determined by national 
deadlines enabling changes in transport organization 
and operation. In these deadlines some minor or ma-
jor changes can be done in public transport organiza-
tion. The most frequent changes are in the route net, 
in times of individual connections or in vehicle sched-
uling. These are the operational factors that can influ-
ence the total length of all the unproductive journeys. 
It is obvious that the high sum of the unproductive 
journey lengths (deadhead kilometres) influences neg-
atively the public transport effectiveness and increas-
es the total amount of necessary subsidies. If public 
transport is financed so that a provider of subsidy 
contracts the number of kilometres being subsidized 
per year with a carrier, the high amount of the non-
productive journeys has an impact on the productive 
journeys because the carrier has fewer kilometres for 
the productive journeys.
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The presented paper lays stress on a presentation 
of a possible method how to solve the problem of as-
signing the vehicles to the parking lots under the con-
dition that the total amount of non-productive (dead-
head) kilometres is maximally reduced. To solve the 
problem mathematical programming is used, that is 
suitable for solving such type of the planning tasks. 
The optimization software Xpress-IVE [20] that is very 
universal is used.

It should be noted that such situations that have a 
trivial solution will not be solved. An example can be 
mentioned, if the carrier utilizes only a single parking 
lot. Another trivial example is if there is only a single 
place where the vehicles start their daily schedule and 
their schedule ends in the same place.

2. STATE OF THE ART

Mathematical programming offers very effec-
tive methods that were employed for solving a lot 
of practical problems in transport in the past. In the 
area of public transport, mathematical programming 
was most often used for planning a route net [1–6] 
or vehicle scheduling planning [14–17]. Mathemati-
cal programming was also used for example to solve a 
problem of assigning the vehicles to individual routes 
depending on round-trip times [18] or with acceptation 
of a request on approximate homogeneity from the 
point of view of the vehicle capacity [19]. Mathemati-
cal programming was also successfully used for time 
coordination of public transport connections [12] or 
designing zone tariffs in integrated transport systems 
[11]. The methods of mathematical programming are 
often combined with heuristic methods for solving the 
problems of public transport; for example sources [1], 
[2] or [10] can be mentioned. Thanks to the fact that 
a lot of universal computationally high-performance 
tools (such as Xpress-IVE) are available, calculation 
times are not a limiting factor when solving extensive 
practical problems and therefore mathematical pro-
gramming has a big potential for solving the practical 
problems of public transport.

The problem of assigning the vehicles to the de-
fined parking lots can be considered to be a partial 
part of a more general task about vehicle scheduling 
[14–17]. Such type of the task was successfully pro-
grammed in the past (the program KASTOR [14]) and 
repeatedly applied in suburban public transport [4]. It 
resulted in substantial savings in the running costs of 
bus carriers that were caused by minimizing the num-
ber of vehicles and the value of non-productive kilo-
metres. But in practice there can be some situations 
when it is not possible to essentially decrease the 
number of vehicles by planning their journeys among 
the routes (the vehicles do not go from a connection 
of a route to a connection of a different route). In such 

cases the main advantage of the optimization process 
that the system KASTOR utilized is lost. The main rea-
sons are obvious – the number of the vehicles cannot 
be decreased and the total sum of the non-productive 
kilometres increases. An exact border which would 
say when the program KASTOR can bring substantial 
savings is not known to the authors of the paper. The 
value of potential savings probably depends on several 
operating parameters of the routes that are run (head-
ways, distances between the termini and so on). The 
authors estimate that the significance of the effects 
got by the program KASTOR strongly decreases in the 
situations when the headway in public transport does 
not exceed 30 minutes.

In such situation it makes sense to search for an 
alternative approach to optimization of savings when 
planning vehicle scheduling. The savings can be found 
when arrivals of vehicles in the beginning of their daily 
schedule and their returns to a depot are planned. It is 
not difficult to find out that such alternative approach 
does exist. It is known that in our case places from 
which the vehicles have to go to serve the first con-
nection (the parking lots) and places where the vehicle 
starts its first productive journey (usually the bus ter-
minus where the vehicle starts its daily schedule) are 
given. On the other hand the places where the vehicles 
finish their daily schedule (usually the bus terminus of 
the last connection the vehicle has to serve) and the 
places where the vehicles are parked are also known. 
Let us assume that the lengths of both types of non-
productive journeys are given. It is more than obvious 
that this task resembles the transportation problem 
that was formulated in [8] and for its solving we know 
all the necessary data. The parking lots from which the 
vehicles depart to serve the first connection of their 
daily schedule and the bus termini where the vehicles 
finish their last productive journey according to their 
schedule represent sources in the transportation 
problem. On the other hand, the bus termini where 
the vehicles start their first productive journey (serving 
the first connection) and the places where the vehicles 
are parked after serving the last connection represent 
destinations of transportation problem. The lengths 
of the non-productive journeys correspond to the unit 
costs that are used in the transportation problem. A 
decision should be made about the number of the 
non-productive journeys among the individual places 
so that the total length of all the non-productive jour-
neys is minimal.

Due to the fact that the vehicles run non-produc-
tively in two phases (before the first connection and 
after the last connection), the original mathematical 
model of the transportation problem needs not be suf-
ficient for solving the task and therefore it is necessary 
to modify the original model for the conditions of the 
concrete carrier.
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The paper is limited only to optimization of non-
productive journeys before the first connection and 
after the last connection of the planned vehicle sched-
ule during working days. This means that the vehicle 
schedule between the first connection and the last 
one is not changed. Moreover, we also optimize park-
ing of only one kind of vehicles (trams, buses, trolley-
buses ...). This is because it is not usually possible (or 
it is very complicated) to use parking lots intended for 
one kind of the vehicles for parking other kinds of the 
vehicles. For example, the tram parking lots cannot be 
used for parking the buses.

3. MATHEMATICAL MODEL

It is possible to take into consideration two modi-
fications of the transportation problem for solving our 
task – the balanced transportation problem and the 
unbalanced transportation problem with the excess of 
the capacities over the demand. However, our task is 
more complicated. The complications follow from the 
operational conditions of the concrete carrier and they 
are the following (please note that the following con-
straints are the constraints for the Ostrava Transport, 
joint-stock co.):
1. The carrier uses different vehicles but they are the 

same kind (for example only buses).
2. The concrete vehicle is assigned to the single park-

ing lot (it is due to record keeping, for example all 
the technical documentation of the concrete ve-
hicle is available in this parking lot) – the vehicle 
departs from the parking lot to serve the first con-
nection and after serving the last connection the 
vehicle returns back.

3. Sometimes it can happen that the vehicle starts to 
serve the first connection and finishes the last con-
nection at different termini.

4. For some kinds of the vehicles it is necessary to 
build up specialized facilities, therefore it is re-
quested to park all of the vehicles in the same park-
ing lot. Let us consider the situation that the carrier 
owns more kinds of vehicles that must be parked 
in the same parking lot. For solving such problem 
two variants exist. The first variant enables parking 
of all vehicles in the same parking lot. The second 
variant admits that parking of the vehicles can be 
in several parking lots.
Let us pay attention to the transportation problem 

and its modification that is necessary for solving the 
problem. At first, let us characterize what destinations 
(or customers) of the original transportation problem 
and their demands represent our task. In our case, 
the destinations correspond to the places where non-
productive journeys are terminated. It results from the 
previous text that we have two types of destinations. 
The first type consists of the bus termini where the in-

dividual vehicles start their daily schedules; the sec-
ond type corresponds to the parking lots in which the 
vehicles are parked after finishing their daily sched-
ules. Note that the places need not be the same. Thus 
it is necessary to use a different way of how to formu-
late the destinations and their demands (or requests). 
At first, let us define the term – cumulated place. The 
cumulated place has its importance in the cases when 
the bus terminus where the vehicle starts the schedule 
differs from the bus terminus of the last connection. In 
such cases the fictional cumulated place represents 
both of the termini described in the previous sentence. 
The request of each cumulated place is given by the 
number of vehicles for which their schedule starts or 
terminates at the bus terminus represented by this 
cumulated place. Establishing the fictional cumulated 
places is very important. Using them we are able to 
model various non-productive journeys of the vehicles 
and the original information about the real value of 
non-productive covered distances is kept.

Let us explain the cumulated places on an exam-
ple. Let us have two bus termini A and B. If the vehicle 
starts its daily schedule at the bus terminus A and its 
schedule ends at the same bus terminus A, then the 
cumulated place for this vehicle is the original bus ter-
minus A. The non-productive covered distance corre-
sponds to a sum of the distance from the parking lot to 
the bus terminus A and back in this case. If the vehicle 
starts at the bus terminus A and finishes at the bus ter-
minus B, then the cumulated place for this vehicle is 
a new fictional place A-B. The non-productive covered 
distance is the distance from the parking lot to the bus 
terminus A plus the distance from the bus terminus B 
to the parking lot.

Now let us discuss what the sources and their ca-
pacities of the original transportation problem repre-
sent in our case. The sources correspond to the places 
at which the non-productive journeys begin. From the 
previous text it is known that there are two types of 
the sources. The first type is represented by the park-
ing lots from which the vehicles depart to serve their 
first connections in the frame of the planned schedule. 
The second type comprises the bus termini of the last 
connections according to the schedules. Thanks to the 
definition of the cumulated place, that also includes 
information about the second type of the sources; we 
consider only the parking lots to be the sources of our 
modified transportation problem.

Finally, we can define the meaning of the last group 
of entry data – the rates that influence the value of 
the objective function. In the original transportation 
problem the rates represent how much a unit carriage 
from the source to the destination costs. In our case 
the rates will correspond to the distances among the 
sources (the parking lots) and the destinations (the 
cumulated places). Let us presume that the vehicle 
begins to serve the first connection in the frame of its 
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schedule at the same bus terminus where the vehicle 
finishes the service of the last scheduled connections. 
In this case the rate for the individual parking lot is 
calculated as a sum of the distance from the parking 
lot to the bus terminus and back. Now let us consider 
that the vehicle begins to serve the first connection at 
the bus terminus that differs from the bus terminus 
at which the vehicle finishes the last scheduled con-
nection. In this case the rate for the individual park-
ing place is calculated as a sum of the distance from 
the parking lot to the first bus terminus of the vehicle 
schedule and the distance from the last bus terminus 
of vehicle schedule to the parking lot.

Formulation of the mathematical model:
Let a set of the vehicle types I  be given for the 

solved kind of the vehicles. For each type of solved 
kind of the vehicles i I!  its parking norm pi  is de-
fined and it is given if all the vehicles of the individual 
type have to be parked together in the same parking 
lot or not. The parking norm represents how many 
parking places the individual vehicle needs for park-
ing. Using the parking norm in the model enables us to 
model parking of vehicles with different needs of park-
ing places if it is necessary. Therefore, the vehicle set 
I  is divided into two subsets denoted I1  and I2 . Let us 
assume that subset I1  contains all the vehicle types 
for which it is requested that all the vehicles from the 
individual vehicle type have to be parked together in 
a single parking lot. Subset I2  includes such vehicle 
types for which the carrier does not request that all 
of them have to be parked in the same parking lot. 
For the sets I , I1  and I2  it holds that I I I1 2, =  and 
I I1 2+ Q= .

For each vehicle type a set of the possible park-
ing lots J  and a set of cumulated places K  are given. 
For each parking lot j J!  its capacity aj  is known. 
For each cumulated place k K!  its request bik  for 
the vehicles of the type i I!  is defined. For each jour-
ney between the parking lot j J!  and the cumulated 
place k K!  the distance cjk  in kilometres is known 
(the distance does not depend on the vehicle type). 
Our task is to decide about how many vehicles run 
between the individual parking lots and the individual 
cumulated places so that the total non-productive cov-
ered distance is minimal.

In order to write down the mathematical model it is 
necessary to establish two groups of variables:
 xijk  – the number of vehicles of type i I!  run-

ning between the parking lot j J!  and the 
cumulated place k K! ,

 yij  – an auxiliary bivalent variable that models 
the decision about parking the vehicles of 
the type i I!  in the parking lot j J! . If 
y 1ij =  then the vehicles of type i I!  will 

be parked in the parking lot j J! . If y 0ij =  

then the vehicles of type i I!  will not be 
parked in the parking lot j J! .

The mathematical model has the following form:
,min f x y c xjk

k K
ijk

i I Ij J 1 2

=
,! !!

^ h / //  (1)

subject to:
p x ai

i I I
ijk

k K
j

1 2

#
,! !

/ /  for j J! , (2)

x bijk
j J

ik=
!

/  for i I I1 2,!  and k K! , (3)

x y Tijk
k K

ij#
!

/  for i I1!  and j J! , (4)

y 1ij
j J

=
!

/  for i I1! , (5)

x 0ijk $  for i I I1 2,! , j J!  and k K! , (6)

,y 0 1ij ! " ,  for i I1!  and j J! . (7)
It is supposed in the presented model that the 

parking lots have their capacities so that all the ve-
hicles can be parked in the parking lots.

Function (1) expresses the total distance that is 
covered non-productively (deadhead kilometres). Let 
us briefly discuss why the non-productive covered 
distance is used as the objective criterion. It is clear 
that it is possible to consider also other criteria such 
as fuel consumption or emission of pollutants when 
deadheading (please note that using a different opti-
mization criterion can change the results of the mod-
el). However, the city of Ostrava, which is the founder 
and the subsidizer, evaluates traffic performance of 
Ostrava Transport, joint-stock co. according to the total 
covered distance. Currently in the Czech Republic, it is 
usual that the amount of subsidy is lower than it was in 
the past. Ostrava Transport, joint-stock co. is therefore 
forced to reduce the total covered distance due to the 
decreasing subsidy. Reducing the non-productive cov-
ered distance is the most natural way how to reduce 
the total covered distance with no influence on the pro-
ductive covered distance.

The group of constraints (2) ensures that the given 
capacity of each parking lot will not be exceeded. The 
group of constraints (3) assures that all the planned 
vehicle schedules will be served. The groups of con-
straints (4), (5) and (7) are active only when subset I1  
is not empty – I1 Q! . The group of constraints (4) en-
sures logical links among the groups of the variables 
xijk  and yij . The group of constraints (5) assures that 
the request that all the vehicles of type i I!  must be 
parked in the same parking lot will be satisfied. The 
groups of constraints (6) and (7) define domains of 
definition for all the variables of the model.

Symbol T represents a suitably chosen prohibitive 
constant. To assess its value before the beginning of 
the optimization calculation for example formula (8) 
can be applied:

maxT b
,i I k K

ik
1

=
! !

" ,  (8)
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4. GENERAL DESCRIPTION OF 
OPTIMIZATION ALGORITHM

The optimization algorithm consists of several 
steps:

Step 1 – create a list of the parking places (set J). 
The list of the parking places forms a list of the sources 
in the presented transportation problem modification.

Step 2 – define capacity aj  for each parking place 
j J!  (how many vehicles can be assigned to the park-

ing place).
Step 3 – for each vehicle find out the bus terminus 

where the vehicle starts its daily schedule (the initial 
bus terminus) and the bus terminus where the vehicle 
ends its daily schedule (the final bus terminus).

Step 4 – on the basis of existing combinations 
of the initial and final bus termini create a list of the 
cumulated places (set K). The list of the cumulated 
places forms the list of the customers in the presented 
transportation problem modification.

Step 5 – for each cumulated place k K!  define its 
request bik  – the request represents how many sched-
ules that are served by the vehicle type i I!  starts at 
the initial bus terminus or ends at the final bus termi-
nus that form the cumulated place k.

Step 6 – calculate the non-productive covered dis-
tances between the individual parking lots and the in-
dividual cumulated places – the values represent the 
coefficients of the objective function.

Step 7 – create the mathematical model and im-
plement it in suitable software on the basis of input 
data you have got in the previous steps. After success-
ful implementation solve the mathematical model.

Step 8 – calculate the savings in the non-produc-
tive covered distance (NCDS) according to formula (9):

NCDS NCD
NCD NCD 100

b
b a $=
-

, (9)

where:
 NCDS – the savings in the non-productive covered 

distance,
 NCDb  – the non-productive covered distance before 

the optimization experiment,
 NCDa  – the non-productive covered distance after 

the optimization experiment.

5. NUMERICAL CALCULATION

The presented mathematical model was tested us-
ing an example from the practice. The model was ap-
plied to plan the non-productive journeys of the buses 
in the conditions of Ostrava Transport, joint-stock co.

The total number of the buses that were included 
in the calculation experiment is equal to 104; their 
types are as follows: ten buses are Fiat or Mercedes, 
seven buses are Renault City Bus and the other ve-
hicles are of other types. For the buses Fiat and Mer-

cedes there is a request that they have to be parked 
together in the same parking lot; the same must be 
ensured for all the buses Renault City Bus as well. Ac-
cording to the notation we established in the previous 
section it holds that I 3= , I 21 =  and I 12 = . For 
the experiments, the applied parking norm was equal 
to p 1i =  for , ,i 1 3f=  because all the vehicle types 
have the same need for parking places. In this case 
the original model can be simplified and the parking 
norm pi  can be omitted in formula (2).

The vehicles can be parked in three parking lots 
that are situated in different urban districts, which 
means J 3= . For the purposes of the experiment 
the parking lots were named as follows – Slezska 
Ostrava, Martinov and Poruba. The total capacity of 
the parking lots is 160 parking places; please note 
that in this case parking for 104 vehicles is planned. 
The capacity of the parking lots is listed in Table 1. Due 
to the fact that the number of vehicles is less than the 
total capacity of all the parking lots, it is necessary to 
use the modified mathematical model that has the 
group of the constraints in form (2).

For each vehicle schedule it was necessary to find 
two important bus termini of the vehicle schedule – 
the initial bus terminus of the first connection and 
the final bus terminus of the last connection. In total 
there were 53 different bus termini. From these bus 
termini 73 cumulated places were created in order to 
apply the presented mathematical model; that means 
K 73= . Instructions how to get the cumulated plac-

es are explained by way of a simple example in Section 
3. The requests of the individual cumulated places for 
the individual vehicle types were in the range from 1 
to 6.

For each combination of the parking lot and the 
cumulated place the corresponding distance was 
computed. Consequently, we created a matrix of ob-
jective function coefficients that had 3 73 219# =  
elements.

Detailed information about the creation of the cu-
mulated places and the values of distances covered 
non-productively can be found in publication [13].

The mathematical model has the following param-
eters: Objective function (1) has 219 terms. The set 
of the constraints consists of 84 constraints in total. 
The group of constraints (2) includes 3 constraints; the 
group of constraints (3) contains 73 constraints. The 
group of constraints (4) is formed by 6 constraints and 
the group of constraints (5) includes 2 constraints. 
The total number of the non-negative variables yij  
for i I1!  and j J!  is 6. The model has 79 variables 
in total. Numerical experiments were performed on 
PC equipped with the processor Intel® Core™2 Duo 
E8400 and 3.25 GB of RAM (hardware configuration 
is important regarding calculation times). The results 
obtained by the experiment are summarized in Tables 
1 and 2.
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Applying formula (9) the savings in the non-produc-
tive covered distance were calculated after the optimi-
zation experiment. The rounded decrease of the total 
non-productive covered distance expressed as a per-
centage was 4% after the optimization experiment. The 
non-productive covered distance before the optimiza-
tion experiment was 1,166.09 km, the non-productive 
covered distance after the optimization experiment is 
1,120.67 km. The difference seems to be small but if 

we realize that a year has approximately 250 working 
days we get the savings of about 11,355.00 km.

The information about searching the optimal solu-
tion is depicted in Figure 1. The important pieces of in-
formation in Figure 1 are: information about the value 
of the optimization criterion (the total non-productive 
covered distance) and the time of the optimization 
calculation. As you can see in Figure 1, the calculation 
time is insignificant. Moreover, we can see in Figure 1 
that the solution we have got is optimal.

6. CONCLUSION

The presented paper is focused on the problem 
of assigning the vehicles to the defined parking lots. 
The paper contains the mathematical model of the 
task; the functionality of the model was tested on an 
example from practice –the model was applied to the 
selected group of the Ostrava Transport’s vehicles. The 
calculation experiment showed that the model is func-
tional. Applying the model to our problem brought a 
4% decrease of the total non-productively covered dis-
tance. It can be assumed that including other vehicles 
in the optimization process could bring an additional 
decrease of the non-productively covered kilometres.

The mathematical model formed by (1) – (7) does 
not consider additional costs that are associated with 
moving the specialized facilities for the types of the 
vehicles that have to be parked together in the same 
parking lot (in our case such moving did not occur). 
However, the additional costs can be easily imple-

Table 1 - The capacity of the individual parking lots and results of the optimization experiment - the number of vehicles 
being parked in the parking lot before and after the experiment

Parking lot Parking lot capacity Vehicles being parked be-
fore optimization

Vehicles being parked 
after optimization

Slezska Ostrava 102 58 49
Martinov 25 13 22
Poruba 33 33 33
In total 160 104 104

Table 2 - The summary of the results – the number of the vehicles assigned to the individual parking lots before and after 
the optimization process

Vehicle type Situation Slezska Ostrava Martinov Poruba In total

Fiat and Mercedes
before optimization 0 10 0 10
after optimization 0 10 0 10

Renault City Bus
before optimization 7 0 0 7
after optimization 7 0 0 7

Other vehicles
before optimization 51 3 33 87
after optimization 42 12 33 87

Vehicles being parked before optimization 58 13 33 104
Vehicles being parked after optimization 49 22 33 104
Difference -9 +9 0 0

Figure 1 – Information about searching the optimal solution
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mented in the presented model; it can be incorporated 
in the additional costs in the objective function. It can 
be modified analogously to a model of a location prob-
lem [9].
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ABSTRAKT  
 
OPTIMALIZACE PARKOVÁNÍ VOZIDEL MĚSTSKÉ 
HROMADNÉ DOPRAVY V OSTRAVĚ

Typickým problémem veřejné hromadné dopravy je 
prostorově roztroušená poptávka. Linková síť, která je pro-
vozována dopravcem (nebo skupinou dopravců), musí být 
pro tuto poptávku adaptována. Vozidla městské hromadné 
dopravy, která nejsou využívána v průběhu některé části 
dne, jsou obvykle parkována na definovaných parkovacích 
plochách s danou kapacitou. Pokud vozidlo přejíždí z místa, 
ve kterém vozidlo končí svou službu (zpravidla se jedná o 
konečnou zastávku posledního spoje, který vozidlo ob-
sluhuje), do místa, kde je vozidlo zaparkováno, vzniká ne-
produktivní jízda. Tento problém nastává i před zahájením 
obsluhy prvního spoje. Hlavním cílem článku je představit 
matematický model, který umožňuje minimalizovat celkovou 
sumu všech neproduktivně ujetých kilometrů. Funkčnost 
navrženého matematického modelu byla testována v pod-
mínkách reálné sítě veřejné autobusové dopravy.

KLÍČOVÁ SLOVA

optimalizace; matematický model; lineární programování; 
veřejná doprava;
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