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GPS DATA BASED NON-PARAMETRIC REGRESSION FOR 
PREDICTING TRAVEL TIMES IN URBAN TRAFFIC NETWORKS

ABSTRACT

A model for predicting travel times by mining spatio-
temporal data acquired from vehicles equipped with Global 
Positioning System (GPS) receivers in urban traffic networks 
is presented. The proposed model, which uses k-nearest 
neighbour (kNN) non-parametric regression, is compared 
with models that use historical averages and the seasonal 
autoregressive integrated moving average (ARIMA) model.

The main contribution is provision of a methodology for 
mining GPS data that involves examining areas that cannot 
be covered with conventional fixed sensors. The work con-
firms that the method that predicts traffic conditions most 
accurately on motorways and highways (namely seasonal 
ARIMA) is not optimal for travel time prediction in the context 
of GPS data from urban travel networks. In all the examined 
cases, kNN approach yields a mean absolute percentage 
error that is twice as good as ARIMA, while in some cases 
it even yields a mean absolute percentage error that is an 
order of magnitude better.

The merit of the model is demonstrated using GPS data 
collected by vehicles travelling through the road network of 
the city of Zagreb. To evaluate the performance, the models 
mean absolute percentage error, mean error, and root mean 
square error are calculated. A non-parametric ranked Fried-
man ANOVA to test groups of three or more models, and the 
Wilcoxon matched pairs test to test significance between two 

models are used. The alpha levels are adjusted using the 
Bonferroni correction.

Today’s commercial fastest-route guidance systems can 
readily incorporate the proposed model. Since the model 
yields travel times that are dependent on dynamic factors, 
these commercial systems can be made dynamic. Further-
more, the model can also be used to generate pre-trip infor-
mation that will help users to save time.
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travel time prediction, urban traffic, GPS data, k-nearest 
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1. INTRODUCTION

One of the main tasks in today’s urban traffic con-
trol and route planning systems is to forecast various 
traffic conditions such as traffic flow, mean speed, and 
travel time. Travel time prediction has been recognised 
as one of the most valuable elements, especially for 
Advanced Traveller Information Systems (ATIS) and 
Advanced Traffic Management Systems (ATMS) in the 
context of intelligent transport systems. Since traf-
fic conditions are significantly time-dependent, route 
guidance systems must be dynamic. For instance, the 
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routes that have higher speed limits may not be the op-
timal choice during certain times of day such as rush 
hour. Dynamic guidance systems try to find the fastest 
route by using algorithms that generate a travel time 
that changes according to the trip start time. The most 
commonly used algorithms are modifications of Dijks-
tra’s shortest-path algorithm [1, 2].

There are many explanatory models that describe 
traffic conditions: DynaMIT [3], VISUM-online [4], 
Schreckenberg’s cellular automata model [5], and 
Kerner’s jam front propagation model [6]. In addition, 
there have been many attempts to estimate future 
conditions using data mining. Some are parametric 
linear and non-linear regression models [7-10], non-
parametric regression models [11], ARIMA models 
[12], space-time ARIMA models [13-15], ATHENA mod-
els [16], Kalman filters [17], artificial neural networks 
[18-22], and support vector machines [23]. Emerging 
traffic data collection techniques make these extrapo-
lation-based models easier to use. Older techniques, 
such as roadside sensors, cannot collect sufficient 
traffic data on spatially complex traffic networks due 
to coverage limitations. With the rise of GPS technol-
ogy, vehicles travelling through road networks collect 
useful traffic data. Data mining can be used to pre-
dict future conditions. While significant work has been 
performed for motorways and highways, only limited 
work has been attempted for urban networks, where 
temporal dependence of travel time is more complex.

The main contributions considered are:
1. The travel times are predicted from GPS data. GPS 

data help applications cover spatially complex 
networks, which roadside sensors cannot do. This 
enables the exploration of large urban traffic net-
works.

2. A method for mining GPS data is developed. Since 
predicting travel times is not the primary motiva-
tion behind GPS technology, it is found that GPS 
data must be preprocessed before any travel 
time methods can be applied. The proposed pre-
processing step involves map matching (that is, 
linking the GPS records with actual digital maps), 
temporal outlier detection (filtering records with 
unusually high travel times due to vehicles making 
stops), and reduction of travel time variability to en-
sure more accurate forecasts. The preprocessing 
step reduces travel time variability by using a non-
equidistant aggregation interval approach.

3. The non-equidistant aggregation intervals approach 
is proposed as a novel way of handling the missing 
values. It enables the usage of GPS data even when 
coverage is low. This issue is critical when the data 
are collected from GPS transponders onboard deliv-
ery vehicles, as in the studied case.

4. Urban traffic networks are investigated. Urban traf-
fic behaves differently from other types of traffic 
networks: specifically, travel times can show higher 

variability and chaotic behaviour [24]. GPS data en-
able the investigation of urban traffic networks, but 
both the GPS data and the nature of urban traffic 
networks (specifically, their volatility) introduce ad-
ditional issues. The volatility of urban traffic, and 
appropriate confidence bounds can significantly 
impact real-time traffic forecasting [25].

 Three fundamentally different methods are used 
for travel time prediction: the historical averages 
method, the seasonal Autoregressive Integrated 
Moving Average (ARIMA) model, and the non-
parametric k-nearest neighbour (kNN) model. The 
historical averages method is used as a baseline 
method and can be expected to produce the least 
accurate results. The seasonal ARIMA model is 
used because it is referred as the most accurate 
approach. The non-parametric kNN model is used 
because it is expected to be appropriate for urban 
traffic networks: that is, it is expected to be able 
to capture the chaotic behaviour associated with 
travel times.

 The most suitable method for analysing GPS data 
and urban traffic networks is identified by exploring 
the case study data. The forecast performance of 
the models is investigated by using the mean abso-
lute percentage error, mean error, and root mean 
square error. Statistical significance between the 
models is determined by the mean rank for groups 
of more than two models by using the Friedman, 
and by Wilcoxon matched pairs test for the groups 
of two models. Additionally, the Bonferroni correc-
tion is performed.
All the analysed data came from 297 courier ser-

vice vehicles travelling during a period of approximate-
ly 6 months (from October 2005 to April 2006) on the 
roads of the city of Zagreb, the capital of Croatia.

The original reasons to collect the data were to 
track a fleet of courier service vehicles and to con-
struct and update a digital road map. The motivation 
in this paper was to examine the possibility of using 
the data for another application (i.e., to predict travel 
times). Subsequently, the predicted travel time can be 
used with fastest-route guidance systems, either en-
route (during driving) or to confirm pre-trip information. 
Because of the original motivation for data collection, 
the sampling was defined spatially and not temporally. 
Specifically, sampling was not performed at constant 
time intervals, but rather using constant spatial inter-
vals (100 metres).

Section 2 explains the data used for the analysis 
and describes the data preprocessing procedures. 
Section 3 gives theoretical foundations for the se-
lected methods. Section 4 presents the experimental 
results.
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2. GPS DATA AND SPATIO-
TEMPORAL PREPROCESSING

A global positioning system is a positional and navi-
gational system that can be used to determine the lo-
cation (and speed) of any GPS receiver. GPS data have 
already been used to estimate traffic congestion [26], 
to record information about traffic delays and to use 
this data for traffic monitoring and route planning ap-
plications [27].

In the study, GPS receivers produce a tabular log 
of record time, speed, latitude, longitude, course and 
GPS status. The record time is the time during which 
the record is generated. Generally, it is expressed in 
coordinated universal time UTC (i.e., as the number of 
seconds from 1.1.1970). The speed is the speed of the 
vehicle monitored by the GPS receiver in km/h. The 
latitude and longitude in the WGS84 geodetic system 
determine the location of the vehicle. The course is the 
angle at which the vehicle is travelling with reference 
to the North. Access to the GPS status, which indicates 
the data accuracy, is also available. A poor GPS sta-
tus indicates records of questionable accuracy since 
they are generated from a small number of satellites 
or in the context of unsuitable satellite configurations. 
Each record also includes the identification number of 
the GPS receiver device. As each car has one receiver, 
this can also be interpreted as a vehicle identification 
number.

The devices in the vehicles were programmed to 
transmit information to the servers periodically. If the 
vehicle is moving, then the GPS device sends a posi-
tion fix every 100 metres. If the vehicle is stationary, 
then the data are sent every five minutes. The initial 
amount of GPS data included 51,835,560 records.

The first step in data preprocessing is to eliminate 
records that have low GPS status. The second step is 
to do a map-match of the positions to link records with 
the appropriate road segments.

2.1 Map matching

Due to the limited accuracy of GPS and constraints 
on GPS signal reception in the urban environment (for 
example, multipath signal bouncing), GPS data are 
normally associated with a measurement error [28]. 
Both surrounding objects (such as buildings) and at-
mospheric conditions influence this error.

Collected GPS data feature these measurement 
errors. Certain data points are off-road even though 
all vehicles travelled on the roads at all times. To ac-
curately determine vehicle location, these data must 
be preprocessed to match the trajectory of the vehicle 
movement to the link that the vehicle travelled through. 
This technique is known as map matching [28].

The used digital road network is represented in the 
database by vectors. Onboard systems use informa-
tion about road networks to map current vehicle posi-
tions onto appropriate road segments. These systems 
represent the vehicle trajectory as a sequence of his-
torical positions. For real-time applications, the task of 
map matching can be quite time-consuming. Accord-
ingly, in a trade-off between speed and accuracy, en-
tire trajectories are not used, but instead only the most 
recent positions are used. In addition, if the onboard 
system is navigational as well as positional, the desti-
nation can be known in advance. This information can 
be used to ensure effective mapping.

Many map matching algorithms are currently in 
use (for more information, see [28]). The authors did 
not develop a map-matching algorithm, since one was 
already available with the data. In the experiments, a 
map-matching algorithm that was developed by the 
Mireo Company [29] was used. Originally it was used 
during the creation of digital maps from GPS data, 
yielding maps with ±5 metre accuracy in 95% of cases 
[29].

The most important step in preprocessing stage is 
to identify the outliers. Outliers are observations that 
are numerically distant from the rest of the samples. In 
a sense, map matching can be said to be a process of 
identifying spatial outliers and correcting their values. 
After map matching has been done, temporal outliers 
must be removed. These outliers are sample travel 
time values that should not be used in the process of 
modelling.

2.2 Temporal outlier detection

Data used for the analysis were acquired by cou-
rier service vehicles that make frequent stops. For 
that reason, some of the sample travel times have 
disproportionately higher values than other samples 
obtained for the same link.

The values that do not follow the characteristic dis-
tribution of the data are referred to as outliers. Outli-
ers are not necessarily error values: they can indicate 
unusual behaviour within the underlying process and 
highlight anomalies. Identifying outliers is one of the 
main challenges associated with data mining. In a 
modelling process, outliers can negatively impact the 
accuracy of the final model. Specifically, in a regres-
sion analysis, where the sums of the squares of the 
distances are minimised to form a model, outliers can 
significantly influence the regression line. Because of 
this, outliers must be detected before developing a 
model for travel time prediction.

One of the most widely used methods to detect out-
liers is a Box Plot technique, which has already been 
applied in travel time prediction [30-31]. Bajwa et al. 
used the technique on highway data (Tokyo Metropoli-



H. Marković, et al.: GPS Data Based Non-Parametric Regression for Predicting Travel Times in Urban Traffic Networks

4 Promet – Traffic&Transportation, Vol. 22, 2010, No. 1, 1-13

tan Expressway) to reduce variability and achieve high-
er estimation accuracy. They used the 25th percentile 
as the lower quartile and the 75th percentile as the 
upper quartile, and the interquartile range to model 
lower and upper boundaries. They used 1.5 times the 
interquartile range to define lower and upper bound-
aries (that is, they used inner fences). For the experi-
ments described in this paper, to make sure that the 
modelling stage receives more data, outer fences (that 
is, three times the interquartile range) are used. The 
boundaries are defined as:

lower boundary =
= lower quartile - 3 (upper quartile - lower quartile),

and
upper boundary =

= upper quartile + 3 (upper quartile - lower quartile),
where
lower quartile is the 25th percentile and upper quartile 
is the 75th percentile.

Every sample time below the lower boundary and 
above the upper boundary is marked as an outlier and 
is excluded from our modelling of travel time.

2.3 Reduction of travel time variability

There are two types of temporal travel time variabil-
ity: short- and long-term variability. Short-term variabil-
ity of vehicle travel time is the result of traffic signal 
phases in urban networks. Long-term variability is the 
result of evolving traffic patterns during the day (i.e., 
congestion). While preserving long-term variability is 
crucial, a reduction of short-term travel time variability 
plays a key role in our ability to accurately estimate 
travel time.

Torday and Dumont [32] have used microsimula-
tions and the floating car data technique to show how 
to reduce short-term variability in urban networks us-
ing appropriate sub-link definitions. However, this ap-
proach is not used, because the amount of data does 
not allow it. Using simulations, they have also shown 
that minimising the aggregation interval reduces vari-
ability [32]. They suggested that the aggregation pe-
riod should be a multiple of the duration of the traffic 
lights signal switch periods.

As a result of the small sample size, it is not pos-
sible to model all the effects that may be present in 
analysed travel time data. Therefore, the main moti-
vation is to bind the long term variability caused by 
congestion. Luckily, if there are two intervals with the 
same duration but at different times of day, the one 
compiled during congestion will feature more samples. 
The other may not even have a single sample (e.g., on 
Sundays or during the night, when traffic moves more 
fluidly).

This reality inspired the use of a non-equidistant 
aggregation intervals approach. Experiments with 

different durations and placements of time intervals 
are performed, and finally, the following settings are 
selected. There are several intuitive reasons for such 
day-part divisions. Intuitively, during the night (i.e., 
from 20:00 to 06:00) there is no congestion and all 
the samples can be aggregated into a single value; 
from 06:00 to 10:00 when congestion is severe, aggre-
gation intervals are set to 15 minutes; between 10:00 
and 15:00, to take into account medium term variabil-
ity during the day, aggregation intervals of 1 hour are 
used; from 15:00 to 18:00 aggregation periods are 
again 15 minutes; and finally from 18:00 to 20:00 ag-
gregation is performed in 1-hour intervals. Since there 
are very few data for Saturdays and Sundays (the cou-
rier service makes few weekend deliveries), a 24-hour 
aggregation interval is used. In cases when there was 
an aggregation interval that contained zero samples, 
the travel time duration was set to equal the median 
travel time of the corresponding link.

Since the investigated regression methods require 
time series with a fixed time step, all the aggregation 
intervals are divided into equally sized segments, i.e., 
the size of the shortest time interval (15 minutes). For 
instance, if the duration of a certain aggregation inter-
val is one hour, it is broken into four 15-minute inter-
vals for which the time series value is the same as for 
the original aggregation interval.

3. TRAVEL TIME PREDICTION METHODS

Although there are a number of methods to pre-
dict traffic conditions, most of the work has been per-
formed on data collected using roadside sensors [11, 
30, 31]. Additionally, most such research is concerned 
with motorway traffic and not with urban traffic con-
ditions. Given the nature of urban networks and the 
reality that all of the analysed travel time data were 
collected by vehicles equipped with GPS receivers, 
three methods to predict travel times are selected: the 
historical averages method, the seasonal ARIMA and 
the non-parametric kNN model.

The historical averages method is used as a base-
line method. It is used because of the issues with sam-
ple size. It is challenging to acquire large sample sizes 
for every aggregation period, for each past date and 
for every link in a large-scale urban network.

Since the literature states that the seasonal ARI-
MA model outperforms neural networks and kNN 
non-parametric regression [11, 12], it is included 
among the implemented models. On the other hand, 
it is questionable whether the seasonal ARIMA model 
would give satisfactory results, given that it models 
processes that are non-deterministic with linear state 
transitions. Disbro and Frame [24] showed that traffic 
flow behaves chaotically, especially in cases frequently 
found in urban traffic networks (i.e., during congestion 
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periods). Given that chaotic systems are described by 
processes that are deterministic and feature non-lin-
ear state transitions, it motivated the use of the non-
parametric kNN model.

3.1 Historical averages method

The historical averages method is a very simple 
model in which every weekday is one case that can 
be described by a series of aggregated values. Figure 1 
shows a graph in which every weekday is described by 
an appropriate time series.

Time series are stored as records in the database. 
Each record has a weekday attribute defining the day 
of the week, a timestamp defining 15-minute periods 
during the day, and a duration giving the average travel 
time for a given link. The user supplies the values for 
the required link identifier, weekday and time of day. 

The returned value denotes the predicted link travel 
time.

3.2 Seasonal ARIMA model

The seasonal ARIMA model was proposed by Box 
and Jenkins [33, 34] for analysing time series Xt" ,. In 
order to define a seasonal ARIMA process formally, the 
backshift operator B with order of differencing j is used 
to transform the time series: B X Xj

t t j= - . The seasonal 
differencing with seasonal period s is given as:

X X X B X B X1t t s t
s
t

s
t= =- - -- ^ h . (1)

The seasonal differencing with seasonal period 
s and order of seasonal differencing D is written as 

B X1 s D
t-^ h . In terms of the backshift operator, the 

non-seasonal differencing is defined in a similar man-
ner as (1 )X X B Xt t t1 =- -- , and the non-seasonal dif-
ferencing of order d as (1 )X X B Xt t d

d
t=- -- .
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Figure 1 - Weekday profiles of an exemplar link
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The time series Xt" , is called a seasonal ARIMA (p, d, 
q)(P, D, Q)s process if for any non-negative integers d 
and D, the differenced series Y B B X1 1t

d S D
t= - -^ ^h h  

is a stationary autoregressive moving average (ARMA) 
process satisfying:
B B Y B B es

t
s
t={ iU H^ ^ ^ ^h h h h . (2)

The backshift operator B is given by Eq. (1). The 
functions {, U, i, and H are polynomials defined as 

( ) 1z zi i
i

p

1
={ {-

=

/ , ( ) 1z zi i
i

P

1
=U U-

=

/ ,

( ) 1z zi i
i

q

1
=i i-

=

/ , and ( ) 1z zi i
i

Q

1
=H H-

=

/ ,

respectively. The coefficients {i, Ui, ii, and Hi are un-
knowns and have to be found. The time series et" ,cor-
responds to errors, known as white noise that can be 
found from standard ARIMA(p,q) model 

X e X et t i t i
i

p

i t i
i

q

1 1
= + +{ i

= =

- -/ /
having unknown coefficients {i and ii. Errors et are 
identically and normally distributed with mean zero, 
variance v2 and ( , ) 0, 0cov e e kt t k 6 !=- , in other 
words, ,e 0Nt

2+ v^ h" , . Additionally, p is the non-sea-
sonal autoregressive order, q is the non-seasonal mov-
ing average order, P is the seasonal autoregressive 
order and Q is the seasonal moving average order. 
Similarly, d is the order of non-seasonal differencing 
and D is the order of seasonal differencing.

Background on the theoretical seasonal ARIMA 
process and its usage in forecasting traffic conditions 
is also given by Williams and Hoel [35] and by Smith 
et al. [11].

3.3 kNN non-parametric regression

In the previous chapter, a linear parametric model 
(ARIMA) was introduced. There, the main idea was to 
form a model that could satisfactorily approximate the 
entire instance space. On the other hand, in instance-
based learning, as represented by the kNN model, 
only a local approximation of the target function that 
applies in the neighbourhood of the new forecast in-
stance needs to be constructed [36]. For that reason, 
there are no restrictions on the data being modelled 
(specifically, there is no requirement for stationarity, 
unlike in the ARIMA model). The model consists of past 
(historical) values that are stored and subsequently 
used to determine the values for new instances.

An arbitrary instance x is represented by attributes 
(or features) denoted as ai, i = 1, 2, ..., n, and its fea-
ture vector or state space is , , , ,a a a an1 2 3 f6 @. The ob-
served instance can then be viewed as a point in an 
n-dimensional space represented by the values of the 
attributes ( )a xi , i = 1, 2, ..., n
: , , , ,x a x a x a x a xn1 2 3 f= ^ ^ ^ ^^ h h h hh. (3)

Each training sample has a known target function 
value f yi^ h and can be written as:

,y f yi i^^ hh, 1,2, ,i Nf= , (4)
The k-nearest neighbour forecasting can then be 

defined as follows. Given the test point x and N train-
ing samples ,y f yi i^^ hh, , , ,i N1 2 f= , find the k nearest 
training inputs , , ,y y yk1 2 f  to x with respect to the given 
distance function ,d x yi^ h, , , ,i N1 2 f= .

If the forecasting is performed for a regression 
problem then the forecast value is

, , , , , , ,
, , ,
f x h g f y d x y g f y d x y
g f y d x yk k k

1 1 1 2 2 2 f=t^ ^ ^^ ^ ^^^

^ ^^

h h hh h hh

h hhh
 (5)

If , ,g f y d x y f yi i i i=^ ^^ ^h hh h, , , ,i k1 2 f=  and h is a 
simple average function then the regression problem 
forecasting is given by Eq. (6).

f x k f y1
i

i

k

1
=

=

t^ ^h h/  (6)

Another frequently used simple model is appropri-
ate if , , / ,g f y d x y f y d x yi i i i i=^ ^^ ^ ^h hh h h, , , ,i k1 2 f=  and 
h is defined as a quotient of the sum of , , ,g f y d x yi i i^ ^^ h hh  

, , ,i k1 2 f=  and the sum of the inverses of the dis-
tances ,d x yi^ h, , , ,i k1 2 f= . In this case, the regres-
sion problem forecasting is given by Eq. (7).

, ,f x d x y
f y

d x y
1

i

i

i

k

ii

k

1 1
=

= =

t^
^
^

^
h

h
h

h
/ /  (7)

The distance between the test point and the train-
ing sample yi, ,i N1! 6 @ is determined by the standard 
Euclidean distance 

( , )d x y a x a yi r r i
r

n
2

1
= -

=

^ ^h h/ , 

where n is the dimensionality of the state vector, and 
a xr ^ h and a yr i^ h are features of the test point and the 
training sample, respectively.

Distance metrics can also be weighted in such a 
way that some features contribute more or less to the 
overall distance. There is an infinite number of dis-
tance metrics and the standard Euclidean distance is 
chosen as the measure of the distance between the 
instances for the purpose of forecasting travel time.

Different state vectors can be used for the kNN re-
gression. More precisely, there is an infinite number of 
possible state vectors. The most reasonable features 
to be used are present and time-lagged values of 
the time series , , ( ), ,x t V t V t V t V t d1 2 f= - - -^ ^ ^ ^h h h h6 @ 
where d is the selected lag. However, in fore-
casting traffic flow, Smith et al. [11] have shown 
that using past average values yields more ac-
curate forecasts. They used a hybrid model 

, , , ,x t V t V t V t V t V t1 2 1hist hist= +- -^ ^ ^ ^ ^ ^h h h h h h6 @. If 
their traffic flow is considered in the context of travel 
time, then V t^ h is the travel time at the present inter-
val and V thist^ h and V t 1hist +^ h are the historical aver-
age travel times for the weekday and the time of day 
associated with time t. There is a sound justification 
for the use of past average values. The attractor of the 
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chaotic system is the value to which the system settles 
when time approaches infinity. This occurs as the kNN 
approach tries to rebuild the attractor of the process 
that generates the time series [37] and the average of 
past values puts each instance on the cyclic pattern 
of the attractor. Various state spaces are investigated, 
and Section 4 shows the results. The mean absolute 
percentage error (MAPE - for the formal definition see 
Section 4) is used to determine which state space 
should be used and to determine the state space that 
produces the lowest MAPE for forecasting purposes.

The required number of neighbours k must be de-
termined experimentally. This is done by determining 
the MAPE for models with different numbers of neigh-
bours and selecting the one with the lowest value for 
forecasts. A small number of neighbours could have 
too much variance and could result in loss of general-
ity, while too large number of neighbours could intro-
duce too much bias into the forecast [38].

In the context of regression analyses, there is an 
infinite number of possible forecast estimations. The 
most common ones are straight averages (Eq. (8)) 
and averages that are weighted by the inverse of the 
distance (Eq. (9)). Other forecasts include heuristics 
to assure more accurate estimates. While forecasting 
traffic flow, Smith et al. [11] obtained the best kNN 
forecasts with the hybrid approach, which adjusts by 
both V thist^ h and V t 1hist +^ h, and weights by the in-
verse of distances (Eq. (10)). Again, to find the most 
accurate forecast estimation, MAPE is used.
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In Eqs. (8) – (10) k is the number of nearest neigh-
bours, V t 1+t^ h is the forecast time series value at time 
t 1+  (corresponding to the forecast value introduced 
in Eq. (5)), V t 1i +^ h is the time series value of the i-th 
nearest neighbour at time t 1+  (corresponding to the 
known function value f yi^ h introduced in Eq. (4)), di  is 
the Euclidean distance between the instance being 
forecast and the i-th nearest neighbour, V tc^ h is the 
current time series value, V t 1,hist c +^ h is the historic 
average value for the estimated time series value, ag-

gregated by weekday and time of the day with respect 
to t 1+ , and V t 1,hist i +^ h is the historic average value for 
the i-th nearest neighbour time series value aggregated 
by weekday and time of the day with respect to t 1+ .

4. CASE STUDY: URBAN NETWORK 
OF THE CITY OF ZAGREB

A set of data collected from 1 October 2005 to 21 
April 2006 has been studied. The data are divided into 
two groups. The first group contains data from 1 Oc-
tober 2005 to 7 April 2006, and is used to develop 
the model. The other group contains data from 7 April 
2006 to 21 April 2006, and is used to evaluate the 
model. It should be noted that the validation group 
contains only two weeks’ worth of data. Two weeks are 
chosen because this time period corresponds to two 
seasonal lags in the obtained ARIMA model. Non-equi-
distant time intervals are used to average the travel 
time. The final time series resolution is 15 minutes. 
To develop the model and to test its performance, 20 
random links out of the 100 links with the greatest 
number of matched records are selected. Table 1 gives 
descriptive statistics for the links used to build the 
models. Furthermore, Section 4.6 presents results for 
four additional links used to illustrate the evaluation 
process for the model.

4.1 Forecast performance measures

The measures used for the model’s forecast per-
formance are: mean absolute percentage error—MAPE

MAPE n A F A1 i i i
i

n

1
= -

=

^e h o/ , 

mean error—ME 

ME n A F1 i i
i

n

1
= -

=

^e ho/ , 

and root mean squared error—RMSE 

RMSE n A F1 i i
i

n
2

1
= -

=

^e h o/ , 

where n is the number of samples, Ai is the known (ob-
served) value of the i-th sample, and Fi is the forecast 
value of the i-th sample. MAPE is used to estimate the 
size of the forecasting error, ME is used to determine 
whether the forecasts are biased, and RMSE is used 
to determine whether the error distribution features 
outliers.

Table 1 - Descriptive statistics for the links used to build the models.

Mean Minimum Maximum Standard deviation
Length of the link (m) 526.10 192 1152 278.877
Median travel time (s) 32.75 12 60 15.033
Upper-outlier boundary for the travel time (s) 93.60 36 220 56.351
Number of matched records 21852.65 13596 44467 8003.862
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Although MAPE gives guidance as to which method 
might be better, it does not offer any statistical con-
fidence. For that, non-parametric Friedman ranked 
ANOVA [34] tests whether there is a significant differ-
ence in absolute percentage errors between the meth-
ods. For every forecast point and for every method, 
the absolute percentage error is calculated. The H0 
hypothesis is that the medians of the errors for all the 
methods are equal. If the α -value is small enough (for 
all cases <0.05), then there is evidence that the H0 
hypothesis can be rejected. Similarly, to test the dif-
ference between two methods, the Wilcoxon matched 
pairs test is performed on the absolute percentage 
errors. Additionally, Bonferroni correction adjusts the 
alpha values.

4.2 Historical averages results

Table 2 gives the results from the historical aver-
ages model. For all 20 random links, the mean MAPE 
equals 0.1738, which is relatively good, but the maxi-
mum MAPE of 0.3409 suggests that for certain links, 
this method performs unsatisfactorily. Maximum val-
ues of ME (9.0364 s) and RMSE (26.3311 s), show 
that for some links this method is both biased and 
sensitive to extreme values. Overall, the historical av-
erages model results show that there are some effects 
that cannot be modelled as time-of-day and day-of-the-
week dependencies.

Table 2 - MAPE, ME and RMSE calculated 
by historical averages.

Mean Minimum Maximum Standard 
deviation

MAPE 0.1738 0.0727 0.3409 0.0763
ME (s) 0.2494 -2.5352 9.0364 2.4463
RMSE (s) 7.9026 2.2388 26.3311 6.2410

4.3 Seasonal ARIMA results

Using Box and Jenkins procedure [33, 34], travel 
time is determined to be an , , , ,1 0 1 0 1 1ARIMA 672^ ^h h  
process that matches the results obtained by Smith 
et al. [11] for traffic flow forecasting. A seasonal lag of 
672 corresponds to one week, because one week en-
compasses 672 15-minute intervals. From the investi-
gations of all 20 random links, travel time is described 
by the same , , , ,1 0 1 0 1 1ARIMA 672^ ^h h  model. Table 3 
lists the results.

Table 3 - MAPE, ME and RMSE obtained 
for the XXX_FORMULA_XXX model.

Mean Minimum Maximum Standard 
deviation

MAPE 0.1632 0.0096 0.3362 0.0882
ME (s) 0.1315 -3.3806 7.6772 2.9892
RMSE (s) 7.0932 2.3725 19.6569 5.1591

The minimum MAPE of 0.0096 suggests that some 
links can be modelled quite accurately by seasonal 
ARIMA. The maximum MAPE of 0.3362, however, sug-
gests that for some links, seasonal ARIMA may not 
be the most suitable model. The mean value (0.1315 
s) and standard deviation (2.9892 s) of ME suggest 
that forecasts for 20 random links are, in general, not 
strongly biased.

4.4 kNN non-parametric regression results

Experiments with a range of lagged values in state 
spaces and with different numbers of neighbours are 
performed. The simulations include lag values from 
0 to 10 and from 1 to 30 nearest neighbours. Addi-
tionally, straight averages, weightings by the inverse 
of distance, and a hybrid state space are also used. 
In total, for all 20 random links and all possible kNN 
parameters, 11×30×3×20 = 19800 executions are 
performed each for two weeks of 15 minute data (i.e., 

(a) (b)(b) (c)

Figure 2 - Dependence of MAPE (a), ME (b), and RMSE (c) on the number of lagged values (lag)

and the number of nearest neighbours (k) for kNN in the context of a hybrid state space.

The 3D surface plot is generated with the use of a distance-weighted least square fit.
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1344 forecasting points). It is found that kNN with a 
hybrid state space yields smaller MAPE values.

Figure 2 shows the dependence of MAPE, ME and 
RMSE on the number of lagged values in the state 
space and the number of neighbours when a hybrid 
state space is used. It can be seen that, generally, a 
high number of lagged values results in higher MAPE 
and ME in a manner that is independent of the num-
ber of neighbours, while generally, a low number of 
neighbours results in higher RMSE values.

The kNN model with the smallest MAPE values is 
proposed as the preferred model. Specifically, kNN 
with a hybrid state space, with one lagged value 
(lag=1), and 26 neighbours (k=26) is proposed. Table 
4 gives the results for all 20 random links, obtained 
using the proposed kNN model. The mean (0.0218), 
maximum (0.0423), and minimum (0.0018) values of 
MAPE show that the proposed kNN performs very well 
for all 20 random links. Moreover, low values of ME 
and RMSE indicate that kNN forecasts are neither bi-
ased nor sensitive to extreme values.

Table 4 - MAPE, ME and RMSE for our proposed kNN model.

Mean Minimum Maximum Standard 
deviation

MAPE 0.0218 0.0018 0.0423 0.0119
ME (s) 0.5990 0.0301 2.6035 0.7240
RMSE (s) 3.0388 0.8030 11.8426 3.1187

4.5 Forecasting performance of the models

For all 20 random links, the results obtained across 
all models are compared. For all the links, with respect 
to ranked Friedman ANOVA, the null hypothesis (that 
the medians of the errors for all the models are equal) 
is rejected. Additionally, the Wilcoxon matched pairs 
test is performed. This result is used to determine 
inter-group differences in means. The Bonferroni cor-
rection of α-value is performed and this results in an 
α-value of 0.016666667. For 5 links out of 20, the Wil-
coxon matched pairs test null hypothesis at both the 
original and the Bonferroni-corrected α significance 
level cannot be rejected. For all five of these links, the 
null hypothesis for historical averages and the sea-
sonal ARIMA model cannot be rejected. For historical 
averages and the proposed kNN model, as well as for 
the seasonal ARIMA and proposed kNN models for all 
20 random links, the hypothesis at the Bonferroni cor-
rected α significance level can be rejected.

Figure 3 (a) shows the MAPE for 20 random links, as 
well as the mean for all the links obtained with histori-
cal averages, seasonal ARIMA and the proposed kNN 
model. It can be seen that the proposed kNN yields 
a lower MAPE for all the links. The maximum MAPE 
is 0.04229. In most cases, ARIMA yields lower values 

than historical averages do, and this approach reach-
es a maximum value of 0.3362 while the historical 
average model reaches a maximum value of 0.3409 
for MAPE. Figure 3 (b) gives the calculated mean Fried-
man rank for 20 random links, and the mean rank 
for performance on all links, with respect to historical 
averages, the seasonal ARIMA and the proposed kNN 
model. For the links where the Wilcoxon matched pairs 
test null hypothesis cannot be rejected, the obtained 
α-values are shown. For all the examined cases, the 
proposed kNN yields the lowest mean rank. Addition-
ally, when compared to the other two methods using 
the Wilcoxon matched pairs test, the null hypothesis 
can be rejected.
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Figure 3 - Comparison of MAPE values (a) and mean

Friedman rank (b) as generated using historical averages,

seasonal ARIMA, and the proposed kNN model

Figure 4 shows the ME and the RMSE for examined 
links obtained with historical averages, seasonal ARIMA 
and the proposed kNN model. It can be seen that the 
proposed kNN in some cases yields a higher ME than 
both historical averages and the seasonal ARIMA mod-
el. However, the maximum ME values for both histori-
cal averages and the seasonal ARIMA model are higher 
than the maximum ME for the proposed kNN. Overall, 
for the proposed kNN, the ME is positive for all the ex-
amined cases, but its absolute value is never more than 
three seconds. In addition, in all of these cases, the 
proposed kNN model yields lower RMSE values.
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4.6 Evaluation of the model on selected cases

To evaluate the proposed model, four selected 
links are used. They are shown in Figure 5. These links 
are chosen because they are elements of roads in 
different parts of the city, each with different charac-
teristics. Link 4562 (a) is a section of a bridge. It has 
only one input and one output connecting link. Link 
2619 (b) has more than one dominant output link, so 
it represents the opposite situation. Other links, link 
2775 (c) and 947 (d), are somewhere between those 
two extreme cases. Link 4562 is the only link, out of 
the selected 4, that is one of the aforementioned 20 
random links.

Table 5 lists the properties of the selected links, 
while Table 6 shows the results. The results are pre-
sented for historical averages, seasonal ARIMA, best-
performing kNN and the proposed kNN model. Again, 
to find the best-performing kNN model for a given link, 
from 0 to 10 lagged values, from 1 to 30 neighbours, 
and the straight average, weighted by inverse of dis-
tance, and a hybrid state space are used. The main 
purpose of this experiment is to determine how simi-
larly the proposed kNN performs to the optimal kNN 
for a given link. Table 6 gives the mean rank in the 
context of Friedman, MAPE, ME and RMSE values. In 
all cases, the null hypothesis with respect to both the 
ranked Friedman ANOVA and the Wilcoxon matched 
pairs test at the Bonferroni corrected α significance 
level is rejected.

For all four selected links, the proposed kNN per-
forms better than both historical averages and the 
seasonal ARIMA model with respect to the mean rank 
according to Friedman, MAPE, and RMSE. For link 
2619, the proposed kNN results in an ME higher than 
the one for ARIMA, but the acquired MAPE is almost 
seven times lower. In addition, a substantially lower 
RMSE can be observed.

When the proposed kNN is evaluated against the 
best-performing kNN, it can be seen that the differenc-
es for all four links with respect to mean rank, MAPE, 
ME, and RMSE are relatively small. The greatest differ-
ence is for link 2775, where the proposed kNN gives 
a 3.4 % greater MAPE than the best-performing kNN. 
However, it is still 4 % lower than the MAPE associated 
with the seasonal ARIMA model.

5. CONCLUSION

One of the main tasks of this paper is to define a 
model that can predict spatio-temporally dependent 
travel times for urban road networks from GPS data 
used for automatic digital road map creation. The ma-
jority of the work presented in the literature on travel 
time prediction has been performed on data collected 
using roadside sensors and other techniques. Addi-
tionally, the data collected to date have focused on 
motorways. In this paper, a model based on GPS data 
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collected for urban road networks is presented. In this 
framework, methods for preparing GPS data for mod-
elling, map matching, outlier detection and reducing 
travel time variability are demonstrated. The non-equi-
distant aggregation intervals approach is implement-
ed to handle insufficient GPS data coverage.

Three different travel time prediction methods are 
investigated and implemented. The most basic meth-
od, the historical averages method is used only for 
reference, and, as expected, it produced very poor re-
sults. The seasonal ARIMA model and the kNN models 
are the other two methods that are explored. Seasonal 
ARIMA is used because the available literature com-
monly presents it as the most suitable approach for 
the prediction of traffic conditions on motorways and 
dual carriageways. Since there are some effects that 
are typical for urban networks, seasonal ARIMA was 
expected not be the most suitable method for this type 

of data. Surprisingly, in all the examined cases, kNN 
proved to be the most accurate method.

All the analysed links are part of the urban traffic 
network of Zagreb. The proposed kNN model is deter-
mined by analysing 20 random links out of the 100 
links that featured the greatest data coverage. Then 
the proposed model is evaluated on four selected 
links. Specific links are chosen to illustrate different 
construction and congestion issues. The analysed data 
are collected for a period greater than six months. The 
proposed model can also be applied to predict travel 
times in other cities. The size of the city is not an issue: 
for large urban environments, a grid computer could 
be used to ensure fast performance. The only limit of 
the model is the coverage of the GPS data. This is not, 
however, an issue for most developed urban environ-
ments, where it is often necessary to use a GPS.

For the links presented in this paper, the forecast-
ing mean absolute percentage error for the baseline 

Table 5 - Properties of the links used to evaluate the models

Link 
identifier

Name of the cor-
responding street

Length of 
the link (m)

Number of 
matched records

Median travel 
time (s)

Upper-outlier boundary  
for the travel time (s)

4562 Jadranski most (bridge) 339 17331 20 64
2619 Heinzelova Street 429 15619 96 364
2775 Ljubljana Avenue 1101 55366 60 132
947 Dubrovnik Avenue 396 22678 32 120

Table 6 - Mean Friedman rank and MAPE, ME and RMSE for selected links as given by historical 
averages, seasonal ARIMA, the proposed kNN and the best performing kNN

Method Mean rank MAPE ME (s) RMSE (s)
Link 4562

Historical averages 3.6830 0.1962 -2.5343 6.5885
ARIMA (1, 0, 1)(0, 1, 1)672 3.2106 0.0907 -0.6663 3.3118
Best performing kNN (hybrid state space, lag=1, k=8) 1.5164 0.0054 0.1176 1.0743
Proposed kNN (hybrid state space, lag=1, k=26) 1.5900 0.0092 0.0919 1.6198

Link 2619
Historical averages 3.5599 0.3941 7.2405 42.4838
ARIMA (1, 0, 1)(0, 1, 1)672 3.2299 0.3322 4.2783 38.0210
Best performing kNN (hybrid state space, lag=0, k=30) 1.4780 0.0433 6.3643 29.2083
Proposed kNN (hybrid state space, lag=1, k=26) 1.7321 0.0497 7.4477 30.1610

Link 2775
Historical averages 3.6990 0.1623 9.1623 14.0586
ARIMA (1, 0, 1)(0, 1, 1)672 2.9100 0.0919 4.9754 11.8567
Best performing kNN (weighted by inverse of dis-
tance with non-hybrid state space, lag=1, k=2) 1.3947 0.0176 0.7316 4.7470

Proposed kNN (hybrid state space, lag=1, k=26) 1.9963 0.0520 3.7704 7.7468
Link 947

Historical averages 2.9851 0.2236 -1.1105 11.8424
ARIMA (1, 0, 1)(0, 1, 1)672 3.4368 0.1648 2.3306 11.5170
Best performing kNN (hybrid state space, lag=0, k=24) 1.7094 0.0335 1.8596 8.0602
Proposed kNN (hybrid state space, lag=1, k=26) 1.8687 0.0423 2.1502 8.4637
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method (historical averages) ranges from 7.27% to 
39.41%, for the seasonal ARIMA model from 0.96% 
to 33.62%, and for the proposed kNN from 0.18% to 
5.20%. Additionally, the mean error and root mean 
square error for forecasts show that the historical aver-
ages model gives the least accurate forecasts, the pro-
posed kNN model gives the most accurate forecasts, 
and seasonal ARIMA gives forecasts with intermediate 
accuracy.

The experiments provide justification for the use 
of the kNN method in travel time prediction. To the 
best of the authors’ knowledge, no other published re-
search has shown that the kNN approach can perform 
better than seasonal ARIMA. There are two reasons 
for this. Firstly, in this study, GPS data are used for 
travel time prediction, and secondly, the data are for 
urban traffic networks. Since seasonal ARIMA and kNN 
non-parametric regression are usually used to model 
different systems (non-deterministic with linear state 
transitions as opposed to deterministic with non-linear 
state transitions), this contribution may suggest that 
traffic in urban networks behaves chaotically.

Because of the lack of coverage and the way in 
which the GPS data are sampled in the study, the 
authors were unable to apply certain very interesting 
methods. One such method is space-time ARIMA. Fu-
ture work should attempt to determine whether STARI-
MA would be the most appropriate method, since it 
can model the influences that neighbouring links exert 
on each other. Such broader perspectives, enabled by 
additional GPS data, may also include examining the 
performance of the proposed model when an entire 
route map is analysed.
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