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GROUP-SMA ALGORITHM BASED JOINT ESTIMATION 
OF TRAIN PARAMETER AND STATE

ABSTRACT

The braking rate and train arresting operation is impor-
tant in the train braking performance. It is difficult to obtain 
the states of the train on time because of the measurement 
noise and a long calculation time. A type of Group Stochastic 
M-algorithm (GSMA) based on Rao-Blackwellization Particle 
Filter (RBPF) algorithm and Stochastic M-algorithm (SMA) is 
proposed in this paper. Compared with RBPF, GSMA based 
estimation precisions for the train braking rate and the con-
trol accelerations were improved by 78% and 62%, respec-
tively. The calculation time of the GSMA was decreased by 
70% compared with SMA.
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1. INTRODUCTION

With the high-speed development of rail transpor-
tation, the safety and efficiency requirements during 
the transport process are increasing. Urban train park-
ing precision affects the alignment of the train door 
with the platform screen door (PSD). The train braking 
system is a crucial factor affecting the parking accura-
cy. The braking rate is affecting the performance of the 
train braking system. The long-time continuous opera-
tion and the variation of the loading conditions and op-
eration system will lead to the inevitable change of the 
braking rate. The displacement and velocity measure-
ment accuracy is affecting the braking accuracy and it 

is affected by the performance of the velocity sensors. 
The aforementioned precision problems can be con-
verted to the joint estimation of unknown parameter 
and states by modelling the train braking process. In 
the train braking model, the velocity and displacement 
are states in the state space model, and the braking 
rate is the unknown parameter to be estimated.

The commonly used parameter identification meth-
ods are point estimation algorithms and filtering algo-
rithms [1]. The traditional point estimation algorithms 
contain the least squares [2], maximum likelihood 
estimation method [3] and EM algorithm (Expecta-
tion Maximization) [4]. When the point estimation 
algorithms are used for the parameter estimation, it 
requires that the objective function is continuous and 
derivable. The estimated parameter value is searched 
by the gradient information, so it easily falls into the 
local minimum. The parameter identification method 
based on neural network [5] has the ability to approxi-
mate non-linear functions with arbitrary precision, but 
there are still several problems such as the determina-
tion of the network structure, sample data selection 
and network training algorithms. Genetic algorithm [6] 
has defects of premature or slow convergence. The 
Kalman filter and extended Kalman filter (EKF) have 
been applied successfully in the state estimation [7]. 
The Interacting Multiple Model (IMM) algorithm [8] is 
based on Kalman Filter (KF) and it has been used for 
the state estimation of the hybrid system. Knowledge 
of the transition probability between different models 
must be achieved in advance, which is difficult in prac-
tical engineering.
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The Particle Filter (PF) uses the non-parametric 
Monte Carlo method to achieve the recursive Bayes-
ian filter. This algorithm is suitable for any non-linear 
systems that can be modelled by state space equation 
and its estimation precision is approximate to the op-
timal estimation. N. Metropolis and S. Ulam in [9] pro-
posed a particle filter for the first time. Development of 
the particle filter is introduced in [10] and its applica-
tion in sensor diagnosis and accident detection in [11, 
12]. There exist two major defects of the method. First-
ly, the particle diversity decreases after several steps 
and all the particles tend to be of the same value. The 
Auxiliary particle filter (APF) and Gaussian particle fil-
ter (GPF) were discussed to solve this problem in [13]. 
The second problem is that the particle filter needs a 
large number of samples to approximate the poste-
rior density of the system state. Rao-Blackwellization 
technology in [14] reduces the number of particles by 
reducing the dimension of the state vector. In RBPF 
algorithm, the state space is divided into linear sub-
state space estimated by Kalman filter algorithm and 
non-linear sub-state space estimated by particle filter 
algorithm [15-18]. The RBPF has applications in the 
hybrid Gaussian [19-21], fixed parameters estimation 
[22], hidden Markov models (HMMs) [20-21], Dirich-
let process models and Dynamic Bayesian Networks 
(DBN) [23]. There is no transition function for the un-
known parameter in the state space equations. After 
several steps of the iterative calculation, all values of 
the parameter particles will tend to the same if the 
RBPF algorithm is used for the joint train braking rate 
estimation and the train states. SMA [24] is more ef-
ficient than RBPF for the state estimation of the hybrid 
system. SMA originally grows from the stochastic M-
algorithm [25], based on a random sampling. In the 
SMA algorithm, the unknown parameter is discrete in 
several values and each discrete value corresponds 
to a system mode. When each parameter particle is 
predicted, the particle is transferred to all the possible 
discrete values from the unknown parameter, leading 
to an exponential growth of the particles number.

The GSMA is proposed to reduce the computa-
tion complexity, keeping the estimation precision. The 
second part of this paper introduces the principle of 
the estimation algorithms for the hybrid system. The 
GSMA is proposed in the third part. After the train 
braking model is specified in the fourth part, the RBPF 
algorithm, the SMA algorithm and the GSMA are em-
ployed for the joint estimation of train braking rate and 
states in the fifth part. Advantages and limitations of 
the GSMA algorithm are given in section six.

2. PROBLEM FORMULATION

Train braking system main function is to achieve 
consistent braking performance by a brake control-

ler. The driver completes the vehicle control using the 
vehicle traction control system and the brake control 
system, but the driver cannot directly manipulate the 
train power actuators. The brake model is a vehicle 
operating model including train braking control sys-
tem [26-28]. The target acceleration has the fixed 
linear relationship with the drive input so it is chosen 
as the input of the braking controller and represented 
by a tTar ^ h . The brake controller will track a tTar ^ h  by 
feedback regulation. The dynamic regulation process 
is described as Equation (1):

a t a t f a t T1
Tarx x=- + -to t^ ^ ^h h h  (1)

where a tt^ h  denotes the control acceleration and it is 
the output of the controller, a tto ^ h  means the derivation 
of a tt^ h  after value t and f represents the braking rate 
which is defined as the ratio of the actual braking pow-
er with the expected braking power. The nominal value 
of f is 1, meaning the actual braking power is ideally 
equal to the expected braking power. Response time of 
the power actuator x  represents the time needed for 
the braking power to reach the desired value. Trans-
mission delay time from the generation of the target 
acceleration to the execution of the power actuator is 
T, so a t TTar -^ h  denotes the execution of the target ac-
celeration with a t T 0Tar - =^ h  where t T# .

The accumulated acceleration of the vehicle is de-
noted by v to^ h  and it can be calculated from a tt^ h  and 
additional acceleration caused by the bends and gra-
dients of the railroad track, denoted by d t^ h :
v t a t d t= +o t^ ^ ^h h h  (2)

The displacement of the urban railway is repre-
sented by D t^ h  and it is calculated from the velocity 
represented by v t^ h :
D t v t=o ^ ^h h  (3)

Equations, from (1) to (3), describe the relation-
ships between the target acceleration rate and the 
train operation status consisting of the acceleration, 
velocity and displacement. The corresponding block 
diagram of urban train braking model is presented 
in Figure 1. Notation 5  represents the input signals 
point.

The Laplace linear operator of function f t^ h  with 
a real argument t t 0$^ h , transforms f t^ h  to function 

F s f t e dtst

0

=
3

-^ ^h h#
with complex argument s. After Laplace transforma-
tion, differentiation and integration become multiplica-

a t TTar -^ h a tto ^ h

d t^ h

v to^ h D t^ ha tt^ h v t^ h

1

x
-

f
x # # #

Figure 1 - Block diagram of urban train braking model
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tion and division in polynomial equations. The inverse 
Laplace transformation reverts the solution to the time 
domain.

The Laplace transformation of Figure 1 is shown as 
Figure 2.

ing that x D v a az T= t7 A  and y D v az= 7 A , the state 
space equations of the model can be described as:
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Here x represents the state vector of the system, y 
denotes the observation vector of the system and m  
is a parameter related to the transmission delay time 
T. The system coefficient matrices are A, b, E and C 
and X  represents the process Gaussian noise. The 
train braking model was demonstrated and verified 
with the practical operation data of YIZHUANG subway 
line in Beijing in literature [28]. As can be seen in the 
state space model, there are parameters m , x , f to be 
estimated. Static parameters m  and x  are estimated 
through offline methods.

3. PRESENTATION OF GSMA ALGORITHM

The hybrid system, particle filter algorithm, SMA 
and GSMA algorithms are presented further in the text.

3.1 Hybrid system

The state of the hybrid system ,xk ki^ h  is composed 
of parameter ki  and the state xk . Each system model 
corresponds to a set of state space equations contain-
ing state transition equations and observation equa-
tions:

pk k k1 1+i i i+ +^ h  (5)
x x B u wk k k k k k k1 { i i iC= + ++ ^ ^ ^h h h  (6)

Figure 2 - Laplace transformation blocks

of urban train braking model

e Ts-

s
f

1x +

a st^ h

s
1

s
1

d s^ h

v s^ h D s^ ha sTar ^ h

Here /s1  represents the integration element and 
/f s 1x +^ h  is the inertial transfer function in the La-

place space. Value e Ts-  denotes delay of T in the La-
place space, approximated with /s sm m- + +^ ^h h . Fig-
ure 1 is now approximated by Figure 3(a) and then by 
Figure 3(b) [26].

Figure 3(a) - Approximation transfer block

of urban train braking model

s
f

1x +

a st^ h

s
1

s
1

d s^ h

v s^ h D s^ ha sTar ^ h

s
s

m

m

+

- +

Figure 3(b) - Equivalent transfer block of urban train

braking model from Figure 3(a)
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Here value m  is an introduced coefficient calcu-
lated from T with the Pade^ h  function in Matlab Soft-
ware and a sz ^ h  is considered as the value derived 
from a sTar ^ h  [26]. Displacement D t^ h  velocity v t^ h ,  
control acceleration a tt^ h  and intermediate variables 
a tz ^ h  are selected as the state variables. By inverse 
Laplace transformation, values from Figure 3(b) are 
transformed to Figure 4.

Function d t^ h  is assumed as the process Gauss-
ian noise and it is denoted by scalar tX^ h . Assum-

a tTar ^ h a tto ^ h

d t^ h

v to^ h D t^ ha tt^ h v t^ haz t^ hoaz t^ h

1

x

-

f
x # # ##

Figure 4 - Inverse Laplace transformation from Figure 3(b)

1-
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1. In this formula T represents the transposition for the 
rows with columns.
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y H x vk k k ki= +^ h  (7)
Here, k 1i +  represent the value of the discrete sys-

tem parameter at discrete moment k 1+ . The input 
value of the system at moment k is uk . The probability 
transition matrix of discrete parameters is p k k1i i+^ h
. The system coefficient matrices are k{ i^ h , B ki^ h , 

kiC^ h  and H ki^ h . Process noise and measurement 
noise at moment k are k~  and vk  and both are the 
independent white Gaussian noise. Parameter k 1i +  
is calculated from the probability transition matrix 
p k k1i i+^ h  by (5). The continuous state transition 
equation and observation equation are (6) and (7), 
respectively. The state estimation is in calculating 
the parameter and state posterior probability density 

,p x Y :k k k1i^ h , where Y :k1  describes the system mea-
surements from moment 1 to moment k in steps.

3.2 Particle Filter algorithm

(1) Filter is sequential to estimate parameter i  and 
state x of a system given a set of observation vari-
ables. Variable z is used to represent the param-
eters and states variables set ,xi" , . The posterior 
probability density of z for , , , ,i k k0 1 1f= -  is es-
timated by the given observation process values 
yi , which presents the value of y at moment i, 
, , , ,i k k0 1 1f= - .

(2) Particle filters use a large random number of sam-
ple points sampled from the sampling function in 
the state space to approximate the posterior prob-
ability distribution of the estimated variables.

(3) The procedures of particle filters are as follows 
[20]:

1) For , ,i N1 f= , draw samples from 
z p z zk
i

k k
i
1+ -_^ ^ ih h .

 Here N is the number of the sample particles.
2) For , ,i N1 f= , update the importance weights by 

p y zk
i

k
i

k k
i

1~ ~= -t _^ ^ ^ ih h h ,
3) For , ,i N1 f= , normalize the importance weights 

by

k
i

k
i

i

N
k
i

2

1

~
~

~=

=
t

t

_
^

^

^

i
h

h

h

/
4) Compute an estimation of the effective number of 

particles Nefft  by:

N 1
eff

k
i

i

N 2

1
~

=

=

t

t_ ^ ih/
5) If the effective number of particles Nefft  is less than 

the given threshold Nthr , then resample in steps:
(a) Draw N particles from the current particle set with 

probabilities proportional to their weights. Replace 
the current particle set with the new one.

(b) For , ,i N1 f= , set /N1k
i

~ =^ h

6) go back to step 2).

3.3 RBPF algorithm

RBPF algorithm is commonly used for parameter 
and state estimation of hybrid system. From the Bayes-
ian theory, the state posterior probability density func-
tion , Yp x :k k k1i^ h  can be decomposed:

, ,Y Y Yp x p x p: : :k k k k k k k k1 1 1i i i=^ ^ ^h h h  (8)
The numerical solution of Yp :k k1i^ h  can be ap-

proximately calculated through the particle filter algo-
rithm. Given the available parameter values and the 
state coefficient matrices of the system, the analytic 
solution of ,Yp x :k k k1 i^ h  can be derived using Kalman 
filter algorithm. If the particle filter is used to estimate 
the unknown parameter, ,Yp : :k k

j
k1 1 1i i -_ ^ ih  is chosen 

as the sampling function to approximate the unknown 
posterior probability density function of the param-
eter. The parameter particles are obtained based 
on ,Yp : :k k

j
k1 1 1i i -_ ^ ih  and then the probability density 

function of Yp :k k1i^ h  in (8) can be estimated. Func-
tion ,Yp : :k k

j
k1 1 1i i -_ ^ ih  denotes the probability density 

function of the unknown parameter ki  given the his-
tory values of the parameter particle :k

j
1 1i -
^ h  and ob-

servations Y :k1 . According to the theory of probability, 
,Yp : :k k

j
k1 1 1i i -_ ^ ih  can be simplified as [12]:

,Yp : :k k
j

k1 1 1 \i i -_ ^ ih  
  , , ,Y Yp y p: : : :k k

j
k
j

k k k
j

k1 1 1 1 1 1 1 1\ i i i i- - - -_ _^ ^ ^i ih h h

  , , ,Yp p y x dx: : :k k
j

k k k k
j

k k1 1 1 1 1 1i i i i= - - -_ _^ ^i ih h#  (9)

  p :k k
j
1 1 $i i= -_ ^ ih

    , , ,Yp y x p x dx: :k k k k k k
j

k k1 1 1 1$ i i i - -^ _ ^h ih#
The border of the integral is the value space of xk .  

Values k
j
i
^ h  denote the j-th particle estimation values 

at moment k. If the mean of the observation values and 
variance of measurement noise vk  in (7) are denoted 
by H xk ki^ h  and Qv , respectively, then ,p y xk k ki^ h  is 
expressed as:

, ,p y x H x QNk k k k k vi i=^ ^^h h h  (10)

In formula (9), , ,Yp x : :k k k
j

k1 1 1 1i i - -_ ^ ih  is derived 
through the Kalman filter algorithm as [12]:

, , ,Yp x x PN: :k
j

k k
j

k k k
j

k k
j

1 1 1 1 1 1i i =- - - -t_ `^ ^ ^ ^i jh h h h

x x B uk k
j

k
j

k
j

k
j

k1 1{ i i= +- -t _ _^ ^ ^ ^i ih h h h  (11)

P P Qk k
j

k
j

k
j T

k
j

k
j T

k
j

1 1{ i { i i iC C= + ~- -_ _ _ _^ ^ ^ ^ ^ ^i i i ih h h h h h

where xk
j^ h  and k

j
i
^ h  represent the state particles and 

parameter particles of the system at moment k. Here, 
xk k
j
1-t^ h  and Pk k

j
1-

^ h  represent the predicted state mean 
and variance of state xk

j^ h , respectively for the given 
state xk

j
1-
^ h . The variance of process noise wk  in (6) is 

Q~ . From Equations (9) to (11), the sampling function 
can be parsed as:

, ,Yp y CN:k
j

k
j

k k k
j

y
j

1 1 1 1 k k 1\i i - - -t` `^ ^ ^ ^j jh h h h  (12)
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where

y H xk k
j

k
j

k k
j

1 1i=- -t t_^ ^ ^ih h h , 

C H P H Qy
j

k
j

k k
j T

k
j

w1k k 1 i i= +-- _ _^ ^ ^ ^i ih h h h

and the weights of the particles are calculated from:
/ ,Yw p y p p :k

j
k k

j
k
j

k
j

k
j

k
j

k1 1 1 1i i i i i= - - -_ _ _^ ^ ^ ^ ^ ^i i ih h h h h h

  , ,Yp y p: : :k k
j

k
j

k k
j

k
j

s
1 1 1 1 1 1

k
j

\ i i i i- - -_ _^ ^ ^ ^
^

i ih h h h
h
/  (13)

  , ,Yp y : :k k
j

k
j

k
s

1 1 1 1

k
j

\ i i - -_ ^ ^
^

ih h
h
/

Here wk
j^ h  represents the weight of the j-th particle 

at moment k and the system hybrid state estimation 
is obtained from the weighted sum of particle weights 
and particle values.

The mean and variance of continuous state cor-
responding to each particle can be derived using the 
Kalman filtering algorithm. The posterior probability 
density function of xk  can be expressed as a mixture 
of Gaussian function. The particle will show the degra-
dation property if RBPF is used for the joint estimation 
of unknown parameter and system states because 
most of the parameter particles tend to transfer to 
the same discrete value after sampling step according 
to the sampling function, as the unknown parameter 
does not have the transition function. During the re-
sampling process, the particles with large weights are 
replicated many times while the particles with small 
weights are rejected, and the replicated particles rep-
resent the samples. After several re-sampling steps, 
all the values of the parameter particles tend to be the 
same.

3.4 SMA algorithm

The SMA algorithm is derived from the M-algorithm 
to solve the particle degradation problem occur-
ring in the RBPF algorithm. The unknown parameter 
i  in RBPF is assumed as discrete in M 1+  values 
, , , M 0M0 1 f $i i i ^^ ^ ^ hh h h" , . Discrete values represent 

the value space and any particle for i  should belong 
to the value space. In each moment step from 0 to k, 
the parameter particle needs to be updated based on 
the sampling function. If the parameter particle k

i
1i -
^ h  

is sampled at moment k 1- , the transition probability 
from parameter particle k

i
1i -
^ h  to all possible discrete 

values in , , , M0 1 fi i i^ ^ ^h h h" ,  is calculated first and then 
the parameter value corresponding to the largest tran-
sition probability is sampled as the parameter particle 
k
i
i
^ h . In each particle trajectory, although there are M 

possible values to which parameter particle k
i
1i -
^ h  can 

be transferred at moment k, only one value of them is 
finally retained. Since the diversity of the particles is 
important for obtaining accurate posterior probability 
density, it is preferable to retain more than one value 
which has relatively large weight. Compared with RBPF 

algorithm, the SMA algorithm retains all the possible 
values for each particle trajectory and the particle tra-
jectories grow like a tree. After each sampling step, 
one particle trajectory will be extended into M particle 
trajectories with the results that the total number of 
particles at time k become M times to that of particles 
at precious moment k 1- . If the number of particles is 
initialized as N at moment t0 , the whole number of the 
particles will be M Nk 1 #+  at moment tk 1+ .

3.5 Proposed GSMA algorithm

The unknown parameter is usually static or chang-
es slowly in the industry domain. During the estimation 
process, when each particle is sampled, it is enough 
to retain the possible values closer to the parameter 
value instead of retaining all the possible values.

For instance, assuming that one parameter is dis-
crete as . , . , . , . , .1 0 0 8 0 5 0 3 0 1" , . If the current esti-
mated parameter value is 0.8, only the particle value 
1.0 or 0.5 will be sampled for the next step, because 
the parameter is assumed to change slowly. So the es-
timated parameter will be first discrete and then all 
discrete values will be divided into different groups in 
steps as follows.

During each sampling step, parameter particles 
can transfer only within the group. For example, if dis-
crete space of i  is assumed to contain five values 
as , , , ,0 1 2 3 4i i i i i^ ^ ^ ^ ^h h h h h" , , then at least two differ-
ent groups could be generated: , ,0 1 2i i i^ ^ ^h h h" ,  and 

, ,2 3 4i i i^ ^ ^h h h" , . The parameter particle value 1i^ h  at 
moment k 1- , can transfer to a value in the first group, 
not in the second one.

The member of the group should include the simi-
lar value in the discrete space.

Each discrete value is allowed to exist in differ-
ent groups. The particle should have the transfer-
ring possibility between different groups, such as 

, ,0 1 2i i i^ ^ ^h h h" ,  and , ,1 2 3i i i^ ^ ^h h h" , . If the value of the 
parameter is appointed as 1i^ h  initially and since 2i^ h  
exists both in these two groups, the sampling scope for 

2i^ h  is possibly in the second group.
The group, in which the average value of the mem-

ber is the closest to the parameter particle, will be 
selected. The average values of the groups should 
cover all the discrete values in the state space, except 
the two boundary values in the group. The number of 
members in a group is kept as small as possible, but 
at least three. If the state space of estimated param-
eter i  is , , , M0 1 fi i i^ ^ ^h h h" , , the largest number of 
the groups is M 2- . The groups could be specified as 

, ,0 1 2i i i^ ^ ^h h h" , , , ,1 2 3i i i^ ^ ^h h h" , , , ,2 3 4i i i^ ^ ^h h h" , ,g ,  
, ,i i i1 1i i i- +^ ^ ^h h h" , ,g , , ,M M M2 1i i i- -^ ^ ^h h h" , .

The particle filter procedure is described in Figure 
5. The discrete space of estimated values is assumed 
as , , , ,1 2 3 4 5" ,  and the space is grouped into three 
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groups shown as , ,1 2 3" , , , ,2 3 4" , , , ,3 4 5" , . The 
initial value of the parameter is set as 3 and the num-
ber of the initial particles is described as N0 . Figure 
5 shows the increased procedure from moment 0 to 
moment t n+  for one particle. For any t, re-sampling 
scheme will be executed if the number of the particles 
reaches the boundary maximum number Q and N par-
ticles with higher weights will be kept for the next step.

The calculation steps of the GSMA algorithm are 
shown as Figure 8, where S denotes the particles, 
N0  is set as 1 and N represents the number of re-
sampling particles; if the space is set as , , , ,1 2 3 4 5" ,  
then , ,a 1 2 3i ! " , , , ,b 2 3 4i ! " , , , ,c 3 4 5i ! " , , 

, ,i 1 2 3! " , .
Step 1: Parameter particles initialization:
From pk k k1 1+i i i+ +^ h  in (5), parameter estima-

tion value of k 1i +  is calculated from p k k1i i+^ h . In 
the particle filter algorithm, p k k1i i+^ h  is represented 
by k k

i
1i +^

^
h

h , value of k
i
1i +

^ h , estimated from k
i
i
^ h . It is 

assumed that , , ,p i N1i
1 0 0 0f+i i =^^ hh , particle value 

i
1 0i
^ h  is sampled from the initial defined particle values 

of parameter i . The weights of the particle are set as 
/N1 0 .

Step 2: States particles initialization: x xi
0 0= t^ h ,  

, ,i N1 0f=  and P pi
0 0=^ h , , ,i N1 0f= , where the 

particles for x i0
^ h  and the particles for P i

0
^ h  are sam-

pled on the normal distribution with the mean value 
x0t  and variance p0 , at moment 0.

Step 3: For , ,k 1 2 f= , repeat the following steps:
For , , ,i N1 2 f= , the state particle xk k

i
1-

^ h  of the 
system and the mean square error matrix Pk k

i
1-

^ h  are 
predicted by

x x B uk k
i

k k
i

k
i

k k
i

k1 1 1 1{ i i= +- - - -` `^ ^ ^ ^j jh h h h

P Pk k
i

k k
i

k
i T

k k
i

1 1 1 1{ i { i= +- - - -` `^ ^ ^ ^j jh h h h

  Qk k
i T

k k
i

1 1i iC C+ ~- -` `^ ^j jh h  (14)

where k k
i
1i -

^ h  is estimation mean value of the param-
eter particle values k

i
i
^ h  given by (5).

yk k
i
1-

^ h  is the estimation mean value of yk
i^ h  given 

by (7) and it is calculated by:

y H xk k
i

k k
i

k k
i

1 1 1i=- - -`^ ^ ^jh h h  (15)

Rk
i^ h  denotes the estimation standard deviation of 

the parameter and it is derived by:

R H P H Qk
i

k k
i

k k
i T

k k
i

v1 1 1i i= +- - -` `^ ^ ^ ^j jh h h h  (16)
The weights for the parameter and state particles 

are calculated and normalized:

, ,Yw p y y RN:k
i

k k k k
i

k k
i

k
i

0 1 1 1+i= - - -u ` `^ ^ ^ ^j jh h h h  (17)
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The mean values of the parameters and states are 
calculated by:

wk k
i
k k
i

i

N

1
1

k

i i= -
=

t ^ ^h h/  (19)

where Nk  means the number of the particles at mo-
ment k. Kalman gain Kk

i^ h  is calculated by:
K P H Rk
i

k k
i T

k
i

k
i

1
1

i= -
-_^ ^ ^ ^ih h h h  (20)

The state particle xk
i^ h  of the system and the mean 

square error matrix Pk
i^ h  are updated by observation 

value yk  from (7):

x x K y H xk
i

k k
i

k
i

k k
i

k k
i

1 1i= + -- -_`^ ^ ^ ^ ^i jh h h h h

P P K R Kk
i

k k
i

k
i
k
i
k
T i

1= --
^ ^ ^ ^ ^h h h h h  (21)

The mean values of the states are calculated by:

x w xk k
i
k
i

i

N

1

k

=
=

t ^ ^h h/  (22)

The group, in which the parameter particle exists 
must be determined before the sampling action and 
the particle is extended within the group.

4. SIMULATION RESULTS

The RBPF algorithm, SMA algorithm and GSMA al-
gorithm are used for the joint estimation of the train 
braking rate and the states of the urban train. The 
state space equation of the simulation system is de-
scribed in (4). The static parameters x  and m  are set 
as . s0 4x = , .1 6667m = . The kX  is the value of the 
Gaussian at moment k with expected value E 0kX =6 @  
and variance .Var 0 05kX =6 @ .

The braking rate f in (4) represents the system pa-
rameter and displacement D, velocity v, control accel-
eration at . The filter value of the target acceleration az  
denotes the estimated status of the system.

The initial condition of the system parameter and 
states are defined as follows:

(1) It is assumed that the braking rate of the urban 
railway changes as:

.f f k0 005k 0 #= -

f 10 =  (23)
where initialization value f0  is set as 1.0. The scope of 
the braking rate f is ,0 16 @  and f, x  and m  are used to 
calculate the “real” state value x D v a az T= t7 A  by (4).

(2) For the displacement D, velocity v, control ac-
celeration at  and intermediate variable az  in the state 
space, the initial values are 0 m, 20 m/s, (-1) m/s2 
and (-2) m/ s2.

The braking rate v is discrete as
. , . , . , . , . , . , . , . , . , . ,1 0 0 9 0 8 0 7 0 6 0 5 0 4 0 3 0 2 0 1 0" , .

These values are not calculated from (23). The val-
ues of parameter particles will be assigned from them.

For GSMA, SMA and RBPF, the initial states par-
ticles x i0

^ h  for D, v, at  and az  are the same. They are 
sampled on the normal distribution with the mean 
value 0, 20, -1 and -2, respectively. The initial particles 

of P i
0
^ h  are sampled on the normal distribution with 

variance 0.001;
(1) In the GSMA algorithm, the initial parameter 

particles i
1 0i
^ h  for braking rate f are sampled in the 

discrete space
. , . , . , . , . , . , . , . , . , . ,1 0 0 9 0 8 0 7 0 6 0 5 0 4 0 3 0 2 0 1 0" , .

Discrete values are grouped as
. , . , .0 9 0 8 0 7" , ,  . , . , .0 8 0 7 0 6" , , . , . , .0 7 0 6 0 5" , ,  
. , . , .0 6 0 5 0 4" , , . , . , .0 5 0 4 0 3" , , . , . , .0 4 0 3 0 2" , , 

. , . , .0 3 0 2 0 1" , , . , . , .0 2 0 1 0 0" , .
The initial numbers of parameter and state particles 
are both represented by N0  and they are both set as 
50. The boundary maximum upper limit particle num-
ber Q and the re-sampling particle number N are set 
as 500 and 50, respectively.

(2) In SMA, the initial parameter particles i
1 0i
^ h  for 

braking rate f are sampled in the discrete space
. , . , . , . , . , . , . , . , . , . ,1 0 0 9 0 8 0 7 0 6 0 5 0 4 0 3 0 2 0 1 0" , .

The initial numbers of parameter and state particles 
are both represented by N0  and they are both set as 
50; Q and N are set as 500 and 50, respectively.

(3) For RBPF, the initial parameter particles i
1 0i
^ h  

for braking rate f are sampled in the discrete space
. , . , . , . , . , . , . , . , . , . ,1 0 0 9 0 8 0 7 0 6 0 5 0 4 0 3 0 2 0 1 0" , .

The initial numbers of parameter and state par-
ticles are both represented by N0  and they are both 
set as 250.

During the estimation calculating procedure, the 
discrete time integration is 1.0 second. The values of 
the observations y are generated based on the system 
state space equations by the simulation tool MATLAB. 
The hardware is PC ThinkPad R400, with Intel T6570, 
2.1GHz and 2GB DDR3 memory.

In (19) and (22), kit  represents braking rate f and 
x D v a ak z

T=t t7 A . Thus f, D, v, at  and az  can be up-
dated and calculated by the observations generated 
in (23) and (4). The estimation errors of the param-
eters and states, calculated by (23) and (4) are shown 
from Figure 6 to Figure 10. The corresponding estimated 
mean errors are specified in Table 1.

Table 1 – Comparison of the parameter and status 
estimation using RBPF algorithm, SMA and GSMA

The estimation 
mean error

Different algorithms
RBPF 

algorithm SMA GSMA

Train braking rate f 0.105 0.027 0.023
Displacement D (m) 0.305 0.304 0.304
Velocity v (m/s) 0.185 0.181 0.180
Control acceleration  
at  (m/s2) 0.095 0.037 0.036

Derived az  from the 
target acceleration (m/s2) 0.0001 0.0001 0.0001
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Table 2 - Comparison of computing time using RBPF 
algorithm, SMA and GSMA

Different algorithm RBPF algorithm SMA GSMA
Computation time(s) 6.590 56.505 16.760

In (4), y is observable output and y D v a0 z
T= 7 A  

Displacement D of the train is measured by displace-
ment sensor and velocity v is calculated from the dis-
placement at the moment. The az  is derived from the 
target acceleration and can be calculated from the 
system input a tTar ^ h .

From the system parameter and status shown in 
Figure 7, Figure 8, Figure 10 and in Table 1, the error 
curves of urban train displacement D, velocity v and 
az  are almost equal because these three variables are 
observable. Figure 6 and Figure 9 show that the estima-

tion precisions of the train braking rate f and the con-
trol acceleration at  using GSMA and SMA are similar. 
The estimation accuracy of GSMA and SMA are much 
higher than that of RBPF algorithm. The computation 
times of the GSMA, SMA and the RBPF algorithm in 
150 recursive steps are shown in Table 2. The real-time 
performance of the GSMA is better than that of SMA 
and weaker than that of RBPF. Although the RBPF has 
the best real-time estimation, its estimation error for 
the braking rate and control acceleration is relatively 
larger, which will bring about the unexpected hidden 
danger during the train operation process. Compared 
with RBPF, GSMA has the better estimation precision 
and its computation time is only one third of the time 
consumed by SMA. Taking the real-time performance 
and the estimation precision into account together, 
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the GSMA is most suitable for the joint estimation of 
the train braking rate and the train operation states.

5. DISCUSSION AND CONCLUSION

In order to improve the parking precision of the ur-
ban train, the GSMA is proposed, based on the RBPF 
algorithm and SMA. Adequate estimation for the dy-
namic braking rate, the displacement and velocity 
measurement accuracy are the key factors affecting 
the parking precision. Compared with the RBPF and 
SMA, GSMA reduces the estimation error of braking 
rate greatly so that the parking precision of the urban 
train is improved. In addition, GSMA keeps the real-
time performance by decreasing the number of the 
calculating particles during the estimation process. 

In general, the braking rate of urban train changes 
occasionally and slowly so that the longer parameter 
estimation time of GSMA, compared with RBPF, is tol-
erable.

In the urban railway braking domain the benchmark 
is the accuracy requirement, so that the proposed 
GSMA takes precedence on the accuracy require-
ments. If the range of the unknown parameter is wide 
and the number of the discrete values for the discrete 
parameter is big, the computation time advantage of 
the GSMA will become more apparent, because the 
computation complexity of the proposed algorithm is 
only associated with the number of discrete values in 
one group. Whether the unknown parameter is static 
or dynamic, GSMA can obtain accurate estimation re-
sult if the range of the parameter is known in advance. 
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If there is little knowledge of the unknown parameter, 
it is difficult to use the GSMA.

In the future work, the GSMA will be improved for 
estimation of the unknown parameter with little a pri-
ori knowledge by combining it with an algorithm that 
can determine the range of the parameter.
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摘要 
 
基于GROUP-SMA 算法的列车参数及状态联合估计

列车制动率及制动运行是影响列车制动性能的关键因
素。由于测量噪声的存在及较长的计算时间，列车的若
干状态很难实时获得。本文基于Rao-Blackwellization 
Particle Filter (RBPF)算法及Stochastic M-algorithm 
(SMA)提出了一种Group Stochastic M-algorithm (GSMA)
算法。与RBPF相比，GSMA算法针对列车制动率及控制减速
度的估计精度分别提高了78% 和 62%。与SMA相比，GSMA
算法的计算时间减少了70%。

关键词

参数估计；状态估计；粒子滤波；列车制动系统;
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