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MONTE CARLO SIMULATION-BASED APPROACH TO OPTIMAL
BUS STOPS ALLOCATION IN THE MUNICIPALITY OF LASKO

ABSTRACT

The paper addresses the problem of optimal bus stop
allocation. The aim is to achieve reduction of costs on ac-
count of appropriate re-design of the process of obligatory
transportation of children from their homes to the corre-
sponding schools in the Lasko municipality. The proposed
algorithm relies on optimization based on the Monte Carlo
simulation procedure. The number of calculated bus stops is
required to be minimal possible, which can still assure maxi-
mal service area within the prescribed radius, while keep-
ing the minimal walking distances pupils have to go across
from their homes to the nearest bus stop and vice versa.
The main issues of the proposed algorithm are emphasised
and the working mechanism is explained. The presentation
of calculated results is given and comparison with some
other existing algorithms is provided. The positions of the
calculated bus stops are going to be used for the purpose of
physical bus stops implementation in order to decrease the
current transportation costs.
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1. INTRODUCTION

Since the public sector has been also captured
by the consequences of the current economic crisis,
the reduction of all types of costs has to be taken into
consideration. The paper addresses the question of
reducing specific type of costs, which are generated
by obligatory transportation of specific categories of
children in the Lasko municipality. This transporta-
tion, which is enforced by government law, includes
the transport of children from their homes to the cor-
responding primary schools and back to their homes.

Figure 1 shows the positions of pupils addresses
(PA) in Lasko municipality (shaded area). In the current

situation, the total number is 562 pupils, which are
marked with little circles in Figure 1. Figure 1 also shows
the positions of pupils’ schools (little house symbols)
and their total number is 11.

In the present time, the treated category of trans-
portation reaches very high level of costs, which can
rise even up to one million euro per year. Since this
is unbearable for such a small municipality as Lasko,
there is very strong desire to reduce these costs as
much as possible.

The main reason for such high level of costs is tem-
porary organization of transport. In the current situa-
tion, namely, buses and other transportation vehicles,
hired by the municipality are used for picking up and
delivering every single individual pupil at their homes.
Moreover, these transport routes are not well orga-
nized in the sense of unnecessary driven additional ki-
lometres, vehicles are usually not fully loaded, routes
are sometimes unnecessarily doubled or even tripled,
etc.

As a way of reducing the costs mentioned above,
a two-stage optimization approach is proposed (c.f.
Figure 2). In the first stage, optimal bus stop locations
are determined, at which pupils should be picked up.
The allocation of bus stops implies that, on the one
hand, pupils are required to walk from their homes to
the nearest bus stops, which means that some com-
fort will be lost. On the other hand, the transportation
vehicles will have to drive along significantly shorter
quantity of routes (distances).

The second stage (Figure 2) concerns optimization
of driving routes, driving schedules and driving fleet,
related to the transportation of pupils from optimal
bus stops to their schools and vice versa. This paper
deals only with the results achieved during the first
stage.

Bus stops cannot be located at any place inthe area
under study, so that their number cannot be chosen
completely arbitrarily. On the contrary, the positions of
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Figure 1 - Current positions of pupils' addresses (little circles) and the positions of their schools (little house symbols)
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Figure 2 - The two-stage optimization approach
to the reduction of transportation costs

bus stops must be determined in such a way that as
many pupils as possible should be serviced from an in-
dividual bus stop, while the total number of bus stops
must be reduced to the lowest possible level.

Obviously, this problem is similar to the so-called
“maximum location covering problem” where the mini-
mum fixed number of facilities must be located, which
should maximize the service area.

A number of algorithms have been proposed so far
for solving the maximum covering problems [1], [2],
[3], [4], [5], [6]. For example, the so-called Greedy heu-
ristic algorithm is one of the most typical algorithms for
solving such problems [1]. The latter is called Greedy,
since it does what is best at each step of the algorithm
without looking ahead to see how the current deci-
sions will affect the latter decisions and alternatives
[1].

The algorithm, which is introduced in this paper,
is slightly different from the existing algorithms. It is
based on the Monte Carlo simulation method, which

helps us to find the optimal bus stops locations during
the combined simulation - optimization procedure.

The paper is further organized as follows. Section
2 presents a brief literature review of the existing al-
gorithms for solving maximum covering location prob-
lems. The description of the treated data and initial
road data reduction are given in Section 3. The pro-
posed optimization procedure for the purpose of opti-
mal bus stops allocation is described in Section 4. In
Section 5, an excerpt of the numerical results is given.
Finally, a comparison of proposed algorithm with well-
known Greedy Add and Greedy Drop heuristic proce-
dures is provided in Section 6.

2. LITERATURE REVIEW

The maximum covering location problem was first
introduced by Church and ReVelle in 1974 [2]. It seeks
the maximum population that can be served by a limit-
ed number of facilities within a stated service distance
or time [2], [7].

The maximal location covering problems arise in a
variety of public and private sector problems [1], [5],
[6], [7], [8], [9], [10]. For example, state governments
need to determine locations for bases for emergency
highway patrol vehicles. Similarly, local governments
must locate fire stations, police stations and ambu-
lances. In all of these cases, poorly chosen locations
can increase the possibility of damage or loss of life [1].

In the private sector, industry must locate offices,
production and assembly plants, distribution centres
and retail outlets. Poor location decisions in this envi-
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ronment lead to increased costs and decreased com-
petitive position [1].

The maximum location covering problem is one of
the typical problems in the facility location theory. Facil-
ity location is a resource allocation problem that deals
with placement of different types of facilities, which
should be provided to the customers on demand [11].

Besides maximum location covering problem,
some other significant location problems are: the set
covering problem, p-center problem, and p-median
problem [1], [2], [3], [4], [12], [13].

The set covering problems are problems where the
locations of the minimum number of facilities are found
necessary to cover all demands. P-center problems
are problems where the maximum distance (or travel
times) from any demand node to its nearest facility
has to be minimized. P-median problems are problems
where the locations of a given number of facilities are
found which are necessary to minimize the average dis-
tance between customers and the nearest facility.

The classification of the location problems men-
tioned above also determines the objectives which are
needed to classify the facility location models. This is
the first important criterion for the classification of the
location models [7]. The second important criterion
which is also needed for the classification of the loca-
tion models, are the topological characteristics of the
facility and demand sites. The latter leads to different
location models including continuous location mod-
els, discrete network models, hub connection models,
etc [7]. In each of these models, facilities can only be
placed at the sites where it is allowed by topographic
conditions.

The third criterion, which also determines the clas-
sification of facility location models, is the spectrum of
solution methods [7]. This paper deals with the maxi-
mum covering location problems only which can be
treated by use of discrete network models [1]. There-
fore, the sequel is restricted only to the short overview
of the methods, which are related to this type of prob-
lems.

At the beginning of maximum covering problems
solving, Church and ReVelle used relaxed linear pro-
gramming, supplemented by occasional use of branch
and bound procedure to provide solution to this type
of problems [2], [6]. Since then, a number of new al-
gorithms and heuristics have been derived for this pur-
pose.

For example, Greedy heuristic algorithms [1], [2],
[7], [14] are often used, when facility location prob-
lems must be solved. Some of the most typical greedy
algorithms are: Basic Greedy Adding (Add) algorithm,
Improved Greedy Adding algorithm with Substitution,
Greedy Dropping (Drop) algorithm, etc.

Basic Greedy Add starts with an empty solution
set and then adds to this set one at a time best facil-
ity site, which covers the most of uncovered demand

points. At the beginning, it picks the first facility, which
covers the most of the total demand population. After
that, it picks the second facility, which covers the most
population not covered by the first facility. In further
iterations, the sites for the next facilities are selected,
which cover the largest number of demand points un-
covered by the facilities in previous iterations. This pro-
cess is continued until either chosen number of facili-
ties has been selected or all the demand population is
covered [1], [2].

Greedy Drop is based on the reverse strategy of
the Greedy Add heuristic approach and uses the naive
drop heuristics [14]. Initially, all facility candidates are
part of the solution configuration. At each iteration one
candidate is then removed until only the given number
of candidates is left in the configuration. The mecha-
nism of removing works in the sense that at each it-
eration the candidate that produces the smallest de-
crease in the objective function is dropped.

Of course, besides Greedy algorithms there are
many other more advanced heuristics like Genetic
Algorithms [15], [16], Simulated Annealing [17], [18]
and Tabu Search [19], [20]. They may be also applied
to obtain a better solution if necessary but should be
compensated by a significantly longer computation
time [7].

Some other significant methods which have been
proposed for solving of maximum covering problems
are: Lagrangean relaxation [1], [6], [13], Lagrangean/
Surrogate heuristics [21], Heuristic concentration [6],
etc. Detailed reviews of the solution procedures for the
maximum covering problems can be found in [5].

3. PROBLEM DEFINITION AND INITIAL
ROAD DATA REDUCTION

Figure 3 shows the positions of entire set of road
data points in Lasko municipality, which are also pos-
sible bus stops candidates (BSC). One can see that
these points are marked with little squares. They have
been generated by 300 metres segmentation of every
single road within the treated surface. The total num-
ber of segmented road data points is 14,295, which
were collected by the use of Geographic Information
System (GIS) [22]. The positions of 562 pupils ad-
dresses (PA) are marked with little circles in Figure 3
and these points were also collected by means of GIS
system.

The distribution of pupils data points can be treat-
ed over the control area of 247.9km? (marked area A
in Figure 3), while the road data points are distributed
within a much larger area (more than 300km?). Since
the number of bus stop candidates is enormous in the
treated case (14,295 possible points) and the treated
region is quite large (more than 300km?), while the
walking requirements are quite rigorous (pupils should
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BSC (squares)

| [PA (circles)]

LASKO
MUNICIPALITY

BSC - bus stop candidates (14,295)
PA - pupils adresses (562)

Figure 3 - 14,295 road data points - bus stops candidates (squares), and 562 pupils' data points (circles)

not be walking for more than 1.3km), this is likely to be

an NP-hard problem. It is, namely that 1.3 km is quite

a short distance in comparison with the enormity of

the treated area.

Since the total number of bus stops candidates
(14,295) is enormous, it has to be somehow reduced.
For this purpose, the original set of road data is firstly
reduced only to the control area A in Figure 3.

If only road data points inside area A as well as all
pupils’ addresses in A are considered, the resulting
data points are shown in Figure 4. Figure 4 shows the
reduced situation of 11,820 road points, besides 562
pupils’ data points.

Further reduction of the road data set in Figure 4
relies on two heuristic rules:

1) Only those road data points will be considered
which are not too close to the nearest neighbouring
road data points. Hence, the calculations are sim-
plified and the speed of computations is increased.

2) Only those road data points that are close enough
to the pupils’ data points will be taken into consid-
eration.

If these heuristic rules are applied, the resulting
data points are shown in Figure 5. Figure 5 shows fur-
ther reduced situation of 1,768 road points, besides
562 pupils data points.

One can see that the reduced number of road
points is quite smaller in comparison with the original
road data or data within the control area A (Figures 3
and 4). Further processing procedure, namely, is go-
ing to deal only with the 1,768 possible road points in-
stead of the original number of 14,295 road points or
by area A reduced number of 11,820 road data points,
respectively.

Since the reduced number of 1,768 road data
points is still too big in the sense of optimal bus stops
allocation, further reduction of these points is some-
how needed in order to lower the total number of opti-
mal bus stops to the acceptable level.

4. OPTIMIZATION AND
SIMULATION PROCEDURE

For the purpose of optimal bus stops allocation,
the optimization procedure (c.f. Figure 6) must be ap-
plied in order to furthermore reduce 1,768 bus stops
candidates, which were extracted during the initial
road data reduction.

If the optimization, which is based on Monte Carlo
simulation procedure, is directly applied for the whole
control area A shown in Figure 5, it turns out that some
serious problems would occur during the process of
computations. Therefore, the observed surface with
1,768 road data points in Figure 5 must be additionally
divided into a certain number of subsectors (c.f. Figure
6) in order to efficiently use the Monte Carlo procedure.

Among several combinations of “ad hoc” partitions
of area A in Figure 5 into subsectors, it turns out that
the partition into 8 subsectors can assure the most
reasonable optimization results. Thus, if partition into
8 subsectors is applied, then Figure 5 can be repre-
sented, as shown in Figure 7.

As it can be seen from Figure 7, each subsector cov-
ers a certain number of bus stops candidates and a
certain number of pupils data points. Now, for each
subsector it must be decided which bus stops candi-
dates points provide service to the maximal possible
number of pupils in the sense that their minimal walk-
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Figure 5 - 1,768 road data points (squares), further reduced according to the two heuristic rules;
562 pupils data points (circles)

ing distances lie within the prescribed radius r. Addi-
tional criterion is that the number of uncovered pupils
(pupils who should walk more than the prescribed ra-
dius) is as low as possible.

It turns out that this problem can be efficiently
solved by the use of Monte Carlo procedure. Let us
take the j-th subsector (j = 1,2,...,8) with random-
ly chosen road data points (for example 7 points
Si,...5, =8,k =1,...,7 in Figure 8). Let each point
be surrounded with circles P, ..., = B,k = 1,...,7 of

prescribed radius r. If the first iteration of Monte Carlo
simulation is executed, this situation can be presented
as illustrated in Figure 8. In this simplified illustration,
one can notice that there are only 30 bus stops can-
didates (squares) and 20 pupils addresses points (17
inside the circles P, (little circles) and 3 outside the
circles P, (stars)). Of course, the true number of pupils
data addresses to be served and road data points is
certainly much bigger in individual subsector (c.f. Fig-
ure 7), than presented in Figure 8.
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Initially reduced road data
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Generation of sub-sectors

A4

Optimization based on the
Monte Carlo simulation procedure

OPTIMAL
BUS STOPS

Figure 6 - Optimization procedure for the purpose
of optimal bus stops allocation

The algorithm calculates the shortest distances
from pupils addresses to the nearest chosen road
points S,k = 1,...,7, at first (consider Euclidian dis-
tances dj, d,,...,dy7 in Figure 8). Due to these calcula-
tions, the attempt is made to assign all pupils to the
nearest bus stop candidate S, if the calculated mu-
tual distance is shorter than the prescribed radius r.
With respect to these conditions, 17 pupils data points
are obviously assigned to (covered by) 7 randomly cho-
sen road data points S,k = 1,...,7, with accompany-

Jj-th
subsector

Figure 7 - Partition into 8 subsectors; 1,768 road
data points - bus stops candidates (squares),
562 pupils data points (circles)

Figure 8 - lllustration of Monte Carlo simulation ap-
proach, applied for the j-th subsector, j =1,2,...,8,
during the first simulation

Since the distance from 3 pupils addresses to
any of the chosen road points S, is longer than the
prescribed radius r, these points are treated as unas-
signed (uncovered) and are marked by stars in Figure
8.

Now, the following criterion function for j-th sub-
sector can be applied as a sum of all distances of as-
signed pupils data points in Figure 8:
17

JCl’itl(.jY 1) = di, j = 1,2, ...,8 (1)
i=1

where 1 in the function argument denotes the number

of first iteration during the simulation procedure. The
meaning of the criterion function (1) is the following:

ing circles P, ...,P;.
1-st
simulation

Randomly chosen
7 BSC points S, with circles Py

BSC points

Jth
subsector

VAN
Unassigned PA - 3 start
(outside circles P;)

Assigned PA - 17 little circles
(inside circles Py)

BSC - bus stop candidates (30 squares)
PA - pupils adresses (20) - 17 little circles and 3 stars

Figure 8 - lllustration of Monte Carlo simulation approach,
applied for the j-th subsector, j= 1, 2,...,8, during the first simulation
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the lower value of the criterion function (1) also means
the shorter average walking distance of the assigned
pupils.

Also, the number of unassigned pupils is applied
as the second criterion function and can be presented
in the following way for the j-th subsector and the first
iteration:

Jie2 (J, 1) = number of unassigned pupils,
j=12,...,8 (2)

For the situation in Figure 8, the criterion function
(2) evidently takes the value of 3 unassigned pupils.
It is obvious, that there is a strong tendency to reach
the lowest possible value of both criterion functions
(1) and (2).

If the second iteration of Monte Carlo simulation is
executed afterwards, the situation in Figure 8 naturally
changes, since the other set of 7 road data points is
randomly chosen. Consequently, the other pupils ad-
dresses are assigned to the nearest chosen bus stops
candidates and other pupils addresses are unas-
signed. The criterion functions (1) and (2) are changed
to the different values, too.

Similar situation occurs for all other iterations. If,
namely, the next i = 3,4,...,N iterations of Monte
Carlo procedure are repeated afterwards, obviously
the situation in Figure 8 persistently changes, since the
set of 7 randomly chosen road data points is different
at every repetition. Consequently, the assigned and
unassigned pupils data points are different at every
repetition, and the criterion functions (1) and (2) are
persistently changed.

Thus, when all N iterations of Monte Carlo proce-
dure are finished, the following set of values of crite-
rion functions (1) and (2) will be formed for the j-th
subsector:

Jcriti (./7 1)1Jcrit1 (fv 2)7 ---chritl (.I! N)v J = 1727 18 (3)
Jcrit2 (Jv 1)1Jcrit2 (Jv 2)7 .. 'v-jcrit2 (Jv N), f = 1727 18

For example, if the 1% subsector is taken into con-
sideration and the prescribed radius is 1.3km, expres-
sions (3) could take the form as shown in Table 1.

Table 1 - An example of both criterion functions
values, generated by N iterations of Monte
Carlo procedure, if the 1% subsector is observed
and the prescribed radius is 1.3 km

. ) sum of shortest number of unassigned
iteration . .
distances pupils
1 20.5 km 3
2 19.1 km 5
3 17.3 km 8
N 22.7 km 0

Obviously, after running certain, sufficiently big
number of N iterations during the simulation proce-
dure, the whole set of values of both criterion functions

is calculated for each subsector. Now, the two-criteria
optimization procedure must be somehow applied to
expressions (3), where the combined optimum is try-
ing to be found for each subsector. The latter means
searching for that “best” set of randomly chosen road
data points for each subsector where the belonging
criterion function (1) reaches the minimal value, while
simultaneously keeping the criterion function (2) at
the lowest possible level.

In case of Table 1, the sum of the shortest distanc-
es and the number of unassigned pupils in principle
reach the minimum at different iterations. The optimi-
zation algorithm is then designed in a way that higher
weight is assigned to the achievement of keeping the
number of unassigned pupils at the lowest possible
level. Consequently, the algorithm treats the solution
with the sum of shortest distances 22.7km and O un-
assigned pupils as better than the solution with the
sum of shortest distances 19.1km and 5 unassigned
pupils.

The combination of calculated results for all sub-
sectors, which are the “best” sets of randomly cho-
sen road data points for each subsector, represents
the positions of optimal bus stops. In this concept the
following assumption can be given. If the optimal bus
stops are calculated by means of the procedure de-
scribed above, the bus stops cover as much pupils as
possible within the prescribed radius, while they have
to walk as little as possible. Also, the remaining num-
ber of unassigned children is supposed to be as mini-
mal as possible.

At the end of this section two more facts should
be stressed. Firstly, the algorithm is designed in order
to randomly choose equal number of bus stops candi-
dates in all subsectors while proceeding with the itera-
tions of Monte Carlo procedure. It means that for the
case represented in Figures 7 and 8 (8 subsectors, 7
randomly chosen road data points), obviously the total
number of 56 optimal bus stops is going to be calcu-
lated during the optimization procedure.

Secondly, the algorithm performs Monte Carlo
simulations for all subsectors simultaneously, which
means savings of computational time during the simu-
lation procedure.

5. PRACTICAL NUMERICAL RESULTS

The development of algorithm for optimal bus
stops determination and all the computations of the
optimization procedure were carried out in MATLAB.
Table 2 shows all relevant parameters which were used
during the computation of results. It turns out that by
use of these parameters most efficient results can be
achieved.

The prescribed radius, which was used as an ad-
ditional constraint during the computations, is 1.3km.
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Table 2 - Relevant parameters which were
used during the computation of results

prescribed radius r 1.3 km
number of subsectors 8
number of randomly chosen

L 7
road points in each subsector
number of simulation iterations 1,000

The latter is not chosen randomly, but it is demanded
as a maximum possible radius which is still acceptable
for the Lasko municipality. Thus, children should not
walk more than 1.3km from their homes to the bus
stops and vice versa.

Since the chosen number of subsectors is 8 and
the number of randomly chosen bus stop candidates
in each subsector is 7, the algorithm obviously deals
with the determination of 56 optimal bus stops.

It turns out that the total number of 1,000 itera-
tions of Monte Carlo procedure is big enough to sat-
isfy the assumption that the results for calculated bus
stops can be treated as close enough to the actually
optimal results. It should be also stressed that all the
needed computations, which have been executed, are
calculated in a relatively fast way during the perfor-
mance of the optimization procedure.

When the optimization procedure and Monte Carlo
simulations are finished, the (X, Y) coordinates of 56
optimal bus stops are calculated. As it turns out, the
latter are capable of covering 550 pupils within the
prescribed radius of 1.3km. Therefore, the total num-

ber of 12 pupils remain unassigned to any bus stop.
Since the total number of pupils is 562, the algorithm
obviously managed to achieve service for 97.8% of
all pupils by the determination of calculated optimal
bus stop points. Hopefully, the unassigned 12 pupils
should walk only several hundred metres more than
the prescribed radius.

More useful information about the positions of
calculated bus stop points can be illustrated on the
observed surface of 1,768 bus stop candidates, de-
termined by the initial road data reduction procedure
(Figures 5 and 7). If the calculated 56 optimal bus
stops (OBS) are extra marked in comparison with the
other 1,768 - 56 = 1,712 bus stop candidates (BSC),
the results can be represented as shown in Figure 9.

The situation shown in Figure 9 can be also illus-
trated from a different point of view, if the non-optimal
road points are removed and pupils data points are
added to the Figure. Then the Figure 10 can be used for
the demonstration of results, where the distribution of
optimal bus stops (OBS) can be observed with respect
to pupils addresses (PA) distribution.

If the optimal bus stops in Figure 10 are surround-
ed by circles P,i=1,...,56 of prescribed radius
r, the results can also be represented as shown in
Figure 11. Twelve unassigned pupils data points with
corresponding pupils addresses (PA) can be located
by careful observation of Figure 11. Since the latter
are not assigned to any optimal bus stop, they lie out-
side any circle P of the prescribed radius. The other
550 pupils data points are covered with the circles

OBS - optimal bus stops (56)
BSC - bus stops candidates (1,768)
|
=}
= m
|
=]
=}
=]
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B
B
=}
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= |

=
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Figure 9 - 1,768 road data points (squares) extracted in the initial road data reduction;
Extra marked positions of 56 optimal bus stops
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- 0BS .
("centres of circles Pi")

A .

Figure 11 - Positions of 56 optimal bus stop points surrounded by circles Pi
of the prescribed radius; 550 assigned and 12 unassigned pupils data points (little circles)

P, of calculated 56 bus stops and therefore lie inside
these circles.

Finally, the calculated results for optimal bus stops
positions can be represented as shown in Figure 12. As
it can be seen from Figure 12, only space distribution of
56 optimal bus stop positions is illustrated.

The coordinates of these locations have been sub-
mitted to the Lasko municipality responsible person-
nel in order to trigger all necessary procedures for the
purpose of bus stops physical implementation.

When this implementation is finished, the driv-
ers of transportation vehicles will have to pick up the
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LASKO
MUNICIPALITY

OBS - optimal bus stops (56)

Figure 12 - lllustration of space distribution of 56 calculated optimal bus stops positions

treated pupils only at the bus stops, instead of picking
them up at their homes individually. Since the number
of all pupils is 562, while the number of planned bus
stops is only 56, obviously the savings of transporta-
tion costs from this point of view are going to be signifi-
cantly appreciable.

Of course, the current space distribution of the pro-
posed optimal bus stops is going to change in the fu-
ture as consequence of progressive changing of pupils
addresses, since some of the children are progressive-
ly going to finish the school, while the others are pro-
gressively going to become pupils of the school. Thus,
the design of optimal bus stop locations will have to
follow the new trends of children’s addresses distribu-
tion in the future.

6. COMPARISON WITH GREEDY ADD
AND GREEDY DROP PROCEDURES

In order to verify the quality of the results achieved
by the proposed optimization procedure, it is strongly
recommended to make a comparison with some other
already existing algorithms. For this purpose, basic
Greedy Add and Greedy Drop procedures, briefly intro-
duced in Section 2, were chosen.

As it turns out, the initial road data reduction de-
scribed in Section 3 for these two procedures has to
be applied as well; otherwise; great difficulties could
occur in the optimal bus stops calculations.

As it can be seen in the previous section, the re-
sults for 56 optimal bus stops and 550 covered pu-
pils have been presented in the case of Monte Carlo
procedure. Naturally, in different combinations of the
chosen number of subsectors and the number of ran-

domly chosen bus stop candidates inside each sub-
sector, the different number of optimal bus stops can
be achieved. Thus, for example, the results ranging be-
tween 12 and 70 optimal bus stops can be calculated,
where at each different number of optimal bus stops,
the different number of pupils can be covered. The dif-
ferent numbers of optimal bus stops can be calculated
not only when the optimization based on Monte Carlo
method is used, but also when the other two proce-
dures, Greedy Add and Greedy Drop, are used. In our
opinion, namely, the comparison between the treated
procedures is more authentic when it is done for differ-
ent numbers of optimal bus stops and not only for one
number of optimal bus stops.

Figure 13 shows the number of covered pupils,
depending on the number of optimal bus stops, if
the optimization based on Monte Carlo simulation is
used (course a), or the Greedy Add procedure is used
(course b), or the Greedy Drop procedure is used
(course c), for bus stops allocation.

Naturally, the number of covered pupils is growing,
when the number of optimal bus stops is increased.
From Figure 13 it is evident that the best results
are achieved by the use of Greedy Add procedure,
since it uses significantly lower number of optimal
bus stops to cover as many pupils as possible, than
the other two procedures. Slightly worse results are
achieved by the use of procedure based on Monte
Carlo simulation, which needs for the same cover-
age of pupils significantly more bus stops, while the
Greedy Drop procedure gives the worst results. Thus,
for example, the latter needs even 82 bus stops for
covering 550 pupils (see point C in Figure 13), while
the procedure based on Monte Carlo needs for the
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Figure 13 - The number of covered pupils, depending on the number of optimal bus stops.
The latter are calculated by: a) Optimization based on Monte Carlo simulation;
b) Greedy Add procedure; c) Greedy Drop procedure
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Figure 14 - The total number of walking kilometers of covered pupils, depending
on the number of covered pupils. a) For the case of Monte Carlo simulation;
b) For the case of Greedy Add procedure; c) For the case of Greedy Drop procedure

same coverage only 56 bus stops (point A in Figure Figure 13 convinces us that the results, achieved
13), and the Greedy Add procedure needs only 33 by the use of procedure based on Monte Carlo simula-
bus stops for the same coverage (point B in Figure tion, are comparable with the results of other, existing
13). procedures, such as for example Greedy procedures,
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and have similar quality. Even more, the results in Fig-
ure 14 show that the total number of walking kilome-
tres of all covered pupils (which are covered due to
used optimal bus stops, see Figure 13) is in the case
of Monte Carlo procedure (course a) significantly lower
than in the case of Greedy Add procedure (course b),
or in the case of Greedy Drop procedure (course c).
Consequently, from this point of view, the procedure
based on Monte Carlo even gives the best results in
comparison with the other two procedures.

For example, the 550 covered pupils have to walk a
total distance of 361.75km, when the procedure with
Monte Carlo simulation is used (point A in Figure 14),
while in the case of Greedy Add procedure they have
to walk a total distance of 475.12km (point B in Figure
14), and in the case of the Greedy Drop procedure they
have to walk a total distance of 564.72km (point C in
Figure 14).

The reason for such a lower total walking distance
of the pupils, when the Monte Carlo procedure is used,
lies in the following fact: when a certain pupil is cov-
ered with the circles of prescribed radius of the several
bus stops simultaneously, then he is assigned to that
bus stop, which is closest to him. Figure 15 shows an
example with two optimal bus stops A and B and the lo-
cation of one pupil U. Obviously, pupil U is covered by a
prescribed radius r of both bus stops, but the distance
d(A,U) = d, is lower than the distance d(B,U) = d,,
so pupil U is assigned to the closer bus stop, which is

bus stop A.
. l
' .

Figure 15 - An example of coverage of location
of one pupil U with two optimal bus stops A and B

Since the applied Greedy Add and Greedy Drop
procedures do not have this mechanism of additional
distance calculations checking built in the frame of as-
signment of pupils to optimal bus stops, it is obvious
why the total walking distance is much longer than in
the case of procedure based on Monte Carlo simula-
tion.

As the Lasko municipality responsible personnel
said, the most convenient for them are results for the
coverage of 550 pupils, where the total walking dis-
tance of all the covered pupils is as low as possible,

even at the expense of increasing the number of op-
timal bus stops. We therefore conclude that the solu-
tion achieved by means of procedure based on Monte
Carlo simulation, with 56 optimal bus stops and the
total walking distance of 361.75km is the most appro-
priate for the customer.

7. CONCLUSIONS

A simulation-based approach to the optimal bus
stops allocation is presented and applied in order to
achieve the reduction of costs generated by obligatory
transportation of children from their homes to the cor-
responding schools in Lasko municipality.

The original set of road data points (bus stops can-
didates) is first initially reduced by means of some heu-
ristic rules. Then the optimization procedure based on
Monte Carlo simulation is applied for the purpose of
further reduction of road points in order to determine
optimal bus stops.

If the optimal bus stops are calculated by means of
proposed procedure, it is supposed that the minimal
number of calculated bus stops cover as much pupils
as possible within the prescribed radius, while they
have to walk as little as possible from their homes to
the nearest bus stop and vice versa.

The paper is believed to contribute in two ways.
Firstly, the working mechanism of a relatively simple
and efficient algorithm, which is slightly different from
the existing “maximal covering location problem” algo-
rithms, is introduced. Secondly, it is shown how this
algorithm can be efficiently used to solve a real loca-
tion problem.

In order to verify the quality of the results achieved
by the proposed algorithm, a comparison with two
Greedy algorithms, basic Greedy Add and Greedy Drop
has been done. The comparison shows that the pro-
posed algorithm, based on Monte Carlo simulation,
gives comparable results with similar quality as calcu-
lated in case of both applied Greedy algorithms.

As evident from the results achieved by the pro-
posed algorithm the total number of calculated opti-
mal bus stops, which are able to cover the majority of
550 pupils within the prescribed radius, is 56. Only 12
pupils remain unassigned, but they should be walking
only several hundred metres more than the prescribed
radius.

When the calculated optimal bus stops are physi-
cally implemented, the transportation vehicles will
have to drive along significantly shorter quantity of
distances, since they will have to pass only the imple-
mented 56 bus stops instead of all 562 pupils homes.
Obviously, the savings of transportation costs from this
point of view are going to be significantly noticeable.

In further research, the optimization of driving
routes, driving schedules and driving fleet, related to
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the transportation of pupils from optimal bus stops to
their schools and vice versa, is going to be developed
and applied in order to achieve further reduction of
transportation costs.
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POVZETEK

MONTE CARLO SIMULACIJSKI PRISTOP
PRI DOLOCANJU LOKACIJ OPTIMALNIH
AVTOBUSNIH POSTAJ V OBCINI LASKO

V prispevku je predstavljen problem dolo¢anja lokacij
optimalnih avtobusnih postaj za potrebe zmanjSevanja
stroskov, nastalih zaradi prevoza otrok v obcini Lasko. Te
je potrebno na osnovi zakonskih predpisov vsak dan raz-
voziti na pripadajoce Sole ter jim zagotoviti vrnitev domov.
Algoritem temelji na optimizaciji s pomoc¢jo Monte Carlo
simulacijske metode, pri cemer se izracunajo lokacije opti-
malnih avtobusnih postaj. Algoritem je sposoben izracunati
najmanjse mozno Stevilo avtobusnih postaj, ki pa bodo
vseeno zagotavljale najve¢je mozno pokritie u¢encev v ok-
viru predpisanega najvecjega radija pesacenja. Pri tem bo
ucencem potrebno prehoditi kar najkrajso mozno pot od
doma do najblizje postaje in obratno. V prispevku so opisane
glavne znacilnosti delovanja mehanizma predlaganega al-
goritma. Prav tako je podan tudi prikaz vseh pomembnih
izraCunanih rezultatov in primerjava z nekaterimi drugimi
obstojec¢imi algoritmi. Pozicije izracunanih avtobusnih postaj
se bodo uporabile pri njihovi kasnejsi fizicni implementaciji z
namenom kar najvecjega moznega zmanjSanja transportnih
stroskov.

KLJUCNE BESEDE

lokacijski problemi, problemi maksimalnega pokritja, opti-
mizacija, Monte Carlo simulacija, Geografski informacijski
sistem (GIS), redukcija transportnih stroskov
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