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BI-CRITERIA SYSTEM OPTIMUM TRAFFIC ASSIGNMENT 
IN NETWORKS WITH CONTINUOUS VALUE OF TIME

ABSTRACT

For an elastic demand transportation network with con-
tinuously distributed value of time, the system disutility can 
be measured either in time units or in cost units. The user 
equilibrium model and the system optimization model are 
each formulated in two different criteria. The conditions 
required for making the system optimum link flow pattern 
equivalent to the user equilibrium link flow pattern are de-
rived. Furthermore, a bi-objective model has been developed 
which minimizes simultaneously the system travel time and 
the system travel cost. The existence of a pricing scheme 
with anonymous link tolls which can decentralize a Pareto 
system optimum into the user equilibrium has been inves-
tigated.
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1. INTRODUCTION

Roadway congestion is a source of enormous eco-
nomic costs. In principle, many of these costs can be 
prevented because they result from socially inefficient 
choices made by individuals. Traffic congestion has 
been alleviated in a number of regions by introducing 
congestion pricing. Indeed, road pricing has become 
one of the priorities on transport policy agendas all 
over the world. It is increasingly believed that road pric-
ing may offer an effective instrument to manage travel 
demand, and to raise revenues that may for instance 
be used for transport improvements. In recent years, 

more and more pricing schemes have been proposed, 
tested or implemented worldwide [1].

In the research of congestion pricing, the conven-
tional user equilibrium models suppose that all travel-
lers have the same value of time (VOT), i.e., the road 
network users are homogenous. In the case of homo-
geneous users, the theory of marginal cost pricing has 
well been established in general traffic networks. In 
line with this theory, various investigations have been 
conducted on how this classical economic principle 
would work in a general road network with queuing [2] 
or in a stochastic network [3]. However, because of the 
difference in income levels, the network users gener-
ally have different VOTs and different preferences on 
travel choices. Therefore, in travel behaviour model-
ling and analyses, user heterogeneity has to be con-
sidered.

The network disutility can be measured in travel 
time or travel cost. It is obvious that different system 
optimal (SO) flow patterns will be obtained if we use 
different units (time or money) to measure the system 
disutility. There exists a transformation relationship 
between time disutility and cost disutility due to VOTs.

In the presence of user heterogeneity, various 
equilibrium traffic assignment models have been for-
mulated in different ways. The deterministic formulae 
with discrete VOTs were developed by, for example, 
Leurent [4], Mayet and Hansen [5], Nagurney [6,7]. 
The optimal pricing problem for heterogeneous users 
with continuous VOTs was studied by Dial [8, 9]. The 
multi-criteria or cost-versus-time network equilibrium 
and the system optimum problem in a network with 
a discrete set of VOT user classes were examined by 
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Yang and Huang [10]. They proved that there exists a 
uniform link toll scheme that supports a cost-based 
system optimum as a multi-class user equilibrium (UE) 
flow pattern.

In some networks, there are oligopoly Cournot–
Nash (CN) firms. Users in a CN firm can collaborate 
together for minimizing the total cost of the firm and 
then compete against others. Zhang, Yang and Huang 
[11] examined such a UE–CN mixed equilibrium. They 
showed that in a network with both UE and CN users, 
applying the conventional marginal-cost pricing in or-
der to reach a system optimum requires all link tolls 
be differentiated across user classes. Yu and Huang 
investigated the upper bound of the efficiency loss of 
such UE-CN mixed equilibrium when all link cost func-
tions are polynomial [12].

Recently, Guo and Yang [13] have proven that any 
Pareto optimum can be decentralized into multi-class 
user equilibrium by using positive anonymous link tolls 
in the fixed demand network with discrete VOTs. They 
further bounded the system performance gap when 
optimized by two different criteria. For an elastic de-
mand network with discrete VOTs, Clark et al. showed 
that there also exists anonymous link toll scheme 
which can decentralize the cost-based SO flows to UE 
flows [14]. Wang and Huang showed that any Pareto 
optimum, except the time-based one, can be decen-
tralized into a multi-class user equilibrium by a pricing 
scheme with positive anonymous tolls on all links in 
the networks with discrete VOTs and elastic demand 
[15].

In this paper, a new model has been developed in 
which two criteria for system optimization are taken 
into account simultaneously through expressing the 
welfare functions in either monetary or time units. The 
VOT is a continuous distribution among a population 
of commuters and the travel demand is elastic. In Sec-
tions 2 and 3, the network equilibrium and the system 
optimum are formulated, each in time and monetary 
units, respectively. Then, the equivalent conditions be-
tween user equilibrium flow pattern and system opti-
mum flow pattern are derived. Section 4 presents a bi-
objective system optimization model which minimizes 
the system time and system cost simultaneously. The 
existence of anonymous link tolls which can drive the 
Pareto optimum to a UE solution is investigated. Sec-
tion 5 concludes the paper.

2. TIME-BASED AND COST-
BASED EQUILIBRIA

Let ,G V A= ^ h be a graph, where V is a set of nodes 
and A a set of arcs. This graph can be taken to rep-
resent a transportation network where nodes are the 
intersections and arcs are the links between intersec-
tions. In this network, there is a set of origin-destina-

tion (OD) pairs, W, and a set of paths, R, connecting 
OD pairs. All network users differ by the value of times 
(VOTs) and the probability distribution of VOT value, b ,  
across users is defined by a function of distribution: 
F x P x#b=^ ^h h. Let the considered population be or-
dered in a decreasing order of their VOTs and vb^ h be 
the VOT of the vth user. We assume v 02b^ h  is con-
tinuous and differentiable function on its domain of 
definition and v 01bl^ h , although it is in fact a dis-
crete probability space. From this definition, we have 

/v F v N11b = --^ ^h h since /N v N F vb- =^ ^^h hh, where 
N is the total number of considered users. The travel 
demand qw  from an origin to a destination is a func-
tion of the travel time between OD pair w W! . This 
travel demand function is assumed to be invertible. 
The travel time of link a, t va a^ h, is a function of the 
flow va on link a, a A! , and assumed to be strictly 
monotonically increasing. Let Rw  be the set of all sim-
ple paths connecting OD pair w W! , frw  the flow on 
path r connecting OD pair w. The flow on link a can be 
expressed in terms of path flows, i.e., 

v fa rw ar
r Rw W w

d=
!!

// , 

where ard  is 1 if link a is on path r and zero otherwise, 
Rw  is the set of paths connecting OD pair w.

Let X  denote the feasible set of all path flows,
, : , , , ,f q f q r R w Wf q 0 0rw w rw w w

r R
$ $ ! !X = =

!

^ h' 1/ ,

 (1)
where , ,ff rw

Tg g= ^ h  is the vector of path flows and 
, ,qq w

Tg g= ^ h  the vector of OD demands.
Generally, the flow pattern under the system op-

timum is different from the UE flow pattern because 
each user in UE makes the decision of path choice 
only to minimize the private travel cost rather than 
the social cost. This says that all users in UE do not 
consider the influence of their decisions on the whole 
system. Thus, congestion pricing is introduced to guide 
the people’s behaviour for implementing a SO flow pat-
tern in a UE manner.

When all users are assigned onto links, we still as-
sume that the VOT function of link flows is continuously 
distributed. Let vab ^ h and vwb ^ h be the VOT of the vth 
user, corresponding to link a A!  and OD pair w W! ,  
respectively. The generalized cost of the vth user on 
path r between OD pair w in the time unit is

c t v v
u

rw
t

a a
a

a
ar

a A b
d= +

!

^
^

c h
h
m/ , r Rw! , w W! , (2)

where ua is the toll charged on link a. In this study, only 
the anonymous and non-negative link tolls have been 
considered, because the negative and discriminative 
link tolls are difficult to implement in reality. The gen-
eralized cost of the vth user on path r between OD pair 
w can also be given in monetary unit, i.e.,
c v t v urw
c

a a a a ar
a A
b d= +

!

^ ^^ h h h/ , r Rw! , w W! . (3)

Let , ,uu a
Tg g= ^ h  be the vector of all link tolls.
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Under the scheme of charging all link users, the 
time-based user equilibrium (TUE) with elastic demand 
is the solution of the following optimization problem:

,min minZ t x xf q d
, ,

a

v

a Af q f q
0

a

= +
! !

!
X X

^ ^f
^ ^

h h
h h

/ #

 u v v g v v1 d da
a

v

w

q

w Wa A 0 0

a w

b
+ -

!!
^

^
h

h p// # # , (4)

where
v fa rw ar

r Rw W w

d=
!!

// .

The inversed demand function of OD pair w W! , 
q qw ^ h, is measured in time unit and assumed to be 
decreasing. The first-order optimality conditions of the 
above optimization problem are as follows:

t v v
u

a a ar
a A a a

a
ar

a A
w
td

b
d n+ =

! !

^
^

h
h

/ / , 

  if f 0rw 2 , r Rw! ,w W! , (5a)

t v v
u

a a ar
a A a a

a
ar

a A
w
t$d

b
d n+

! !

^
^

h
h

/ / , 

  if 0frw = , r Rw! , w W! , (5b)

g qw
t

w wn = ^ h, if q 0w 2 , w W! , (5c)

g qw
t

w w$n ^ h, if 0qw = , w W! , (5d)
where w

tn  is the multiplier associated with the flow 
conservation equation 

f qrw
r R

w=
!

/
and va ab ^ h is the VOT of the last user on link a A! . 
Equations (5a)-(5d) clearly define a time-based user 
equilibrium (UE) about route choice and having or 
not having the travel. In this equilibrium, w

tn  can be 
regarded as the minimal travel disutility of OD pair w, 
i.e., min cw

t
r R rw

t
wn = ! " , in the time unit.

In the TUE problem (4), vab ^ h, t va a^ h and g qw w^ h 
are differentiable and monotonic. Hence, the following 
properties are tenable:

v
Z t v

v
u v 0

a
a a

a A a a

a
a a

a A
2

2

22
2 2

b
b= -

! !

l l^
^^

^h
hh

h/ / , a A! ,

q
Z g q 0
w

w w2

2

2
2 2=- l^ h , w W! .

Therefore, the objective function ,Z f q^ h is strictly 
convex with respect to link flow vector , ,vv a

Tg g= ^ h , 
v fa rw ar

r Rw W w

d=
!!

// ,

and OD demand vector q. Then, the solution of link 
flow and OD demand is unique at the equilibrium state 
in time unit. Note that the objective function is not 
strictly convex subject to path flow f , so the solution of 
path flow is not unique.

The cost-based (or monetary-based) user equilib-
rium (CUE) with elastic demand can be obtained by 
solving the following optimization problem:

,min minZ v t v vf q d
, ,

a a

v

a Af q f q
0

a

b= +
! !

!
X X

u^ ^ ^f
^ ^

h h h
h h

/ #

  u v v g v vda a w w

q

w Wa A 0

w

b+ -
!!

^ ^h h p// # . (6)

The first-order optimality conditions of the problem 
(6), or the equilibrium conditions of the CUE are as fol-
lows:

v t v ua a a a ar
a A

a ar
a A

w
cb d d n+ =

! !

^ ^h h/ / , 

  if f 0rw 2 , r Rw! , w W! , (7a)

v t v ua a a a ar
a A

a ar
a A

w
c$b d d n+

! !

^ ^h h/ / , 

  if 0frw = , r Rw! , w W! , (7b)

q g qw
c

w w w wn b= ^ ^h h, if q 0w 2 , w W! , (7c)

q g qw
c

w w w w$n b ^ ^h h, if 0qw = , w W! , (7d)
where w

cn  is the multiplier associated with equation 
f qrw

r R
w=

!

/
and qw wb ^ h is the VOT of the last traveller between OD 
pair w W! . In the equilibrium, w

cn  can be regarded 
as the minimal travel disutility in monetary unit, i.e., 

min cw
c

r R rw
c

wn = ! " ,.
Similarly, we can prove that the objective function 

of problem (6) is convex subject to OD demand q, due 
to

q
Z q g q q g q 0
w

w w w w w w w w2

2

2
2 2b b=- +l l

u
^ ^ ^ ^^ h h h hh , w W! .

Thus, the solution of link flow and OD demand is 
also unique at the equilibrium state in monetary unit.

3. SYSTEM OPTIMA

First, the cost-based (or monetary-based) system 
optimum (CSO) was formulated:

,min minC v t v vf q d
, ,

a a a

v

a Af q f q
0

a

b= -
! !

!
X X

^ ^ ^f
^ ^

h h h
h h

/ #

  v g v vdw w

q

w W 0

w

b-
!

^ ^h h p/ # , (8)

where ,C f q^ h is the system travel disutility measured 
in monetary unit, which equals the total social cost of 
travelling minus the total user benefit from travelling.

The first-order optimality conditions of the program 
(8) are as follows:

v t v v
t v v vd
d d ,

a a a a
a

a a
a

v

ar
a A

w
so c

0

a

b b d n+ =
!

^ ^
^

^f h h
h

h p/ # , 

  if f 0rw 2 , r Rw! , w W! , (9a)

v t v v
t v v vd
d d ,

a a a a
a

a a
a

v

ar
a A

w
so c

0

a

$b b d n+
!

^ ^
^

^f h h
h

h p/ # , 

  if 0frw = , r Rw! , w W! , (9b)

q g q,
w
so c

w w w wn b= ^ ^h h, if q 0w 2 , w W! , (9c)
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where va ab ^ h is the VOT of the last user on link a A!  
and qw wb ^ h is the VOT of the last traveller between OD 
pair w W! . Let 

/u t v v v vd d da a a a a

v

0

a

b= ^^ ^h h h#

be the link toll. Clearly, the optimality conditions (9a)-
(9d) for the CSO can be regarded as the network equi-
librium conditions in cost unit. The multiplier ,

w
so cn  is 

the corresponding minimal OD travel cost in monetary 
unit. Hence, we have the following Theorem 1.

Theorem 1 There exists a link tolling scheme u to de-
centralize the cost-based system optimum flow pattern 
into a user equilibrium link flow pattern in cost unit. 4

Note that the link toll can be rewritten as

u v
t v v v v

t v v v

v v

d
d d d

d d
a

a

a a
a

v

a

a a
a

a

a
v

0

0
a

a

b
b

= =
^

^
^

^
h

h
h

h
#

#
,

where /v t v vd da a a a^ h  is the externality measured in 
time unit. The externality is the additional travel time 
that a marginal user imposes on other users who have 
already travelled on link a A! . This externality is iden-
tical for all users. 

/v v vda

v

a

0

a

b ^ h#

is the average VOT of all users traversing the link. Thus, 
the link toll ua is irrelevant to vab ^ h of the vth user, but 
determined by the link users’ VOT distribution and the 
link flow.

The time-based system optimum (TSO) can be for-
mulated as

,min minT t v v g v vf q d
, ,

a a a
a A

w

q

w Wf q f q
0

w

= -
! !

! !
X X
^ ^ ^f

^ ^
h h h p

h h
/ / # .

 (10)
The first-order optimality conditions of program 

(10) are as follows:

t v v v
t v
d
d ,

a a ar
a A

a
a

a a
ar

a A
w
so td d n+ =

! !

^
^

h
h/ / , 

  if f 0rw 2 , r Rw! , w W! , (11a)

t v v v
t v
d
d ,

a a ar
a A

a
a

a a
ar

a A
w
so t$d d n+

! !

^
^

h
h/ / , 

  if 0frw = , r Rw! , w W! , (11b)

g q,
w
so t

w wn = ^ h, if q 0w 2 , w W! , (11c)

g q,
w
so t

w w$n ^ h, if 0qw = , w W! . (11d)
Comparing (5a)-(5d) and (11a)-(11d), we can find 

that if letting /u v v t v vd da a a a a a ab= ^ ^^h h h in (5a), the op-
timality conditions of TSO are equivalent to the equi-
librium conditions of TUE. Thus, we have the following 
Theorem 2.

Theorem 2 Under a discriminatory link tolling scheme, 
a user equilibrium link flow pattern is equivalent to the 
system optimum in time unit. 4

For achieving the system optimum in time unit, 
each user travelling on a link must bear a marginal 
social travel time which consists of a marginal pri-
vate travel time and a travel time externality. The toll 
on link a A!  is /u v v t v vd da a a a a a ab= ^ ^^h h h, herein 

/v t v vd da a a a^^ h h is just the time externality. Since the 
link toll is the product of the time externality and the 
VOT of the marginal user, hence, it is discriminatory 
and unrealistic.

4. BI-CRITERIA PARETO SYSTEM OPTIMUM

As mentioned before, both system time and system 
cost can be used to measure the system performance. 
Nevertheless, previous studies on network pricing typi-
cally consider only the minimization of either system 
time T or system cost C, or study the minimization of 
T and C simultaneously but with fixed demand. In this 
paper, we propose a bi-objective minimization problem 
with elastic demand, which combines the two SO prob-
lems (8) and (10) together. Instead of seeking optimal 
flow patterns of minimizing total system time or total 
system cost, this bi-objective problem is to seek a Pa-
reto optimal solution set. At each point of the Pareto 
optimal solution set, neither T nor C can be further re-
duced without increasing the other one. We have tried 
to find a non-negative link tolling scheme which can 
decentralize a Pareto SO flow pattern into the UE state. 
The bi-objective minimization problem is

,
,

min T
C
f q
f q,f q

=
!X

^

^^

h

hh
) 3

 min
t v v g v v

v t v v v g v v

d

d d
,

a a a
a A

w
q

w W

a a a
v

a A
w w

q

w W

f q

0

0 0

w

a w
b b

=
-

-
!

! !

! !

X

^ ^

^ ^ ^ ^
^

h h

h h h h
h

Z

[

\

]
]

]]

_

`

a

b
b

bb

/ /

/ /

#

# #
,

 (12)
where 

v fa rw ar
r Rw W w

d=
!!

//
as defined in previous sections.

4.1 Decentralization of a given feasible 
target link flow pattern

For a given feasible target link flow , ,vv a
Tg g=r r^ h , 

the following non-linear programming problem is con-
sidered:

,min minC v t v vf q d
, ,

a a a

v

a Af q f q
0

a

b= -
! !

!
X X

r^ ^ ^f
^ ^

h h h
h h

/ #

 v g v vdw w

q

w W 0

w

b-
!

^ ^h h p/ #  (15)

subject to
f vrw ar a

r Rw W w

d =
!!

r// , a A! . (16)
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The Lagrange function of program (15)-(16) is

, , ,L v t v vf q da a a

v

a A 0

a

bm n = -
!

r

r

^ ^ ^h h h/ #

 v g v v v fdw w

q

w W
a a rw ar

r Rw Wa A0

w

w

b m d- + - +
! !!!

r^ ^ ch h m/ ///#
 q fw w rw

r Rw W w

n+ -
!!

c m// . (17)

The optimality conditions of program (15)-(16) are
v t v 0a a a a ar

a A
a ar

a A
w $b d m d n- -

! !

r r^ ^h h/ / , 

  r Rw! , w W! , (18)

f v t v 0rw a a a a a ar w
a A
b m d n- - =

!

r r^ ^^c h h h m/ , 

  r Rw! , w W! , (19)

q g q 0w w w w w $b n- +^ ^h h , w W! , (20)

0q q g qw w w w w wb n- + =^ ^^ h h h , w W! , (21)
where , ,a Tg gmm = ^ h  and , ,w Tg gnn = ^ h  are the 
multipliers associated with the equality constraints 
(16) and the OD flow conservation constraint (1), re-
spectively. Note that here am  and wn  are unrestricted 
in sign.

It can be observed that if letting ua am=-  to be the 
anonymous link toll, the optimality conditions (18)-(21) 
are simply the CUE conditions (7a)-(7d), with wn  being 
regarded as w

cn . This equivalence between the CSO 
optimality conditions and the CUE conditions immedi-
ately leads to the following Theorem 3.

Theorem 3 Any feasible target link flow pattern can 
be supported as a cost-based user equilibrium by im-
posing anonymous link tolls which may be positive or 
negative.

Proof. For any feasible link flow , ,vv a
Tg g=r r^ h , we can 

construct the CSO problem (15)-(16). Suppose ,f q^ h 
is an optimal solution satisfying the optimality con-
ditions (18)-(21). These conditions are just the CUE 
conditions (7a)-(7d) under the tolling scheme ua am=- ,  
thus, ,f q^ h is a cost-based user equilibrium flow pat-
tern and vr  is the corresponding link flow. Because am  
is unrestricted in sign, the link toll ua may be positive 
or negative. 4

Theorem 1 states that under any anonymous link 
tolling scheme, users with higher VOT tend to choose 
routes with lower travel time by paying higher toll 
charges. Thus, the system cost C which is exclusive of 
toll charge and given as the sum of the travel times 
of all users weighted by their VOTs, is naturally mini-
mized.

4.2 Existence of non-negative 
anonymous link tolls

For the bi-objective SO problem (12), we now prove 
that there exists a non-negative anonymous link tolling 

scheme to implement a Pareto system optimum in a 
UE manner.

Lemma 1 A Pareto system optimum can be supported 
as a cost-based user equilibrium by implementing an 
anonymous link tolling scheme if the tolling scheme 
can produce the aggregate link flow of the Pareto sys-
tem optimum.

Proof. Suppose ,f qr r^ h is a Pareto optimum of the bi-
objective SO problem (12), and let vr  be the corre-
sponding link flow pattern. From Theorem 3, there 
exists an anonymous link toll scheme u under which 
the feasible link pattern vr  can be decentralized in 
a CUE manner. Let ,f q^ h be the corresponding cost-
based user equilibrium. It can reduce the system cost 
because of the equivalence of (7a)-(7d) and (18)-(21), 
i.e., , ,C Cf q f q# r r^ ^h h.

Furthermore, let 
/min t v u vw

t
r R

a a a a a ar
a Aw

n b d= +
!

!

r^ ^^c h hh m/
be the minimal travel disutility in time unit. Then 
g qw w w

t$ nr^ h . Moreover, since q is the equilibrium de-
mand, then g qw

t
w w$n ^ h from (7c) and (7d). Thus, we 

have g q g qw w w w$r^ ^h h, which simply means q qw w#r  
from the monotonicity of inversed demand function. 
Hence, we have

,T v t v g v vf q da a a
a A

w

q

w W 0

w

#= -
! !

r r^ ^ ^h h h/ / #

,v t v g v v T f qda a a
a A

w

q

w W 0

w

# - =
! !

r r r r

r

^ ^ ^h h h/ / # .

This concludes , ,T Tf q f q= r r^ ^h h and , ,C Cf q f q= r r^ ^h h 
because ,f qr r^ h is a Pareto optimum. Thus, ,f qr r^ h is a 
solution of the cost-based user equilibrium. 4

Theorem 3 and Lemma 1 ensure the existence of 
anonymous link tolls which can induce a Pareto sys-
tem optimum. The existence of non-negative anony-
mous link tolls is now proven.

Theorem 4 A Pareto system optimum can be support-
ed as the cost-based user equilibrium by non-negative 
anonymous link tolls.

Proof. Suppose ,f qr r^ h is a Pareto optimum of the bi-
objective SO problem (12). From Lemma 2, there ex-
ists an anonymous link tolling scheme u under which 

,f qr r^ h can be the CUE solution. We construct a modified 
version of model (15) in which the equality constraint 
(16) is replaced by the following inequality constraint:

f vrw ar
r Rw W

a
w

#d
!!

r// , a A! . (22)

Because constraint (22) is a simple relaxation 
of constraint (16) and other constraints remain un-
changed, the feasible region of the new model is ex-
panded and hence non-empty. This means that the 
new model has solutions. Suppose the solution of the 
new model is ,f q^ h and ,nm^ h is the Lagrange multi-
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plier of the constraint. Because ,f q^ h satisfies the op-
timality conditions (18)-(21) and conditions (7a)-(7d) 
required by the cost-based user equilibrium, we then 
have q q=r  due to the uniqueness of the cost-based 
equilibrium demand. It is known that the multiplier as-
sociated with a ‘less than’ inequality like (22) is nega-
tive at the solution point. So, u m=-  is non-negative.

It can be proven that the constraint (22) is bind-
ing at the solution point. Suppose (22) is not binding 
at the optimal solution ,f q^ h. Then, the corresponding 
link flow of f  is such v  that v v# r  holds. Let v vb b1 r  for 
a specific link b A! . Then we have t v t vb b b b1 r^ ^h h and 
t v v t v vb b b b b b1 r^ ^h h  by the monotonicity of the link cost 
function. This leads to

t v v g v vda a a
a A

w

q

w W 0

w

1-
! !

^ ^h h/ / #

 t v v g v vda a a
a A

w

q

w W 0

w

1 -
! !

r r^ ^h h/ / # , (23)

v t v v v t v vd da a a

v

a A
a a a

v

a A0 0

a a

#b b
! !

r

r

^ ^ ^ ^h h h h/ /# # . (24)

Note that (23) is simply the relation , ,T Tf q f q1 r^ ^h h.  
From (24), we have

v t v v v g v vd da a a

v

a A
w w

q

w W0 0

a w

#b b-
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^ ^ ^ ^h h h h/ /# #

 v t v v v g v vd da a a

v

a A
w w

q

w W0 0

a w

# b b-
! !

r

r

^ ^ ^ ^h h h h/ /# # . (25)

Clearly, (25) means , , ,C C Cf q f q f q# =r r r^ ^ ^h h h. It 
contradicts the assumption that ,f qr r^ h is a Pareto opti-
mum. This completes the proof. 4

The implication of Theorem 4 is that, when consid-
ering simultaneous minimization of system time and 
system cost, there exits a non-negative common link 
toll scheme that supports a Pareto system optimum 
as cost-based user equilibrium. However, the common 
link toll in this case is not based on the user external-
ity, but determined from the Lagrange multiplier of a 
dual programming problem.

5. CONCLUSION

In reality, the users having different VOTs in a traffic 
network are willing to experience different travel bur-
dens, that is, the users are inclined to minimize either 
individual travel cost or individual travel time. Mean-
while, the government would like to maximize the sys-
tem total social welfare or minimize the system total 
travel cost. Hence, the system performance can be 
measured either in time unit or in cost unit. They are 
two significantly different criteria for evaluation. These 
two criteria are in general mutually inconsistent with 
each other.

This paper provided a theoretical investigation of 
the multi-criteria traffic assignment, including the cost-
versus-time network equilibrium and system optimum 
in a network with continuous VOT distribution and 
elastic demand. We have formulated the user equilib-
rium and system optimum each in time unit and mon-
etary unit. We have proven the existence of link tolling 
schemes that can decentralize an SO link flow pattern 
into the UE link flow pattern in two different criteria, 
respectively. Under the monetary criterion, the link toll 
is equal to the average VOT of all users traversing that 
link multiplied by the travel time externality. On the 
other hand, when the system disutility is measured in 
time unit, the link toll is the product of the travel time 
externality and the VOT of a marginal user.

Furthermore, a bi-objective model has been devel-
oped to minimize the system travel time and system 
travel cost simultaneously. We have proven that there 
exists a pricing scheme with non-negative anonymous 
link tolls which can decentralize a Pareto system opti-
mum into user equilibrium. Moreover, the non-nega-
tive anonymous link toll can be determined from the 
Lagrange multiplier of a dual programming problem.
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摘要 
 
连续时间价值分布网络中的双
准则系统最优交通分配

对于用户时间价值连续分布的弹性需求交通网络，系
统效能既可以用时间测定也可以用金钱测定。本文首先分
别建立两种测度单位下的用户均衡和系统最优交通分配模
型，推导使两种交通分配规则所导致流量分布等价的条
件，然后提出一个同步令系统总时间和系统总成本最小的
双目标优化模型，并证明存在一个匿名收费制度，使帕累
托系统通过用户均衡的方式实现。

关键词

弹性需求，时间价值，双准则，用户均衡，帕累托最优
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