
Promet – Traffic&Transportation, Vol. 26, 2014, No. 1, 75-82 75

M. Miler et al.: The Shortest Path Algorithm Performance Comparison in Graph and Relational Database on a Transportation Network

MARIO MILER, M.Eng.
E-mail: mmiler@geof.hr
DAMIR MEDAK, Ph.D.
E-mail: dmedak@geof.hr
DRAŽEN ODOBAŠIĆ, M.Eng.
E-mail: dodobas@geof.hr
Faculty of Geodesy, University of Zagreb
Kačićeva 26, 10000 Zagreb, Croatia

Information and Communication Technology
Preliminary Communication

Accepted: Mar. 27, 2013
Approved: Oct. 12, 2013

THE SHORTEST PATH ALGORITHM PERFORMANCE
COMPARISON IN GRAPH AND RELATIONAL

DATABASE ON A TRANSPORTATION NETWORK

ABSTRACT

In the field of geoinformation and transportation sci-
ence, the shortest path is calculated on graph data mostly
found in road and transportation networks. This data is of-
ten stored in various database systems. Many applications
dealing with transportation network require calculation of
the shortest path. The objective of this research is to com-
pare the performance of Dijkstra shortest path calculation in
PostgreSQL (with pgRouting) and Neo4j graph database for
the purpose of determining if there is any difference regard-
ing the speed of the calculation. Benchmarking was done on
commodity hardware using OpenStreetMap road network.
The first assumption is that Neo4j graph database would be
well suited for the shortest path calculation on transporta-
tion networks but this does not come without some cost.
Memory proved to be an issue in Neo4j setup when dealing
with larger transportation networks.

KEY WORDS

pgRouting, OpenStreetMap, Dijkstra, benchmark, Neo4j,
PostgreSQL

1. INTRODUCTION

The simplest question in routing that needs an an-
swer is: ”What is the most effective way to get from
here to there?”. To answer this question a simple and
complex shortest path algorithms are used. Today,
the shortest path analysis is used in everyday life, for
example in car or personal navigation systems. The
problem of the shortest path calculation has been the
topic of research for several decades [1–4] but the in-
fluence of database system implementation has been
rarely considered. With recent rapid development of
database technology, there has always been a ques-

tion: ”Will a graph database perform better in the
shortest path calculation than a relation database?”.

Relational databases are often used for storing
transportation network data. Many of them provide
navigation models which permit managing networks
and perform network operations [5]. Many research-
ers have been working with such systems and there
are many examples and applications of database-
based routing systems in the traffic and transportation
field. Christopher et al. [6] designed a collaborative
route planning system for utility vehicles which relies
heavily on route calculation based on underlying trans-
portation network stored in relational databases. In-
nerebner et al. [7] created a web-based system named
ISOGA that uses isochrones to perform geographical
reachability analysis over a transportation network
stored in a relational database. Zlatanova et al. [5] fo-
cused on examining the problem of finding the optimal
path for moving objects to avoid moving obstacles us-
ing a relational database.

Most of the databases used today are based on
the relational model [8] which is a theoretical basis for
relational database management systems (RDBMSs).
RDBMSs today are dominant for storing various kinds
of structured data. These systems were primarily de-
signed for storing data used by business applications.
Over the years, the need for storing other types of data
and large amounts like spatial, hierarchical and graph
data has emerged but technology remained the same.
Relational databases proved to be very efficient in
storing and querying large amounts of data but they
were not adequate for analyzing relations among enti-
ties. One of these examples is the shortest path rout-
ing algorithm. This algorithm requires a large amount
of joins statements which are computationally very ex-

M. Miler et al.: The Shortest Path Algorithm Performance Comparison in Graph and Relational Database on a Transportation Network

76 Promet – Traffic&Transportation, Vol. 26, 2014, No. 1, 75-82

pensive and cannot be used in a standard SQL query
[9].

Most of the time we are forced to adapt a data
model to fit into the RDBMS structure, and we do not
change the technology that would be more suited for
this type of data, e.g. network data. Stonebraker et al.
[10] changed the way of thinking about data and found
that there is no one-size-fits-all database solution. In-
stead, each database problem can be solved with an-
other database solution. This led to a large number of
alternative storage systems that are used today. Over
the last few years there has been a rapid expansion
of new database technologies popularly called NoSQL
(Not Only SQL). The primary focus of these technolo-
gies is on efficient handling of large amounts of semi-
structured data used in the web space. Although such
databases and similar systems already exist (e.g.
object-oriented databases or XML stores) only in the
recent years have they become adopted on the mar-
ket and in the community. Although NoSQL is a broad
term for almost any database that is different in some
way from the standard RDBMS, there are several clas-
sifications of NoSQL databases. Most of them can be
classified as: key-value, document, wide-column, ob-
ject and graph stores [11–14].

1.1 Graph Database System

The database that has been growing in popularity
is a graph database or also called Graph Database
System (GDB). The most significant reason for this
growth is the importance of graph data structure in
the fields of social, information and biological sciences
as well as in the development of computer hardware.
The graph data structure fits naturally for modelling
of world objects, entities and relationships between
them [15].

According to Angles et al. [16, p1] the graph da-
tabase models are defined as “those in which data
structures for the schema and instances are mod-
eled as graphs or generalizations of them, and data
manipulation is expressed by graph-oriented opera-
tions and type constructors”. In other words, a graph
database is a database management system that is
based on graph theory introduced in 1736 [17]. The
graph theory uses nodes for storing entities and edges
for relationships among them. Graph databases em-
phasize the relations among entities rather than en-
tities themselves [18]. Any model can be thought of
as a representation of reality. A graph model can be
thought of as a collection of objects such as people
or places and the relationship between them such as
“friend” or “living in”. Those objects and relationships
form a network or a graph [19]. A graph structure is de-
fined as ,G V E= ^ h where , , , ,V 1 n2 3 fj j j j= is a set of
vertices and E is a set of edges , , , ,E n1 2 3 ff f f f= . An

edge Ei !f is defined with triple , ,i j i~^ h where ,i j V!
and i~ is a positive real number. A directed edge is de-
fined as i j" . The graph database systems today are
still a nascent technology and in major development.
Most of them support directed attributed multi-graph
also known as property graph. This allows attaching at-
tributes to every node and relationship on top of graph
structure [19]. The property graph is an important pre-
requisite for calculating the weighted shortest path,
e.g. using Dijkstra algorithm.

The most popular shortest path implementation on
a relational database is pgRouting which is implement-
ed on top of the PostgreSQL database. Graph databas-
es already have the shortest path implementations in
their core. Neo4j is one of the graph database systems
used for semi-structured and network-oriented data
and has been in production since 2003. It was devel-
oped in Java programming language [20] and free for
non-commercial use. Neo4j can be used as an embed-
ded or server database. It has started as an embed-
ded database but recently its main usage has been
as a server database version and in the future it will
continue to develop in that direction.

1.2 Database benchmarks

A database benchmark is a standard set of opera-
tions and instructions sent to two or more database
systems to evaluate relative and quantitative perfor-
mance in a controlled experiment [21]. The most com-
mon standard RDBMS benchmarks are TCP-(C, H, E)
benchmarks [22] but there are also other database
benchmarks like Bristlecone or Open Source Devel-
opment Lab Data Base Test Suite (OSDL-DBTS) [23].
These benchmarks attempt to simulate real-world
scenarios mostly in the business domain applications
and none of these standard database benchmarks
can be used for this research. The business domain
data structure is significantly different than the one of
the transportation networks. Transportation networks
have graph-like data structure.

The spatial database is a database that has been
developed and optimized for storing, querying and
manipulating 2D and 3D spatial objects (points, lines,
polygons, etc.) in geometric space. They are mostly
used by geographic information systems (GIS) but can
be used in other domain applications where space
plays an important factor. Spatial database bench-
marks are by construction similar to standard data-
base benchmarks but their main focus is on spatial
query and spatial join performance. There are only a
few spatial database benchmark projects, especially
ones detailed as TCP benchmarks used in standard
RDBMS. One of the most recent and versatile bench-
marks is Jackpine [23]. Jackpine is a vector-based
spatial database benchmark based on Bristlcone

Promet – Traffic&Transportation, Vol. 26, 2014, No. 1, 75-82 77

M. Miler et al.: The Shortest Path Algorithm Performance Comparison in Graph and Relational Database on a Transportation Network

benchmark. It is a flexible benchmark that uses Java
Database Connectivity (JDBC) driver implementation
and can support almost any database. The author of
this benchmark used two approaches, micro and mac-
ro. The micro benchmark is used for testing topological
relationships, spatial analysis functions and data load-
ing queries. This part of the Jackpine is used to assess
database processing and index performance.

To our knowledge there are only a handful of graph
database benchmarks and guidelines [9, 18, 24].
Dominguez-Sal et al. [18] propose guidelines for a
graph oriented benchmark differing from any standard
or spatial database benchmark. According to these
authors the proposed tests are: traversal (which in-
cludes the shortest path calculation relevant for this
research), graph analysis, connected components,
communities, centrality measures, pattern matching,
graph anonymisation and some application domain
generic operation. Queries that they propose must
represent the workload of the real environment in ap-
plication domain. They also noted that the shortest
path graph analysis and real time analysis of traffic
networks are one of the application domains where
graph databases could prove some benefit.

This paper provides a benchmark designed to
measure the performance of a Dijkstra shortest path
algorithm in a graph database (Neo4j) and relational
database (PostgreSQL/pgRouting).

2. RESEARCH METHODOLOGY

The evaluation methodology designed to compare
both systems involves an objective benchmark com-
parison based on system documentation and experi-
ence. The following section describes data used for
the benchmark and specifies hardware and software
used for the system being tested.

2.1 Dataset

The graph data used in this benchmark is based on
Austria road dataset from the OpenStreetMap (OSM)
project [25]. OSM data model uses nodes (a point
with coordinates), segments (directed link between
two nodes) and ways (ordered list of segments) to rep-
resent the transportation network [26]. Any of these
objects can contain tags. Tags are key/value pairs de-
noting the type and properties of the object. Basically,
OSM is a form of a sparse directed property graph but
not stored as such in a native form. OSM nodes rep-
resent nodes of the graph and ways form relation be-
tween those nodes. Tags can be used as property but
in our case we use length of a way as a property for
weight in the shortest path calculation. Raw OSM data
are stored in the XML based format and as such can-
not be imported into Neo4j or PostgreSQL database. In

order to have consistent data in both databases, OSM
data were converted by using osm2po tool [27]. The
osm2po creates a graph representation of provided
OSM dataset for direct import into PostgreSQL data-
base. After importing data into PostgreSQL, the data
were exported into acceptable cvs format for an import
into Neo4j database. A small Java program was cre-
ated that batch imported cvs file into Neo4j database
with creating appropriate indexes. The data insertion
time metric was not measured because of different
data storage models.

The converted data in PostgreSQL were stored as a
table with columns: id, source, target and cost. These
columns represent relations between nodes with cost
(length of the path) as a weight. In Neo4j database,
each edge has a non-negative weight i~ equal to the
length of the path. Both of these two data models
form the same graph of around 630,000 nodes and
750,000 relations.

2.2 Experimental setting

A benchmark is created in such a way that it can
be repeated, data used is open and all of the fine tun-
ing is described in the official documentation [28]. For
both of the databases the same dataset was used.
We used Neo4j enterprise server version 1.7.2 and
pgRouting 1.05 on top of PostgreSQL 8.4 database.
The recommendations found in official documenta-
tion of each database were used for both setups. For
Neo4j case, we provided Java Virtual Machine (JVM)
maximum amount of memory available on a testing
computer and applied gcr cache type. Cache is a fast
storage mechanism used to temporarily store data for
future need. Neo4j grc cache type is a special type of
cache which provides means of assigning a specific
amount of memory for loaded nodes and relationship
for the purpose of fast insert/lookup operations [28].
During all of our experiments, we monitored available
RAM and possible swap hits to disk. Swap disk (also
called virtual memory) is temporary space used on a
hard disk as RAM. It is used in cases when data do
not fit into RAM. It is slow, inefficient and should be
avoided.

Tests were performed with cold and hot setup to de-
termine the time needed for a database to load data into
memory. The measured cold time is the time required
to finish a given set of queries immediately after flush-
ing caches or after reboot. In reality this is achieved by
rebooting the system [29]. The hot test run consists of
executing the same set of queries as from the cold run,
in the same sequence order. The measured hot time
is the time required to finish a given set of queries im-
mediately after performing the cold run without flush-
ing any cache or restarting the database [29]. All of the
cold tests were executed with cleared disk cache at

M. Miler et al.: The Shortest Path Algorithm Performance Comparison in Graph and Relational Database on a Transportation Network

78 Promet – Traffic&Transportation, Vol. 26, 2014, No. 1, 75-82

operating system level. This is especially important for
PostgreSQL database which relies heavily on operating
file system cashing. Hot tests were executed right after
the cold test with the same queries to assure the use
of cached data. Both of the databases were monitored
to assure cache hits in hot tests. The cold test begins
with database and disk cache completely empty. Empty
cache ensures that memory contains no data and that
every new test starts independently from the previous
one. At least three hot runs were made to assure time
stability and that data was cached in running hot test.
The client computer, from which the testing was per-
formed, does not cache requests, so all of the tests
(cold and hot) were executed with cache empty on the
client computer.

A 190 pairs of nodes from the dataset described
in the previous section were randomly chosen. These
pairs represent locations between which the shortest
paths is to be calculated on a given transportation
network. The distribution of returned path lengths ex-
pressed in the number of nodes is shown in Figure 1.

queries completely independently of other threads. We
have not been able to test more than 16 threads be-
cause of hardware limitation.

Our experiments were conducted on a computer
equipped with Intel Core i5 750 at 2.67GHz and 6 GB
of RAM and installed Ubuntu Server 10.04 LTS 64-bit
operating system with kernel version 2.6.32-28-server
and OpenJDK Server VM. For the testing the Apache
JMeter was used on a separate computer in the same
isolated gigabit network.

3. RESEARCH RESULTS

Based on the official Neo4j documentation [28],
JVM gcr cache type is recommended for Neo4j in enter-
prise environment and as seen in Figure 2, our findings
proved to be true with Dijkstra shortest path queries.
Memory and cache type are two configuration changes
that proved to be the most influential ones on the per-
formance of Neo4j routing calculation among all of the
recommendations found in Neo4j documentation [28].
Although specified in the documentation as a recom-
mendation flag in production environment, we found
that using UseConcMarkSweepGC or UseSerialGC JVM
flag slows down Dijkstra shortest path computation by
around 30% with one-thread tests. UseParallelGC flag
did not have any noticeable effect on computational
performance. These flags are part of the mechanism
called garbage collector which handles memory in
applications written in Java programming language.
PostgreSQL and pgRouting on the other hand, did not
require any fine tuning to optimize their performance.

All of the presented results do not have swap hits
to the disk and maximum available RAM was never
achieved in any of our successful tests.

All of the test runs proved to have stable time as
can be seen in Figure 2. None of the time measure-
ments presented in this paper were averaged in any
way. Memory consumption presented in Figure 3 is the
peak (maximum) value from both cold and hot runs.

0

10

20

30

40

50

60

100 300 500 700 900 1100 1300 1500 1700 1900

F
re

q
u

e
n

c
y

(N
)

Number of returned nodes (N)

Figure 1 - Distribution of returned path lengths

in number of nodes

Our tests were executed with one, two, four, eight
and sixteen threads to simulate concurrent requests
on the server. In the context of performance testing,
thread is the number of concurrent connections to
the database or application. Each thread executes its

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

T
im

e
(m

s
)

cold

hot1

hot2

hot3

N
eo

4j(s
of

t)

N
eo

4j(g
cr

)

N
eo

4j(w
ea

k)

N
eo

4j(s
tr
on

g)

Pos
tg

re
SQ

L

Figure 2 - Duration of cold and three hot tests for Neo4j(by cache type) and PostgreSQL

Promet – Traffic&Transportation, Vol. 26, 2014, No. 1, 75-82 79

M. Miler et al.: The Shortest Path Algorithm Performance Comparison in Graph and Relational Database on a Transportation Network

Figure 4 summarizes the results of the benchmark
for a different number of threads on cold and hot test
for Neo4j and PostgreSQL database.

As we can see in Figure 4, threads over 16 increase
computation time for both of the database systems
as well as memory consumption as seen in Figure 3.
The maximum number of threads depends on the run-
ning hardware. It was noted that hot tests, after the
first one, did not change, as presented in Figure 2. This
demonstrates that all of the data were loaded into the
memory and none were released after the query fin-
ished.

Figure 5 shows constant time between requests for
PostgreSQL calculation in contrast to variable time for
Neo4j. This means that it would take the same time to
load data for a query between two neighbouring nodes
or for a full graph traversal, plus the time needed for
calculating the shortest path.

4. DISCUSSION

The first assumption is that if some graph data
structure is stored in a graph database, then the short-
est path calculations must perform better because the
data are stored in their native form. We demonstrated
that graph database is 30% to 35% faster in calcula-
tion of the shortest path in transportation use case but

uses more memory, from 20% to 75%, depending on
the number of used threads.

The first full graph database performance analysis
was presented in paper [9] which implemented que-
ries of HPC Scalable Graph Analysis Benchmark v1.0
(HPC-SGAB) [24]. HPC-SGAB was designed by several
leading researchers from academia and industrial
companies. In their paper, the authors tested the per-
formance of four graph database systems on a syn-
thetic generated graph: Neo4j, Jena, HypergraphDB
and DEX. The test was composed of four kernels: edge
and node insertion performance, measuring time
needed to find a set of edges that meet a condition,
measuring time spent on building a subgraph and tra-
versal performance over the whole graph. The result
analysis of this paper was the basis for graph data-
base of choice for our research. The results showed
that DEX and Neo4j were the most efficient GDBs at
the time of writing.

In contrast to databases, the routing can also be
done with specialized in-memory routing engines. Cur-
rently, there are several in-memory routing engines
available such as osm2po, Open Source Routing Ma-
chine (OSRM) or GraphHopper. Comparing the special-

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 4 8 16

M
e

m
o

ry
(M

B
)

Number of threads (N)

Neo4j PostgreSQL

Figure 3 - Peak memory consumption by number of threadsthe

40

60

80

100

120

140

160

180

200

1 2 4 8 16

T
im

e
(s

)

Number of threads (N)

Neo4j(cold)

Neo4j(hot)

PostgreSQL(cold)

PostgreSQL(hot)

Figure 4 - Time required for cold and hot test

to finish for Neo4j and PostgreSQL

1 6 11 16

Request (N)

8000

6000

4000

2000

0

T
im

e
 (

m
s
) Neo4j

PostgreSQL

Cold start

1 6 11 16

Request (N)

8000

6000

4000

2000

0

T
im

e
 (

m
s
) Neo4j

PostgreSQL

Hot start

Figure 5 - Cold and hot test for first 20 requests, one thread

M. Miler et al.: The Shortest Path Algorithm Performance Comparison in Graph and Relational Database on a Transportation Network

80 Promet – Traffic&Transportation, Vol. 26, 2014, No. 1, 75-82

ized in-memory routing engines with full-fledged data-
base system would not yield fair comparison because
such routing solutions do not provide any of the data-
base management system abilities which provide sub-
stantial performance overhead. PostgreSQL and Neo4j
are general purpose database management systems
and their main purpose is not routing engine but man-
aging and storing of structured and semi-structured
data. Although pgRouting is also in-memory routing
engine it is still based on data provided by the under-
lying database management system. pgRouting does
not retrieve graph data structure directly from memory
for each shortest path calculation as in-memory rout-
ing engines do. It relies heavily on the underlying data-
base for data retrieval and manipulation.

Dijkstra algorithm was chosen because it was the
only algorithm implemented on both solutions. Be-
cause both of the database systems have their source
code openly available, it can be seen that they both
have implemented very similar Dijkstra algorithms.
The obvious difference in implementation is because
Neo4j uses graph traversal queries whereas pgRout-
ing uses pure mathematical calculation. Our assump-
tion was that GDB would have more algorithm imple-
mentations for the shortest path calculation. Both
of the tested systems also provide A* shortest path
algorithm, but it cannot be tested because its imple-
mentation in Neo4j is only available for the embed-
ded database version. Using the embedded version of
the database would provide inconsistent results as it
would be directly tied to the application. Another thing
that has to be taken into account is that Neo4j Dijkstra
implementation is closely tied to the Neo4j traversal
speed and is still in major development. On the other
hand, pgRouting depends on PostgreSQL only for data
retrieval, not for the calculation and in most cases of
use does not benefit from database indexes. The de-
velopers of Neo4j announced bidirectional traversal
algorithm which will greatly increase the speed of cal-
culation. Both database systems have the source code
openly available, and it could be easily concluded that
both use the same Dijkstra implementation.

At the beginning of our testing, we wanted to use
default configuration for both of the database systems,
but that was not possible in case of Neo4j. Neo4js de-
fault configuration proved to be insufficient for any Di-
jkstra shortest path calculation on any of our datasets
because it is optimized for smaller localized traversal
queries, which have smaller memory requirements.
The shortest path algorithms usually use full graph
traversal queries, which heavily depend on the avail-
able memory. Our findings are that none of the recom-
mendations for PostgreSQL had any noticeable impact
for the pgRouting performance. Another thing that has

to be noted is that Neo4j server communicates with
clients via REST API over HTTP. This creates small over-
head on performance but only to the delivery of the
results from the server, not on the calculation of the
shortest path. This overhead is minor comparing to the
time for the calculation of the shortest path and was
ignored in our test case.

For every query (concurrent or not) that uses
pgRouting function, PostgreSQL database will load the
data into the memory, compute the shortest path and
release data from memory. For example, if two queries
are sent at the same time on the same dataset, every
query will take its own data into memory and compute
the shortest path, and release it after the computa-
tion. There is no memory sharing with pgRouting func-
tion and memory consumption will be doubled in that
case. The number of possible concurrent queries on
PostgreSQL depends only on the size of the data and
available memory. Neo4j and pgRouting function have
different approach in handling of loading data into the
memory. Neo4j only loads data required for the cur-
rent query and that data is shared between requests,
if the data is still in the memory.

As seen in the previous section, data used for
our test are from the Austria OSM dataset. Tests with
larger road networks, e.g. road network from Germany,
the Netherlands or Italy OSM dataset led to the lack
of memory. Another problem that was encountered
during testing is infinite traverse loops on some OSM
datasets, e.g. the Czech OSM dataset. This is due to
the implementation of Dijkstra algorithm in Neo4j. Any
position in the graph may be revisited. This is contrary
to the default option for other Neo4j traversal queries,
which is that no node in the entire graph may be vis-
ited more than once. On some specific graph layouts
this creates infinite loops during Dijkstra shortest path
calculation. Until the writing of this paper this was still
default for the Dijkstra implementation in Neo4j.

5. CONCLUSION

The graph database management systems are
not routing engines and are not suitable for full graph
traversal, which is used in the shortest path calcula-
tions. Their primary purpose is local graph traversal
based on the property graph in cases of use such as
social networks, fraud detection, recommendation
engines, resource authorization, or computer network
management. Although in most cases Neo4j outper-
forms pgRouting, the Neo4j “greed” for memory has
to be considered. This is especially important for large
transportation networks. If the memory is not an issue,
then graph database is the right choice for the short-
est path calculation.

Promet – Traffic&Transportation, Vol. 26, 2014, No. 1, 75-82 81

M. Miler et al.: The Shortest Path Algorithm Performance Comparison in Graph and Relational Database on a Transportation Network

MARIO MILER, dipl. ing.
E-mail: mmiler@geof.hr
Dr. sc. DAMIR MEDAK
E-mail: dmedak@geof.hr
DRAŽEN ODOBAŠIĆ, dipl. ing.
E-mail: dodobas@geof.hr
Geodetski fakultet, Sveučilište u Zagrebu
Kačićeva 26, 10000 Zagreb, Hrvatska

SAŽETAK

USPOREDBA UČINKOVITOSTI ALGORITMA
NAJKRAĆEG PUTA U GRAF I RELACIJSKOJ
BAZI PODATAKA NA PROMETNOJ MREŽI

U području geoinformatike i prometnih znanosti,
najkraći put izračunava se na graf podatkovnoj strukturi od
kojih se uglavnom sastoje cestovne i prometne mreže. Ovi
podaci se često pohranjuju u razne sustave baza podataka.
Mnoge aplikacije koje koriste prometne mreže zahtijevaju
izračun najkraćeg puta. Cilj ovog istraživanja je usporediti
učinkovitost Dijkstra algoritma najkraćeg puta u PostgreSQL
(koristeći pgRouting) i Neo4j graf baze u svrhu određivanja
razlike u brzini izračuna najkraćeg puta. Ispitivanje je
izvršeno na prosječnom računalu koristeći OpenStreetMap
cestovnu mrežu. Unatoč tome što se Neo4j graf baza sma-
tra pogodnom za izračun najkraćeg puta na prometnim
mrežama, činjenica je da i takav način ima cijenu. Dokazano
je da u Neo4j bazi, memorija računala može biti problem,
posebno kod velikih prometnih mreža.

KLJUČNE RIJEČI

pgRouting, OpenStreetMap, Dijkstra, testiranje, Neo4j, Post-
greSQL

REFERENCES

[1] Dreyfus, S.E.: An Appraisal of Some Shortest-Path Algo-
rithms. Operations Research. 1969 May 1;17(3):395–
412

[2] Golden, B.L.: Shortest Path Algorithms: A Comparison.
Massachusetts Institute of Technology, Operations Re-
search Center; 1975

[3] Cherkassky, B.V., Goldberg, A.V., Radzik T.: Shortest
paths algorithms: theory and experimental evaluation.
1994 Jan 23;516–25

[4] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: In-
troduction to Algorithms, Third Edition. BOOK. The MIT
Press; 2009. p. 1312

[5] Zlatanova, S., Baharin, S.S.K.: Optimal Navigation of
First Responders Using DBMS. 3rd International Confer-
ence on Information Systems for Crisis Response and
Management 4th International Symposium on GeoInfor-
mation for Disaster Management. 2008;541–54 606

[6] Tuot, C., Obradovic, D., Fichter, F., Dengel, A.: CRUV - A
Collaborative Route-Planning System for Utility Vehi-
cles. 2010;

[7] Innerebner, M., Böhlen, M., Gamper, J.: ISOGA: a sys-
tem for geographical reachability analysis. Liang SHL,
Wang X, Claramunt C, editors. Berlin, Heidelberg:
Springer Berlin Heidelberg; 2013. pp. 180–9

[8] Codd, E.F.: A relational model of data for large shared
data banks. 1970. MD computing computers in medi-
cal practice. ACM; 1970;15(3):162–6.

[9] Dominguez-Sal, D., Urbón-Bayes, P., Giménez-Vañó,
A., Gómez-Villamor, S., Martinez-Bazán, N., Larriba-
Pey, J.: Survey of graph database performance on the
hpc scalable graph analysis benchmark. Web-Age In-
formation Management. Springer; 2010;37–48

[10] Stonebraker, M., Cetintemel, U.: “One Size Fits All”: An
Idea Whose Time Has Come and Gone. 21st Interna-
tional Conference on Data Engineering ICDE05. Ieee;
2005;0(Icde):2–11.

[11] Strauch, C.: NoSQL Databases. Lecture Notes Stuttgart
Media. Hochschule der Medien, Stutgart; 2010;1–8.

[12] Orend, K.: Analysis and Classification of NoSQL Da-
tabases and Evaluation of their Ability to Replace an
Object-relational Persistence Layer. Architecture. Cite-
seer; 2010. p. 100.

[13] Tiwari, S.: Professional NoSQL. 1 edition. Wrox; 2011.
[14] Sadalage, P.J., Fowler, M.: NoSQL Distilled: A Brief

Guide to the Emerging World of Polyglot Persistence. 1
edition. Addison-Wesley Professional; 2012.

[15] Ciglan, M., Averbuch, A., Hluchy, L.: Benchmarking Tra-
versal Operations over Graph Databases. 2012 IEEE
28th International Conference on Data Engineering
Workshops. IEEE; 2012. p. 186–9.

[16] Angles, R., Gutierrez, C.: Survey of graph database mod-
els. ACM Computing Surveys. ACM; 2008;40(1):1–39.

[17] Euler, L.: Solutio problematis ad geometriam situs
pertinentis. Commentarii Academiae Scientiarum
Imperialis Petropolitanae. Nature Publishing Group;
1736;8:128–40.

[18] Dominguez-Sal, D., Martinez-Bazan, N., Muntes-Mule-
ro, V., Baleta, P., Larriba-Pay, J.L.: A discussion on the
design of graph database benchmarks. 2010 Sep
13;25–40.

[19] Rodriguez, M.A., Neubauer, P.: Constructions from
Dots and Lines. Science. American Society for Informa-
tion Science and Technology; 2010;X(X):35–41.

[20] NeoTechnology. The Neo database - A Technology In-
troduction. 2006; Available from: http://dist.neo4j.
org/neo-technology-introduction.pdf

[21] Seng, J-L., Yao, S.B., Hevner, A.R.: Requirements-driv-
en database systems benchmark method. Decision
Support Systems. 2005 Jan 1;38(4):629–48.

[22] TCP. Transaction Processing Performance Council
[Internet]. 2011 [cited 2011 Sep 21]. Available from:
http://www.tpc.org/default.asp

[23] Ray, S., Simion, B., Demke, Brown A. Jackpine: A
benchmark to evaluate spatial database performance.
Data Engineering (ICDE), 2011 IEEE 27th International
Conference on. IEEE; 2011. p. 1139–50.

[24] Bader, D.A., Feo, J., Gilbert, J., Kepner, J., Koester, D.:
Hpc scalable graph analysis benchmark. Citeseer. Cite-
seer; 2009;(HiPC 2005):1–10.

[25] Coast, S.: OpenStreetMap project [Internet]. 2013.
Available from: http://www.openstreetmap.org/

[26] Ramm, F., Topf, J.: Towards a New Data Model for
OpenStreetMap [Internet]. 2007 p. 1–42. Available
from: http://www.remote.org/frederik/tmp/towards-a-
new-data-model-for-osm.pdf

[27] Moeller, C.: osm2po [Internet]. 2011. Available from:
http://osm2po.de/

M. Miler et al.: The Shortest Path Algorithm Performance Comparison in Graph and Relational Database on a Transportation Network

82 Promet – Traffic&Transportation, Vol. 26, 2014, No. 1, 75-82

[28] NeoTechnology. The Neo4j Manual v1.7.2 [Internet].
NeoTechnology; 2012. Available from: http://docs.
neo4j.org/chunked/1.7.2/

[29] Naphtali Rishe, A.V.: A Benchmarking Technique for
DBMSs with Advanced Data Models.

