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ABSTRACT 

This paper follows up a previous study for optimising a pro­
duction-inventO!y system when external demand is stochastic. 
A modified stock-out function is presented to cover more gen­
eral situation when cumulative production may be a continu­
ous variable. Optimisation equations are further investigated, 
including the sufficient conditions for optimisation. 
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1. INTRODUCTION 

The stock-out function for a renewal process 
has been introduced in several papers [1, 2], with 
the assumption that cumulative production has an in­
teger value. However, this assumption also creates a 
limitation in the optimisation conditions for the pro­
duction plan [3, 4], namely that we need to use the in­
equality in the first-order differences with respect to 
the decision variables concerning cumulative produc­
tion. 

These optimisation conditions have been used to 
study safety stock problem for production planning. 
One important fi nding is that the level of safety stock 
has a linear relation to the square root of time [5]. In 
order to be confident of this result, we believe there is 
a necessity to further investigate the integer value as­
sumption in the model and the sufficient conditions 
for optimisation. 

In this paper, we first release the mentioned inte­
gral assumption and develop a modified stock-out 
function. Then we investigate whether the optimal 
production conditions need to be adjusted based on 
this modification. Finally we present some comments 
and draw our conclusion. 
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2. STOCK-OUT FUNCTION 

In our study, renewal processes are used to de­
scribe the stochastic properties of the production-in­
ventory system. A renewal demand process is such 
that demand arrives by unit events separated by sto­
chastic time intervals, all with identical independent 
probability distribution function pdf f(t), t ~ 0. One 
theorem [ cf. 2] regard ing this process is that the 
stock-out function (expectation of stock-outs) in the 
Laplace frequency domain follows 

-P+l - f 
E(B(s))=----"-

5
(-
1

_-
1
-), (1) 

where Pis an integer and refers to the cumulative pro­
duction and f is the transform of the pdf. For a de­
mand renewal process, we assume that the time inter­
val of demand events is a continuous variable and de­
mand is a discrete variable. According to [1 ], the trans­
form of the probability that cumulative demand D 
equals j at time t is 

.P{Pr(i5(t)=j)}=fj (1-t)/s, (2) 

where j is an integer, since demand always arrives as 
units. Because 1/s corresponds to the integration over 
time, Equation (2) is interpreted as the difference of 
two cumulative distribution functions. For the sake of 
removing the integer value assumption, we use the fol­
lowing definition for stock-outs B 

{B=D-~, fur ~~~ 
0

) 
B=O, for D<P 

where D remains to be an integer, P and B are any 
non-negative numbers. We then obtain 

-x+P -
.P{Pr(B=x)} =.f{Pr(D=x+~)} f (1- f) ,(4) 

s 

Fui!Jlermore, the sum x + P needs to be an integer 
and x, Pare any non-negative numbers. 

oo -x+P 1_-
E(B(s))= I f ( f) (5) 

x=O s 

This Sl!_mmation takes place over the instances ofx, 
whenx +Pis integral. If we substitute the above equa-
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tion with{;: ~~~c' where) and?· are integers and 0::; 

t: < 1, we have 

oo -x+P ] _-
E(B (s))= If ( f)= 

x~O s 

oo . fj+P' (l-f) 
= I (J +E).-=-----'--~ 

j=O s 
- --p - 00 -p - 00 

f (1-f) Ii.Jj +1 (I-f) I lj = 

s j=O s j=O 
- -

-P'+I -p· 
f t:f 

s(1-f) +-s-. (6) 

We notice now that the expected stock-out func­
tion consists of two parts. The first part is the same as 
the previous stock-out function and the second part 
concerns essentially the transform_of a cumulative 
probability distribution for a sum of P' intervals having 
an additional coefficient£. The expression in (6) is lin­
ear in t:, when t: varies in the interval [0, 1]. 

For instance, for a Poisson process, the stock-out 
function in its time domain, which is the inverse of the 
above expression, should be written as 

E(B(t))=?.t-
P'-I(?.t)j P'-\?.t)j 

-P' _1: -.
1
-(P'-J)+r(l-e-;,, 1: -.

1
-) 

J=O 1 · J=O 1 · 
(7) 

When cumulative production is an integral num­
ber, t: is zero and we obtain 

/'-1 (?. t)j 
E(B(t))=A 1-P+ I -.,-(P-1) 

j=O J. 

which gives the same result as in [4] 

3. DERIVATIVES AND DIFFERENCES 
OF STOCK-OUT FUNCTION 

(8) 

The properties of the stock-out function have been 
discussed in previous papers. However, lit!.!_e has con­
cerned cases when cumulative production Pis consid­
ered as a variable. This section attempts to make a 
contribution from this aspect. 

_Ihe first-order derivative ofE(B(t))with respect 
toP is 

a E(B (t)) -1- aE( 8 (s)) =- t'' , for P'-l< P< P' 
aP - ar s -

does not exist, for P integer 

(9) 

which shows that the stock-out function is continuous 
in the open interval (P' -1, P') and piecewise continu-
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ous in its domain. We dcfin~ the difference ofE(B(s)) 
with respect to the integer Pas 

t.E(B (s)) P =E(B (s))-p+ 1-E(B (s))p. (10) 

Therefore 

- Jf+l+l Jf+1 

L'.E(B(s))p s(l-f) s(l-f) ( 11) 

This first-order difference brings a similar result as 
the first-order derivative but has a different interpre­
tation. For the~econd-order derivatives of E(B(s)) 
with respect to P, we obtain the following expression 

a2 E(B(t)) {0, for P'-l<P<P' 
a ? 2 - does not exist, for P integer (l

2
) 

and similarly 
2 - - -

L'. E(B(s))p =L'>E(B (s))p+J -f. E(B (s)) 1; = 
- - -

JP+l+l JP+l JP+l (1-f) 
+-- = . 

s s s 
(13) 

This apparently can be interpreted as the trans­
form of the prob~ility that cumulative demand dur­
ing time t equals P + 1, which is positive. The above 
derivative and difference expressions show that the 
expected st~k-out function is convex with a negative 
slope when Pis varied. 

4. INTEGRAL VALUES FOR 
OPTIMISATION CONDITIONS 

The stock-out function over the whole planning 
horizon, where characteristic function needs to be in­
corpora~d due to different levels of cumulative pro­
duction P, k = 1, 2, ... , is given by 

1 /l {J+ioo 
E(B(s))=~ I I E(B(w))· 

:rr; 1 k=O w=(J-ioo 
-(s-w)tk -(s-w)tk+l e -e 
--------- d w. (14) 

s-w 

We then have the following results 

E(B(s)) 1 fJ+ioo JPk 
~~=-- I -. 

a p k 2n i w=f3-ioo w 

-(p-w)tk -(p-w)lk + 1 e -e 
---------dw, forP not an integer , 

p-w 

1 {J+ioo 
L'.(B(s))pk ~ I 

_n 1 w={3-loo IV 

-(p-w)lk -(p-w) tk+l e -e 
---------dw, forP an integer, 

p-w 

(15) 

( 16) 
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aE~B(s)) =e-s 1k [[E(B(tk ))]p -[E(B(lk ))]-p ] , 
r)fk k-1 k 

for any P /.:-1 , P k ( l7) 

When we study the optimal production plan prob­
lem, the following objective function is used 

PV =r [E( D(p))-p E( B (p))]-
ll 

- L(K+c(Pk -Pk-J))e-P1k (18) 
k=1 

which counts the cash inllow of sales (r = revenue per 
unit), the delay payment of backlogging and the cash 
outnow of production costs (K = setup cost, c = unit 
production cost). Based on this objective function de­
veloped above, the following necessary conditions for 
optimisation are obtained 

a PV 
F, =--=pe-ptk [-r[E(B(lk ))]- -

ark Pk-1 

-[E(B(tk ))]h ]+(K+c(Pk -Pk:,l ))]=0 

i.l lPV 1 /3+ioo fpk 
F-p=---=rp(-. J -- . 

a p k 2 n; / IV= {3- i oo IV 

-(p-w)tk -(p-w)lk + 1 e -e 
-------- d w)­

p-w 

-c(e-Ptk -e-ptk+l )=0 

or 

1 fJ+ioo T pk 
F-=ilNPV=rp(-. f -. 

p 2n t 11'=/3-ioo IV 

-(p-w)tk -(p-w)tk-.-l 
e -e 
--------d w)­

p-w 

-c(e-P'k -e-P1k+l )::;O 

(19) 

(20) 

(21) 

According to our discussion of the stock-out func­
tion in the previous section, we can conclude that the 
first pa!:!_ of F-p is monotonic~ly decreasing as a func­
tion of P. It has jumps when P takes on integer values 
and remains constant other.visc. The magnitude of 
each jump ~pend~ on the shape of the probability 
function Pr{D(L )=P+ 1}. Figure 1 illustrates the situa­
tion. The following limits arc obtained: 

1 {3+ioo T Pk 
lim F- =lim rp(--_ f ---
P~O p P~O 2n I w=/3-ioo w 

-(p-w)tk -(p-w}lk+l e -e 
---------d w)­

p-w 

-c(e-Ptk -e-ptk+l )=(r-c)(e-P'k -e-ptk+l )>0 

(22) 

1 {3+ioo Jf\ 
lim F- =lim r p(--. f --. 
P~O p P~O 2n I w=f3-ioo w 
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-(p-lv)lk -(p-w)lk+l 
e -e 
---------d w)­

p-w 
-c(e-Ptk -e-P'k+l )=-c(e-Ptk -e-P 1k+l )<O 

(23) 

The above limits exist when tk and tk+ 1 arc finite 
values. 

F-;; 

Figure i - F;; curve where P is considered as a 

continuous variable, and tk and tk+1 are constants 

Therefore, the soluti~1 of F-p = 0 is either unique 
and an integral number Pis obtained (Eguatiol"!_21 _i:; 
satisfied), or is a set of values where P' -1::; P::; P' 
(both equations 20 and 21 arc satisfied). In th'0attcr 
case Fy, = 0 and the line is overlapped by the P axis. 
Since time is a continuous variable, we consider this as 
a very exceptional situation that seldom occurs. 

On the other hand, the F1 function has the follow­
ing derivative 

a F [ ~~P+I) __ t =-r pe-p rk fl ----=- -
at 1-f _ 

''k -1 

r J P+ 1 l l [ { h -1 ]] - f 1 i ----=- ~ =- r f 1 _b f j < 0 
l 1-f J I} j=Pk-1 

(24) 

Since JcO) = 1 and f( =) = 0 (if f(O) <ex:>), we obtain 
the following boundaries using the initial value and fi­
nal value theorems 

[ { 
pk- I l 

lim F1 =lim pe-P1k -r _b Ji +K+ 
l~oo s~O j= pk _I 

+c(Pk -Pk-t)=(-r(Pk -Pk-t)+K+ 
+c(P k -P k-1 ))· pe-Ptk (25) 

(26) 

367 



0. Tang.: A Generalised Stock-Out Function for Continuous Production Variables 

a F [ [ ~7\ - 1 

- • }]I lim -
1 

= lim -pe-P
1
k r s ~ f 1 )=0 (27) 

t-7= at s-70 j=l\ __ 
1 

I_he .fJ. curve approaches -r ( P k - P k-1 )+ K + 
+c(Pk -Pk-1) when time is made infinite and its 
slope then tends towards zero (Figure 2). It is shown 
that_the ~olution of F1_= 0 i_s unique if and only if 
-r(Pk -Pk-1 )+K+c(Pk -Pk-1)~0. Otherwise, 
the line will not cross the t-axis and no solu tion results. 
This can be interpreted as that production time is 
postponed to infinity when the total production costs 
exceed revenues. 

F, 

\ 

Figure 2 - F1 curve where t is considered as a 

continuous variable, and Pk and Pk.1 as constants 

Figures 1 and 2 indicate that the iterative so lving 
procedure in [4] generates a unique solution in each 
step. However, it does not guarantee a global optimal 
for the fina l solution. 

5. STRUCTURE OF THE HESSIAN 
MATRIX FOR OPTIMISATION 

Throughout the paper using the same methodol­
ogy for optimising the production plan, only the neces­
sary conditions for optimisation have been presented. 
In this section we investigate the structure of the 
Hessian matrix for optimisation. The second-order 
derivatives (differences) of the objective function are 
obtained as 

(28) 
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-(p-w)tk -(p-w)tk+l e -e 
--------d w)< 0 

p-w 

(
aNPV ) at..=/';.--, at . -

k pk 

(
aNPV ) bk=/';. -.-
at~c -P 

k - 1 

(29) 

(30) 

(31) 

Other second-order derivatives (differences) are 
all zeros. Let n be the optimal total number of batches 
in the planning horizon. Hence there are 2n decision 
variables and we have a 2n x2n dimension Hessian 
matrix with the following structure 

Al al 

A2 b1 a2 

An 

Bt 

B2 

bn 

an 

Elements in its main diagonal all have negative val­
ues. The signs of ak and bk are undetermined. How­
ever, it is still difficult to determine analytically if this 
matrix is negative definite. 

6. SUFFICIENT CONDITION- A FIXED 
ORDER QUANTITY CASE 

In our previous studies, the order quantity for each 
production batch has been allowed to vary. This ap­
parently enlarges the number of variable and makes 
analysis consequently more complex. In this section, 
we concentrate on a special case of early 
optimisations, namely a fixed order quantity Q is ap­
plied at each stage in the production. This assumption 
also often holds in practice, for instance, when the 
batch size of a machine needs to be fixed for some 
technical reason. The objective function therefore 
needs to be rewritten as 
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II 

NPV =r [E(D(p))-pE(B(p))]- I. (K+cQ)e-P 1
k , 

k=l 

(32) 

where tk and Q are decision variables. The necessary 
conditions for optimisation are then 

aNPV _ 1 F1 =--=pe Pk [- r([E(B(tk))](k-l)Q­
atk 

-[E(B(tk))]kQ+K+cQ] =0, (33) 

n [ 1 {J+ioo JkQ+\1-fk) 

FQ=6.NPVQ=rp L 2- J w(l-f) 
k=O n 1 w={J-i= 

e-(p-w)tk_e-(p-w)tk+i l n 
· d w -c I. ePtk ::;; 0 

p-w k=1 
(34) 

The second-order derivatives and differences are 

a
2

NPV [ { kQ-l ·}] Ak = 2 =-r pe-ptk fl L fl <0 
a t k j =( k _ 1) Q 

e -(~w)tk -e -(~w)tk+i 
---------dw < 0 

p-w 

(35) 

(36) 

ak =6.(aNPV) =pe-ptk [-r([E(B(tk )](k-l)(Q+l)-
atk Q 

-{E(B(lk )]k(Q+l))+K+c(Q+1)] (37) 

Other second-order derivatives and differences 
are all zeros. 

The Hessian matrix is now 
A1 a 1 

Az az 

For a negative definite matrix the signs of the prin­
cipal minors alternate starting with a negative sign at 
the left top corner. This is guaranteed until the minor 
of order n xn is reached, since theAi is negative. When 
going from n to ( n + 1 ), we develop 

Al al 

az 
det 

A,t an 

al a2 an B 
2 2 2 

al a2 an 
=(B- Al- A2 - ... -An)· 
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-det J 
The right-hand member has been obtained by add­

ing multiples of each row to the bottom row succes­
sively to eliminate the corresponding bottom row ele­
ments. The expression in (38) guarantees that the two 
determinants in the above equation have opposite 
signs. By taking into account inequality property in 
Equation 35, Equation 38 is sufficient and necessary 
conditions for the Hessian matrix to be negative defi­
nite. 

(38) 

It is also a sufficient condition for maximising the 
objective function (Equation 32). For an even more 
specific case where the order quantity is determined 
externally, the decision variables are only the produc­
tion batch times t~c. The solution to Equation 33 is then 
unique and it provides a global optimal, since the 
Hessian is negative definite. 

7. CONCLUSION 

This paper has extended the stock-out function to 
cover a system where cumulative production can be a 
continuous variable. The results show that the struc­
ture of this function is similar to earlier ones when cu­
mulative production is an integer. The properties of 
this stock-out curve have also been discussed. It is 
shown tb_at this curve has discontinuous points at the 
integer P positions. Due to the monotonic and jump­
ing characteristics of the optimal condition curve, W!!:_ 
conclude that, in general, the optimal solution for P 
needs to contain integer values only. In order to study 
the sufficient conditions for optimisation, we also have 
presented the structure of the Hessian matrix. So far 
no solid conclusion for the general case has been 
drawn. For ve1y specific cases, in which either the set 
of cumulative production volumes or the set of batch 
times are determined externally, the Hessian matrix is 
negative definite. 

SAZETAK 

01'aj je rad nastavak prethodnih ispitivanja optimizac1je 
sustava proizvodnje - zaliha kada je vanjska potraznja stohas­
ticka. Predscavljena je modificirana Junkc1ja nedostatka robe 
na skladistu koja pokriva opcenitije slucajeve kad kumulativna 
proizvodnja maze biti kontinuirana varijabla. Jednadzbe opti­
mizactje se dalje ispitujuukljucujuCi i uvjete zadovoljenja opti­
mizactje. 
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