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DYNAMIC APPROACH IN GENERALISED 
MODELLING OF TRAFFIC PROCESS 

1. NEED FOR GENERALISED 
FORMAL DESCRIPTION 
OF TRAFFIC PROCESS 

Fundamental understanding of traffic and traffic 
technologies are closely related with deep and unified 
research of traffic system and its generic process. 
Traffic science cannot emerge from "embryonic 
state" if it hasn't unified and formalised treatment of 
traffic system behaviour relevant for different trans­
portation subsystems (highway transportation, air 
transportation, railway, water transportation, postal 
or courier services, etc.) and telecommunication sub­
systems (telephony, data communications, ISDN, 
GSM, etc.). Long before traffic system knowledge 
can be synthesized, some small contributions can in­
crease our fundamental understanding of traffic and 
traffic system behaviour. 

During the years, a mathematical (quatitative) ap­
proach based on practical traffic observations and ex­
periments, has been applied to various but specific 
traffic and transportation problems [1], [2]. Quantita­
tive traffic models are based on stochastic and statis­
tic theory, queuing theory, different elements of 
physical theories, some elements of economic theory, 
etc. However, generalised traffic (system) theory has 
not been developed although some "fundamental re­
lations of traffic flow" and traffic equations for par­
tial problems are well established in literature [3], [4]. 
The terms "system", "traffic system", "traffic activi­
ty", "process'', etc., have been used for a long time 
but without precise explanation and formalisation of 
generic (fundamental) traits of traffic system. 

A general system approach and methodology is 
necessary background for unified traffic system 
(process) description with precise formalisations. Ac­
cording to General systems themy, the fundamental 
traits of system studied by "experimental branches" 
of science are: 
- the set of quantities, 
- the resolution level, 
- the time-invariant relations between quantities, 
- the properties that determine the relations. 
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In the developing generalised traffic system de­
scription, it will be necessary to introduce a collection 
of concepts and definitions related to the fundamen­
tal traits. "Space-Time" specification must be consid­
ered for fundamental traffic quantities. The frequen­
cy and accuracy with which we record the chosen 
quantities is "resolution level". By observing the ac­
tivity of the system, we must examine fundamental 
relations for specified time interval and conditions. 

A minimal formal definition of traffic system can 
be one of the basic definitions associated with the 
fundamental systematic traits. 

Definition 1. A traffic system TS is a triple (X,t,L) 
where: 
X = {xp x2, ... x

0
} is the set of external quantities, 

t is time, 
L = {X1, X2, ... X

0
, T} is the resolution level. 

Traffic system is also defined by ([5]): 
- system activity, 

real UC-structure, 
- permanent behaviour, 
- real ST-structure. 

Whatever is added to the basic definitions must 
reflect some aspect or performance. Non-permanent 
traits (time-varying) must be shifted to the area of 
"secondary traits". The relationships which exist be­
tween permanent and non-permanent traits are in­
vestigated in several doctoral theses, but it is not a 
solved problem. 

This paper is concerned only with dynamic ap­
proach as a part of generalised formal description of 
traffic system. The main thesis is that we can identify 
some generic traffic relations which can be relevant 
for different transportation and telecommunication 
systems. Classic traffic flow theory (for road traffic) 
and teletraffic theory, may provide good testing 
ground for our investigations. Traffic flow can be 
measured and the relevant parameters (quantities) 
can be identified at some resolution level. 

We can start with relatively simple situations 
which can possibly then be expanded. In generalised 
model or "metamodel" (model of models), traffic 
network and entities are considered only in terms of 
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their generic characteristics, rather than in terms of 
their specific technology or technical design. In gen­
eral, traffic denotes the aggregate flow of traffic enti­
ties through a transport or telecommunication sys­
tem. Traffic is associated with arriving (input) and 
outgoing (output) process which change the system 
state. Level (grade) of services is predetermined by 
system capacity, offered traffic load and traffic man­
agement. 

Before the introducing concept of dynamic de­
scription, we must give summarised review of various 
type of traffic models and relevant cornerstones from 
classical traffic flow theory and teletraffic theory. 

2. REVIEW OF TRAFFIC MODELS 

Various types of models (or approaches) have 
been used in analyses and synthesis of traffic system 
or subsystems (see Fig. 1). System state descriptions 
are compared according to levels of accuracy with 
scale 1 to 5. 

level of 
accuracy 

2 

3 

4 

5 

Figure 1 - Different type of models in traffic description 

The most accurate description of traffic system 
behaviour specify the full particulars of all events oc­
curring in the system. For the most real traffic sys­
tems and subsystems, such model cannot be con­
structed. 

Stochastic behaviour (properties) of traffic system 
can be investigated with different type of models with 
different levels of accuracy in description. The most 
accurate analytical description is possible with queu­
ing models if we now the probability distributions of 
all events. Less accurate description is possible with 
diffusion models which deal with averages and vari­
ances. Dynamic (flow) models can be used as an ap­
proximation of queuing model and as an independent 
description of a real traffic system. These models are 
based on hydrodynamic analogy or fluid approxima-
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tions and they utilise time-dependent average quanti­
ties. Static (flow) models describe the traffic behav­
iour by means of long-term averages only (level of ac­
curacy: 1). 

Alternative to analytical or numerical description 
are simulation models. The simulation is useful not 
only for the case that the analytic solution is not ob­
tained, but also in cases where numerical computa­
tion is difficult. The model in the simulation should 
abstract the essence of the system, and be as simple 
as possible to facilitate the simulation. Traffic simula­
tion is classified as a discrete-event simulation which 
can be event-oriented, process-oriented and activity­
oriented modelling. Detailed simulation models can 
describe system behaviour with high level of accuracy 
(levelS in Fig. 1). 

In systematic treatment of traffic process we must 
apply fundamental concepts of system and define a 
traffic system with one of the basic definitions [5]. 
The fundamental traits of generalised system are the 
set of quantities, resolution level, the time-invariant 
relations between quantities and the properties that 
determine the relations. 

Obse1vation 1. For generalised model (metamodel) of 
traffic system (according to Definition 1) we must 
recognise basic representative of traffic phenomena 
(quantity or measure values) which can be associated 
with main attributes of transportation and telecom­
munication system. 

From the view of generalised traffic modelling, we 
introduce "instantaneous number of traffic entities in 
system" as a basic quantity. This quantity can be ob­
served and measured with different space-time speci­
fications. Elaborating of this approach and general­
ised traffic system concept is the subject of another 
paper. The basic idea is illustrated in Figures 2 and 3. 

ObseJVation 2. Traffic system can be formally de­
scribed by arrivals (input process) and outlets (output 
process) which change the system state x(t). 

The average number of traffic entities in the sys­
tem during the period T from arrival of 1, A 1, to de­
parture of the last, DN, is given by: 

1 N 
X = . L (Dj - A) 

DN - A1 i = 1 
(1) 

The main attributes, i.e. the average time in the 
system (Tq) and the average waiting time (Tw) can be 
calculated by: 

I 
N 

N 
L (Di - Ai) 

i = 1 

(2) 

N 

N L (Di - Ai - t 5) (3) 
i = I 
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where: 

~ - moment of arrival of unit (entity) i, 

Di -moment of departure of unit (entity) i, 

T w - average waiting time, 

T q - average time in system (or delay time), 

t
5

. -time required to serve unit i without waiting, 

Ei -moment unit i enters server. 

arrivals 
x(t) 

departures 

I 0 

dx(t) = 1- 0 
dt 

Figure 2 - Basic traffic description 

cummulative 
traffic 

entities 
(in system) 

cummulative 
arrivals 

T 

cummulative 
departures 

time 

Figure 3 - Description of traffic system behaviour 

Traditionally, part of traffic problem has been 
treated in models of stochastic service systems (birth­
death process) and fluid approximations. In this con­
text, the distinctive features and benefits of dynamic 
approach are: 

- unified approach to analysis and synthesis of con­
trol in different types of systems (networks), 

- analysis of stationary and non-stationary network 
behaviour, 

- joint treatment of congestion phenomena and 
traffic control rules, 

- detailed knowledge of time-dependent probabili­
ties is not necessary. 

3. RELEVANT CORNERSTONES IN 
CLASSICAL TRAFFIC FLOW THEORY 
AND TELETRAFFIC THEORY 

"Classical" traffic flow theory has been focused on 
road traffic. Generalised model of a vehicular stream 
for the simple case of identically scheduled vehicles 
on an exclusive right of way is formulated and this 
model is extended to the various cases of highway 
traffic [1]. The behaviour of the traffic systems has 
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been expressed with the set of "fundamental rela­
tions" between the variables: mean speed (v), flow or 
volume (q), and concentration or density (k). 

Traffic equations and fundamental diagram of 
traffic are considered in several theoretical forms [2). 
In traffic flow theory q-k relations have a central po­
sition, but for practical research speed-flow relations 
are more important. Theoretical fundamental rela­
tions based on time independent homogenous solu­
tions of equations simulating the dynamics of traffic 
flow, are proposed by few authors [7]. 

For the purpose of this paper, we use a variant of 
phase-space description involving both the positions 
and the velocities of cars. We may assume that there 
exists at a given time (t) and a given point of speed 
(v) and road space (s), some distribution function 
f(s,v,t). The number of traffic entities (the numbers 
of cars dX) that at given time t are in the road seg­
ment s+t.v is given by: 

dX = f(s,v,t)·ds · dv (4) 

When the velocity distribution function is known, 
we may derive basic quantities, such as local concen­
tration k(s,t): 

00 

k(s, t) = Jctv · f(s, v, t) 
0 

and local flow q: 

00 

q = k · Y(S, t) = fctv ·V· f(s, V, t) 
0 

(5) 

(6) 

To any uniform stretch of the road the flow 
q = k · v is a function of the concentration k. It is a 
key (starting) point of the hydrodynamic theory of 
traffic. The relations between flow and concentration 
and between speed and concentration are illustrated 
with well known diagrams (Fig. 4). For low concen­
tration the flow grows approximately linearly with the 
concentration; after that it begins to grow less rapid­
ly; then it goes through a maximum, and finally falls 
to zero ("jam" concentration). In the case of highway 
traffic, drivers make their own decisions relating to 
the trade-off between safety and speed. 

ObseJVation 3. We can assume that traffic equations 
based on average values do not necessarily provide 
accurate estimates because: 

- the traffic flow is not in a steady state, 

- average flow rate and concentration are defined 
as simple mean values, 

- equation of state is not linear. 

Therefore, we need more dynamic description of 
traffic behaviour which can be a part of generalised 
traffic theory derived on systems principles. 

17 



I. Bosnjak, I. Zupa novic, V. Cerovac: Dynamic Approach in Genera lised Modell ing of Traffic Process 

V 

V - q 
s r - k 

q 

Figure 4a - Relationship between 
traffic flow and speed 

q 

Figure 4b - Relationship between 
traffic flow and concentration 

Teletraffic theory and performance evaluation of 
telecom networks and system, have a long tradition. 
The basic cornerstones are: 

- Birth and Death analysis of loss and delay systems 
(Erlang 1917, Engset 1918) 

- Traffic analysis of systems with general service 
times (Poll aczek 1930) 

Imbedded Markov Chain analysis (Kendall1953) 
Queuing networks (Jackson 1954 - 1970, BCMP 
1975) 

Queuing network algorithms (Buzen 1972, Kaba­
yashi 1976) 

- Equivalent Random Traffic Theory (Bretschnei­
der, Wilkinson, Riordan 1955-1960) 

- Simulation techniques 
- Dynamic Flow Models (Filipiah 1988) 

Teletraffic analysis with Non-Markovian Models 
(Akimaru, Kawashima 1993) 

Classical teletraffic models may be treated as stat­
ic long-term average descriptions for stationary net­
work behaviour ("statistic equilibrium"). Typical traf­
fic engineering problem was how many shared re­
sources must be provided to ensure adequate user 
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performance (GOS) in "busy hour" (BH). Traffic de­
mand for connections services is described by two 
components: 
- arrival rate (how often users arrive or request re­

sources), 
- holding time (how long they use resources before 

releasing them). 
Traffic intensity or offered load in stationary state 

is given by: 

A = A· T
5 

(7) 

where: 
A- offered traffic (in representative time ~ 

"busy hour"), 
A - arriva l rate, 

T s- average holding time (call duration). 
The loss rate or blocking probability (P8 ) , as the 

main measure of GOS, is defined by: 

A- A p = _ __ c 
B A 

or by Erlang loss formula (Erlang B-formula): 

p = 
B m . 

L A
1
/ i! 

i = 0 

where are: 
A - offered traffic load, 
m- number of channels or lines (servers) . 

(8) 

(9) 

The carried load Ac = A· (1-P8 ) is the expecta­
tion of the number of calls ( x) existing in the station­
ary state. 

While telephone system operates as a loss system 
with "lost-call-cleared" (LCC) discipline, data net­
works and another delay subsystem include queues 
(line) and wait for service. The key measure of per­
formance (GOS) is average delay time Tq. Delay is 
defined as time interval between the instant at which 
network terminal (station) seeks access to a transmis­
sion channel to transmit a message, and the instant 
that the network completes delivery of the message. 

For Markovian delay system with Poisson input, 
exponential service time and infinite waiting room, 
the waiting probability in steady state is given by: 

r = m 

m 
a m 
m! m - a (10) 

m - 1 r 

:L~+~ 
r = 0 r! m - a 

where: 
P r- is a steady state probability that r entities 

(messages) present in the system, 
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a - is offered traffic load, 
m- is number of servers (channels), 
P0 - is the probability that system is empty. 
The average waiting time (Tw) can be calculated 

from: 

Ts 
T = P(t > 0) · --

w w m - a (11) 

where Ts is average service (transmission) time and 
traffic load a is given by: 

B a = A·­c 
where: 

B -is average message length (in bits), 

(12) 

C- is line capacity or max throughput (bits per 
second), 

A - is arrival rate. 
In evaluating the waiting time for different sys­

tems and queue discipline (FCFS, LCFS, etc.) several 
tools are used [9]. 

Figure 5 shows typical numerical example for one 
data link (m=1) with C=9600 b/s and B=430 bits, 
where we use Pollaczek-Khintchine formula to obtain 
average waiting time: 

2 
a 1 + C 

T = --·--5 ·T 
w 1 - a 2 s (13) 

h 
2 2 2 " h d ff" . f . w ere C
5 

= a
5
/ T

5 
IS t e square coe 1c1ent o van-

ation (SCV) of the service time with its variance a;. 
average 
de lay 

T9=Tw+T5 [ms) 

800 

600 

400 

200 

B = 430 b 
C = 9600 b/s 
m= 1 

0,5 1 a [Erl) 
traffic load 

Figure 5 - Delay phenomena in data traffic 

Obse1vation 4. New challenges for teletraffic analysis 
and synthesis come with the introduction of telecom­
munications network with "service integration" (IS­
DN, BISON) and variable bit rate (VBR). To solving 
these problems advanced traffic engineering capabili­
ties with more dynamic approach are necessary. 

4. DYNAMIC DESCRIPTION 

To introduce dynamic description we must identi­
fy generic traffic parameters (quantities) that can be 
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measured or at least estimated directly from traffic 
measurement during the time period (0, T). 

Let A (t) be the cummulative number of arrivals 
of traffic entities to time t, t E (O,T): and i(t) the 
cummulative number of entities serviced during time 
(O,t), t<T. With X (t) we denote the number of enti­
ties in the system. These variables are related in ac­
cordance to the "conservation principle": 

X(t) = A(t) - l(t) + X(O) (14) 

We assume that the time behaviours of A (t), r (t) 
and X (t) have been measured or observed N times 
over the time interval (O,T) and we can calculate the 
averages A (t), f (t) and X (t). If these averages are 
continuous functions of time (differentiable in (O,T), 
we can write: 

dX(t) = dA(t) _ df(t) 
dt dt dt 

(15) 

with the initial condition X(O) = X0. 

With usual notation we have: 

A(t) = dA/ dt (16) 

where A(t) denotes the average rate of arrivals. 

The service intensity is in close relation with out­
going flow. We assume that the intensity df I dt of an 
outgoing flow can be approximated by a function GO 
of the system state x(t), then follows: 

df(t) = 0 . G[x(t)] 
dt 

(17) 

where 0 is the service capacity defined as the 
number of entities which can be served per unit of 
time. Every traffic entity has to stay in the system 
some time (time tq), so we may expect that the in­
coming traffic does not influence the outgoing traffic. 
We can accept that G(x) is approximation to the in­
stantaneous system utilisation factor or traffic con­
centration in space-time segment as a service system. 

With substituting (17) into (16) it follows that evo­
lution of the mean number of traffic entities in the 
system can be described by the following non-linear 
differential equation: 

dx(t) = - 0. G[x(t)] + A(t) 
dt 

with the initial condition x(O) = x0. 

(18) 

For analytic modelling, it is convenient to consid­
er a "normalisation equation". For this purpose we 
choose time units in such a way that the serving ca­
pacity ~ is equal to unity (~=1). With time-scaling 
transformation, from (18) we have: 

x(t) = - G[x(t)] + a(t) 

where a(t) = A(t/ 0)1~. 

(19) 
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For a constant intensity input (a(t)=a0) the sys­
tem will asymptotically approach the state x given 
by: 

x(t) = - G(x) + a0 = o (20) 

and for stationary state we have x a0 / (1 - a0 ) . 

Thus, for stationary state G(x) = a0 ; x(t) = 0, 
and GO must represent the steady-state utilisation 
factor as a function of mean number of traffic entities 
in the system. 

Described model can be viewed as a tool for ap­
proximation of transient solution of birth-and-death 
equations. Differential equation model has more ad­
vantage in solving different "network of queues" [9]. 

For the stationary state, the function G(-) is given 
by: 

G[x(t)) x(t) 
1 + x(t) 

(21) 

becausewehave x = a0 / (1 - a0) and x(t) = 0. 
With substitution of (21) into (18) we have: 

x(t) = - p - x(t) + A.(t) (22) 
1 + x(t) 

or, in normalised form: 

x(t) = - x(t) + a(t) 
1 + x(t) 

(23) 

with the initial condition x0. Bottom approximation 
was proposed in [7]. 

In the non-stationary conditions we must intro­
duce higher order description of the system and try to 
reduce the difference 8x(t) between the observed 
state of a real system and model. 

5. APPLICATIONS OF DYNAMIC 
MODELLING IN TELETRAFFIC AND 
TRANSPORTATION SUBSYSTEM 

Dynamic modelling is useful and powerful appa­
ratus especially for: 
- modelling non-linear systems with queue, 
- modelling non-stationary behaviours, 
- join treatment of traffic congestion, delay and 

control rules, 
- investigation of routing rules with time-dependent 

average quantities (adaptive routing), etc. 
We will consider some possible applications of dy­

namic modelling in solving teletraffic and road traffic 
problems, without pretension that these are the most 
representative examples. 

Traditionally, the queuing model M/M/m(O) is 
used to describe the performance of a telephone sys­
tem (circuit switching), while model M/M/1(r) is used 
to data communications with buffered data link and 
packet switching. For telephone concentrator with 
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Poisson input process and an exponential distribution 
of service time, for stationary state we can note: 

X = - G(x) + a in 

B -a = G(x) - x 

c -a = x 

where: 

(24) 

x - is the average number of telephone calls 
served at time t, and it is also the intensity of 
carried traffic a c ( x) = x . 

ain -is the intensity of offered traffic (in Erlangs). 

aB - is the intensity of rejected (blocked) traffic. 

The real throughput characteristics of teletraffic 
system are not linear, since we describe the system 
with the non-linear differential equation (see Figure 
6): 

\ 
\ 

X m X 

Figure 6- Non-linear throughput 
characteristics of teletraffic system 

To obtain iio ut as a function of x, next approxi­
mation function can be used: 

for x $ m/ 2 

for m > x ;:::: m /2 (
2

S) 

with a specific parameter v . Validy of this model is 
tested by simulation experiments which show good 
results [7]. 

Non-linear systems with queue (packet switching) 
will be illustrated next. In data communication link is 
equipped with a buffer memory of finite capacity. 
Hence, we use model M/M/1(r) for this system (with 
max r entities in system). Queuing theory provides 
the following formula for the average number of enti­
ties in the system [9): 

X = I r. 1 - p . pr 
1 

r + 1 
r = I - P 

(26) 

where pis average traffic intensity. 
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Example: For dynamic flow model for R=4 and 
0 :<::; p :<::; 1 we can write: 

x(t) = - G[x(t)] + p(t) 

with the approximation polynomial: 

5 4 3 2 p = F(x) = d0x + d 1x + d2x + d3x + d4x + d5 

The fifth-order polynomial has been chosen be­
cause it is sufficient to represent the original (system) 
curve over the range of loads considered. 

Several dynamic models, supported by adequate 
algorithms and computer programs, have been devel­
oped for particular road traffic, railway or air trans­
portation problems [10]. We will illustrate one con­
crete model of dynamic programming which is used 
to optimum control of traffic signals at a single inter­
section at which two conflicting traffic streams com­
pete for the same road space. 

An "optimum program" is defined as the set of 
the signal change times which minimises total (aver­
age) delay at the intersection over a specified period. 
At any time (t) the state of the intersection is defined 
by the queues on arms A and B, whether the signals 
are green on A or B. The optimum program after 
time (t) depends on the state at (t) and on the future 
vehicle arrivals, but it is independent of events before 
time (t). This conclusion suggest a method of finding 
the optimum program by working backwards from 
the end of the period (T) to time t=O. 

If the minimum delay time and optimum program 
are known for all states at time (t), we can calculate 
the minimum delay and optimum program at time (t-
1 ). Procedure is simple and it is implemented in sev­
eral computer programs (DYPIC, etc.). In compari­
son with conventional type of the intersection control 
methods (fixed time, optimised fixed time, etc.) this 
dynamic model gives substantially less delay (see Fig. 
7). 

average 
delay 

[a/veh.] 40 

30 

20 

10 

500 1 000 total flow 
[vehicles/hour] 

______.... signal control with fixed time 
-ir------tr dynamic control 

Figure 7 - Delay at the single intersection 
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6. CONCLUSION AND AREA 
FOR FURTHER STUDY 

Traditionally, traffic system and flows (process) 
have been analysed by the deterministic and stochas­
tic models developed for particular problems. Sto­
chastic traffic evaluations are based on queuing (the­
ory) models, diffusion approximation and various nu­
merical techniques for computing or approximating 
time-dependent probabilities in Markovian and Non­
Markovian systems. In dynamic (deterministic) de­
scription, traffic system has been considered by its 
state variables and "fundamental equations", but 
without precise explanation and formalisation ac­
cording to principles of general system theory. 

In this paper, dynamic approach or group of in­
vestigations were considered as a part of generalised 
traffic (system) theory. We assume that generic traf­
fic system laws manifest analogy or isomorphy of laws 
that are formally identical but pertain to quite differ­
ent practical observations. With the identification of 
some generic isomorphy between different transpor­
tation and telecommunication system we gain ground 
for unified approach to analysis and synthesis. Areas 
for further study are associated with further formali­
sation and axiomatisation of traffic system knowl­
edge. Human factor, safety aspects and technological 
considerations must be added to generic model in ad­
equate mann~r. 

SUMMARY 

Traffic science cannot emerge from "emb1yonic state" if it 
hasn't common methodology and unified (fonnal) treatment 
of traffic, relevant for different transportation and (tele)com­
munication subsystems. Generalised model (metamodel) of 
traffic process or traffic (system) the01y, must ensure consist­
ency and provide common platj01ms for large scale of traffic 
engineering (technologies) problems. 

This paper is concentrated only to consider dynamic ap­
proach in unified formal (mathematical) description of traffic 
process. Identification of some generic traffic relations and 
isom01phy are associated with the relevant contributions from 
"classical" traffte flow theory and teletraffic references. Dy­
namic flow models are considered as an approximation of 
queuing models and as an independent detenninistic and sto­
chastic description of traffic process. Fwther "more-integrat­
ed" contributions and development of generalised traffic (sys­
tem) the01y are suggested. 
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