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POLYNOMIAL IDENTIFICATION OF STRAIN GAUGE 
THERMAL OUTPUT FOR THE DETERMINATION 
OF DEFORMATIONS WITH NEURAL NETWORKS 

ABSTRACT 

Strain gauges are used in different areas, especially in the 
design and development of new technical constructions and 
mode/testing. Also, strain gauges are inc01porated in the func­
tional part of many instruments and devices. They are mostly 
used as sensors in transducers designed to measure such me­
chanical quantities as forces, moments, pressures, accelera­
tions, etc. They have an important role in shipbuilding and ma­
rine transport in general. In this paper we have suggested and 
shown an approach to the identification of strain gauge ther­
mal output curve on the example of a product available at the 
market. Neural network simulated in MatLab has been ap­
plied. The neural network has been adapted to simulate a real 
system with 1 o-9 order of magnitude error_ As it is well known, 
strain gauges measure deformations of 1 o-o order of magnitude. 
It is obvious that the network eJTOr cannot influence the mea­
surement results because of its being smaller by three orders of 
magnitude. 
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1. INTRODUCTION 

Increasing requirements which have to be met by 
modern technical constructions with regard to eco­
nomical quality and safety assign very sophisticated 
tasks to engineers. Testing of any new construction to 
check its behaviour in real working conditions regard­
less of wide usage of computers in designing construc­
tions, CAD (Computer Aided Design) appears as an 
imperative [1, 2, 3]. Modern measurement technique 
makes such testing possible. A special role is played by 
experiments which can be applied not only to models 
but also to original constructions [ 4]. A process of the 
kind suitable either for laboratory or industrial appli­
cations in strain gauge measurement. Such a process 
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determines construction deformations in order to de­
fine stress at critical points of its surface. Nowadays, 
electrical-resistance strain gauges have dominant po­
sition as they superseded all other systems for the 
measurement of static and dynamic deformations of 
machines and technical constructions. Besides, these 
basic application strain gauges are frequently used as 
sensors in all kinds of devices and instruments, which 
has enabled measuring of different mechanical magni­
tudes such as forces, moments, pressures, accelera­
tions, using electricity. Strain gauges are most fre­
quently used in maritime affairs and shipbuilding 
where they are specifically applied in deformation and 
stress testing of ship construction in case of collision as 
well as in checking ship safety with or without delicate 
cargoes in critical navigation conditions. 

1.1. Strain ga uges 

The function of electrical-resistance strain gauge is 
based on the change of electrical resistance in conduc­
tors depending on the variation of length. All strain 
gauges have a basis made either of paper, synthetic 
resin or .a similar material onto which the active part 
has been stuck. The active part can be made of thin 
wire of 0.025 mm in diameter or of metal foil attached 
to the basis and shaped by a photolithographic process 
[1, 5]. 

Normal (axia l) strain (e) has been defined as a rel­
ative change of the length of an object. The order of 
magnitude of such deformations measured in practice 
is very small oo-6) so that they are usually called 
micros trains (~E). 

There are different types of strain gauges. Some of 
them require extensive knowledge of materials used in 
electrical engineering such as piezoelectric strain 
gauges, which make the resistance change in a non-lin-
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Figure 1 - An example of strain gauge 

ear manner. Metal strain gauges are still most com­
monly used in practice. 

A metal strain gauge consists of very fine wire or 
metal foil on a grid which accentuates its sensitivity to 
deformations in which process the influence of the 
Poisson (transversal) deformation is reduced to a min­
imum. The grid is connected to a thin carrier attached 
to the object which is being tested so that its deforma­
tion is directly transferred to the strain gauge respond­
ing with a linear change of its electrical resistance. 

Installation and performance characteristics of a 
strain gauge are influenced by: an alloy sensitive to de­
formation (A-, P-, D-, L- alloy), self Temperature­
-Compensation number (S-T-C), materials used for 
the basis (polyamides, epoxy-phenolis, etc), resistance 
of the grid, length of the strain gauge as well as a selec­
tion of the corresponding additional features. Condi­
tion determining the strain gauge to be used are: accu­
racy, test duration, stability, resistance to periodical 
loads, temperature, simplicity of installation, length­
ening and environment conditions [1, 5, 6, 7, 8]. 

Balance 
regulation E 

The most important strain gauge parameter is its 
sensitivity to deformation. It is quantitatively ex­
pressed as a factor of measure and is defined as the ra­
tio of electrical resistance and length change [1]: 

D.R ! R D.R I R 
k = D. L/ L = t: (1) 

where R stands for electrical resistance, .ilR change of 
resistance, L length, .ilL change of length which causes 
the above mentioned resistance change and 1: normal 
strain. 

Example: If a specimen with a 500 1.u: is tested, and 
if a strain gauge with k == 2 is used, the change of elec­
trical resistance is only 2 · (500 · 10·6) == 0.1 %. For a 
gauge with 120 n resistance there is only a 0.12 n 
change to be measured. In order to measure such 
small resistances and compensate for temperature 
sensitivity, strain gauges are always used in some sort 
of bridge configuration such as the Wheatstone 
bridge. Figure 2 shows some standard commercial 
configurations. 

For the measurement of a deformation caused by 
bending load we can use either a quarter of a bridge 
circuit, a half of the Poisson bridge circuit, a half of a 
bridge circuit or a complete bridge circuit. In order to 
measure a deformation caused by axial load two strain 
gauges are used in the opposite branches or a com­
plete Poisson bridge circuit. Deformations caused by 
torsional load are measured using a complete bridge 
circuit. 

1.2. About neural networks 

Human brain goes through an uninterrupted pro­
cess of comprehending and modelling complex sys­
tems. Imitating such process it allows people to de­
velop the process of learning which can be used in 
modelling different systems such as maritime, air, ge­
neric or management system. In order to apply brain 
functionality and such algorithms with the currently 
available equipment and software support it is impor-

E 

DIGITAL 
DISPLAY 

AMPLIFIER =c=J 
Circuit for obtaining zero balance 

and readout gauge 
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Figure 2- Commercial deformation indicators: a) output voltage is amplified and 
displayed on an indicator (digital voltmeter), b) output voltage of the bridge is 

annulled by equal voltage of opposite polarity introduced into the circuit 
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tant to know that nowadays a single neurone in the hu­
man brain functions much more slowly than computer 
processors. The secret of human brain lies in parallel 
work which at present cannot be easily imitated. Paral­
lel computers are being developed whereas pres­
ent-day computers incorporate only a few processors 
working parallel, which is insignificant when consider­
ing the number of neurones in the human brain. Brain 
cells are mutually connected by multiple interconnec­
tions whose complexity is enormous. This high-level 
interconnection allows work on more than one task si­
multaneously. In order to store an item of information 
into the computer memory, the item's address must be 
precisely known: if the item gets lost, it cannot be re­
trieved. Within the brain, data are widely distributed 
and their contents are in most cases retrievable even if 
they are only partly known. Computer processors are 
highly accurate and do not tolerate errors while 
neurones with their low accuracy can be damaged 
without consequently affecting the brain overall func­
tion. Artificial neural networks (ANN) are an attempt 
at imitating interconnections and parallel data pro­
cessing in the brain with the velocity and accuracy of a 
computer processor [9-12]. 

ANN have the possibility of learning by altering 
their internal parameters according to certain rules al­
lowing generalisation, grouping, recognising or organ­
ising a set of data determined by the users. The ANN 
structure consists of a great number of simple, pro­
cessing units which communicate by sending signals 
mutually. Each ANN model consists of three compo­
nents: input layer, output layer and hidden layer. The 
input layer receives data entering the network, output 
layer sends the data out of the network while the hid­
den layer retains its input and output signals within the 
network. 

Each neurone can be shown in Figure 3 with its 
transmitting function and a bias as well as its adding 
capability [10]. 

2. NEURAL NETWORK 
IDENTIFICATION PROBLEM 

A model is usually identified when regulating or 
simulating an object or a process. The controller de­
sign can be a direct or an indirect one. The former is it­
self a neural network while the latter is not itself a neu­
ral network but is based on the model of processing by 
an ANN. 

The procedure to follow in order to identify the 
system consists of four basic stages: experiment, selec­
tion of a model structure, model evaluation and its val­
idation as shown in Figure 3. Experimental data have 
been obtained by measuring. On condition that the 
data have been correctly patterned, the next stage is 
selecting the model structure. Understandably, this is 
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neuron 
transfer 1---o~ output from 
function neuron 

Figure 3 - A neurone model 

much more difficult in the case of a non-linear than in 
the case of a linear model. It is necessary to determine 
the network repressors as well as the ANN structure. 
Whether the network parameters and structure have 
been correctly chosen can be determined by compar­
ing experimental and simulated data. If they nearly 
correspond, the modal has been accepted, but if the 
error is greater than the allowed, another model is re­
quired [10 -14]. 

3. STRAIN GAUGES THERMAL 
SENSITIVITY 

Ideally, a strain gauge attached to a tested object 
corresponds to the deformation applied to the object. 
The material of which the strain gauge is made as well 
as the material of the object tested react to tempera­
ture variations. Thus, for example, with the nominal 
resistance of 1000 D, an aluminium strain gauge with k 
= 2 has an equivalent error of deformation of 
11.5 11£/0C. 

When the installed strain gauge has been con­
nected to the deformation indicator and the instru­
ment has been balanced, additional changes in tem­
perature of the installed strain gauge will usually bring 
about resistance change which is independent of me­
chanical deformation caused by stress in the tested ob­
ject. Its exclusive cause is the change in temperature. 
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Figure 4 - Basic stages of an identification procedure 
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Figure 5 - Axial load of the elastic element 
in the form of a prismatic bar 

There are two causes of resistance change, which 
result in the thermal output: 

- electrical resistance of the conductor of which the 
grid is made is dependant on temperature which 
means that it depends on the kind of material and 
the change in temperature, 

- differential heat diffusion between the grid conduc­
tor and the tested object, i.e. the material of the ba­
sis to which the strain gauge has been attached. 
With the change in temperature the basis extends or 
shrinks so that the strain gauge grid itself is subject 
to extension/shrinkage. 

Thermal output can be expressed by relative resis­
tance change [5]. 

(~ R) =[f3c+Fc (1 ~+K~ )cas -ac)]6.T (2) 
0 T/0 vo t 

where ( 6. R I R0 ) is resistance change of the initial ref­
erent resistance Ro caused by thermal output, ~G the 
temperature coefficient of grid conductor resistance, 
Fa the factor of measure, Kt the transversal sensitivity 
of the strain gauge, vo the Poisson's ratio of the stan­
dard testing material used for the calibration of the 
strain gauge measure factor (0.285), (as - ua) the 
thermal expansion coefficient difference between the 
measured and the referent temperature. If the equa­
tion (2) is divided by the established factor of measure 
(Fr) and the them1al output is expressed in units of de­
formation in order to make the comparison of the 
measured data on strain easier, it follows that [1, 5]: 

(¥,)T/O 
8 T/O = 

Fr 

[f3c +Fe c~::~t }as -ac)]6. T 
(3) 

where ET/0 is the thermal output. 
It is necessary, for instance, to measure the defor­

mation of the element in Figure 4. It is a case of a half 
of the bridge circuit. Since active strain gauges are 
electrically connected in the opposite branches of the 
Wheatstone bridge, the configuration shown in Figure 
4 annuls bending deformations of equal values and 
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Figure 6: Electrical configuration for the measuring of 
axial load of the elastic element (""""designates the 

resistor in the non-active branch -the non-active strain 
gauge, while c::::=Jdesignates the resistor in the active 

branch - the active strain gauge) 

~ --h 

a) 

F 
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P+ 
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b) 

Figure 7 - a) Axial elastic element- complete 
Poisson bridge circuit, b) electrical configuration 

opposite signs. The bridge output amplitude caused by 
axial load is relatively high, but non-linear. The 
non-linearity amounts to 0.1 % per 1000 microstrains 
caused by axial load in the elastic e lement. Then the 
normal strain can be calculated as: 

F 
E = E·b·h (4) 

5 
x10 Thermal output 

12r----.-----.----.-----,----.----~ 

-4L---~ ____ _L ____ i_ ____ L_ __ ~----~ 

-100 0 100 200 300 400 500 
temperature (0 C) 

Figure 8 - Neural network input- thermal output 
of an actual product 
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and the voltage ratio (Figure 5) is expressed as: 
Eo Ft: 
E=2+Ft: (5) 

However, with this configuration any kind of strain 
gauges thermal output is added and the temperature 
compensation is rather bad. Consequently, in the case 
of axial load the most commonly used configuration is 
that of a complete bridge (Figure 7 a, b). 

For axial loads the most common configuration of 
a complete bridge is the one with the axial strain gauge 
and transversal strain gauge both on its upper and 
lower surfaces. The output is not only greater by the 
factor (1 + v) in relation to the previous alternative 
with two strain gauges but it is also less non-linear ( ap­
proximately [(1- v)/10]% per 1000 microstrains). This 
alternative has good temperature compensation. In 
this case the normal strain is calculated from (4) while 
the voltage ratio is expressed as [5]: 
Eo_ Ft:(1+v) 
E - 2+Ft:(1-v) 

(6) 

4. NEURAL NETWORK SIMULATION IN 
MATLAB AND THE RESULTS 

As help in the computer correction of the thermal 
output the strain gauge manufactures ordinarily pro­
vide polynomials representing the thermal output 
curve for a particular manufactured series. The poly­
nomial is expressed as: 

t:T/o = Ao +A1 T+A 2 T
2 +A3 T

3 +A4 T
4 (7) 

MatLab with the toolboxes has been used in the 
simulation process. Two cases of coefficients for the 
A-alloy have been considered, while the temperature 
has been taken in degrees Celsius and then in degrees 
Fahrenheit. Instead of experimental data the follow­
ing MatLab code has been taken for the number of the 
code which generates a curve corresponding to the 
manufacturer series A4BAF2B made by Micro-Mea­
surements so that the code generates a curve corre­
sponding to the manufacturer's specifications of a cer­
tain product [5, 10, 13]. 

For the design of the neural network NEWLIND 
function has been used. Its program code contains a 
part of net code = network (1, 1, 1, 1, 0, 1, 1) which in 
the MatLab syntax means that there is one network in­
put, one network output, and one layer of neurones. 
All neurones are mutually connected and there is one 
pre-signal (see Figure 3.). The number of neurones is 
equal to the number of independent data which are 
processed. 
% eps is not defined. The network must simulate it on 
the basis of the measurement 
% results which are 100% simulated here 
t = -100:0.5:500; %temperature range 
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% coefficients in the first case 
aO = -25.2; a1 = 2330; a2 = -6.19/100; 
a3 = 3.62/(10/\4); a4 = -4.23*10/\(-7); 
% coefficients in the second case 
aO = -88.2; a1 = 2710; a2 = -2.53; a3 = 6.72/(10A6); a4 
= -4.03*10/\(-8); 
for i = 1: length(t); 
eps(i)=a0+a1 *t(i)+a2*t(1)A2+a3*t(i)A3+a4*t(i) /\4; 
end; 
figure(1); grid; plot(t, eps); title('Thermal output'); 
xlabel('temperature (0 C)'); ylabel ('deformation - E'); 

%This is the neural network input 
% Defining of the neural network and its parameters 
as well as models 
Q = size( eps, 2); 
%as size(eps) = 1201, it follows that Q = 1201 
P =zeros (3, Q)% Initialization of a matrix composed 
of 3 lines and 1201 columns 
P(l, 1:Q) = eps(1, l:Q); %filling in the first line of the 
matrix P with the vector eps 
% without the ultimate member. 
% filling in the second line of the matrix P with the 
vector eps without the ultimate 
% member. The ultimate member has been replaced 
by a zero 
P(2, 2:Q) = eps (1, 1(Q-1)); 
% filling in the second line of the matrix P with the 
vector eps without the ultimate 
% member. The ultimate and prenultimate members 
have been replaced by a zeros 
P(3, 3:Q) = eps (1, 1:(Q-2)); 
T =filter ([1 0.5 -1.5], 1, eps); %Aim Tis the original 
system output. 
%FILTER- This function implements the difference 
equation ordinarily shown in 
%form: a(l)*y(n) = 
b(1 )*x(n) + b(2)*x(n-1) + ... +b(nb+ 1 )*x(n-nb )-a(2)* 
y(n-1)- ... -
% a(na+ 1)*y(n-na) 
figure (2); plot(t, eps); xlabel('Temperature (0 C)'); 
ylabel ('Input signal'); title('System input signal'); % 
plotting of the input signal 
figure(3); plot(t, T); xlabel ('Temperature (0 C)'); 
ylabel ('Output signal'); title ('System output signal'); 
% plotting of the output signal 
net = newlind (P, T) % linear neural network 

NEWLIND function calculates the neural network 
parameters (weight and bias) by the least-square 
method according to the equation: 

[Wb]·[Punits] = T (8) 
a = sim (net, P); %neural network simulation 
figure (4); hold on; plot(t, a, '-r'); plot(t, T, ' .b'); 
xlabel('Temperature (0 C)'); ylabel('Output signal of 
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Figure 12 - Simulation results: simulated neural 
network error in relation to the actual product curve 
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Figure 13- Neural network input in the second 
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Figure 14 - System output signal 

the network and system'); title ('Output signal of the 
network and system, comparison'); 
e = T- a; figure (5); plot(t, e, [min(t) max(t)], [0 0], 
'.r'); xlabel ('Temperature (°C)'); ylabel ('Error'); title 
('Error signal'); 
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In case other parameters are selected (see the be­
ginning of the program code) in the equation (7), the 
results are shown in figures 13, 14, 15 and 16. 

5. CONCLUSION 

The voltage applied to the strain gauge bridge 
causes in each branch a loss of power which must be 
completely dissipated in the form of heat. Only an in­
significant part of the input power is available at the 
circuit output. This causes the sensor grid of each 
strain gauge to function at a higher temperature than 
the basis to which it has been attached. The heat gen­
erated inside the strain gauge is to be brought to the 
surface onto which the gauge has been installed. The 
flow of heat through the pattern causes a rise in the 
temperature of the basis. The rise in temperature is 
the function of its heat capacity and the strain gauge 
power level. Consequently, strain gauge electrical re­
sistance varies not only with deformation but also with 
temperature. Furthermore, the relationship itself be­
tween deformation and resistance alteration depends 
on temperature. 

Once the installed strain gauge has been con­
nected to the deformation indicator and the instru­
ment has been balanced, later temperature changes of 
the installed strain gauge will in most cases bring 
about resistance changes. This resistance change 
caused by temperature is independent of mechanical 
deformation in the tested object to which a strain 
gauge has been connected. Its exclusive cause is tem­
perature change and it is for this reason that it is called 
the strain gauge thermal output. 

The paper demonstrates the polynomial simula­
tion of a strain gauge thermal output. Neural network 
has been used with this aim for the first time. Thermal 
output is non-linear by nature whereas a linear neural 
network has been used in this case. This means that 
the problem has been linearised. Linearisation has 
been carried out with satisfactory precision if the error 
criterion is taken into consideration as the difference 
between production and simu lation thermal output. 
This simulation has been carried out for one product 
and it does not mean that the same conclusions can be 
drawn for any other strain gauge. In each particular 
example, what has to be established is what the neural 
network is like and what parameters of the neural net­
work correspond best. In a similar way, it is possible to 
construct an even more accurate linear or non-linear 
neural network for a given case. However, the more 
accurate a network, the more complicated it is, and in 
this case it has been demonstrated that it is unneces­
sary to construct more complicated models. 

In the result, differences can be seen between the 
curves in degrees Celsius and in degrees Fahrenheit; 
however, they do not derive from the nature of the 
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phenomenon, but from its mathematical formulation 
as polynomial coefficients are different. 

IDENTIFIKACI]A POL/NOMA TERMALNOG ODZI­
VA MJERNE TRAKE S NEURALNIM MREZAMA 
KOD ODREDW ANJA DEFORMACIJA 

SAZETAK 

Mjerne trake imaju veliku primjenu u razliCitim podruc­
jima, naroCito pri projektiranju i razvoju novih konstrukcija, te 
njihovom modelskom ispitivanju. Takode1~ mjeme trake ulaze 
u sastav dijelova mnogih uredaja i instrumenata, gdje se najvi­
se koriste kao osjetila u pretvomicima za elektricno mjerenje 
razliCitih mehanickih veliCina: sila, momenata, tlakova, ubrza­
nja, itd. Znacajna je njihova primjena u brodogradnji i pomor­
skom transportu. U ovom Clanku predloien je i prikazan jedan 
pristup identifikaciji krivu!je termicke karakteristike mjernih 
traka na primjeru konkretnog proizvoda dostupnog na triistu. 
Primijenjena je neuronska mreia, koja je simulirana u 
MatLabu. Neuronska mreia se adaptirala taka da simulira 
pravi sustav s pogreskom reda veliCine I o·9• Kako mjerne trake 
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najcesce mjere deformacije reda veliCine 10·6, moiese zaklju­
Citi da ta pogreska ne utjeee na rezultate mjerenja, jer je manja 
za tri reda velicine. 
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