Setting the Port Planning Parameters In Container Terminals through Bayesian Networks

  • Tomás Rodríguez García Polytechnic University of Madrid, SPAIN
  • Nicoletta González Cancelas Polytechnic University of Madrid, SPAIN
  • Francisco Soler-Flores Polytechnic University of Madrid, SPAIN
Keywords: containerised traffic (trade), Bayesian networks, planning, forecast, port capacity,

Abstract

The correct prediction in the transport logistics has vital importance in the adequate means and resource planning and in their optimisation. Up to this date, port planning studies were based mainly on empirical, analytical or simulation models. This paper deals with the possible use of Bayesian networks in port planning. The methodology indicates the work scenario and how the network was built. The network was afterwards used in container terminals planning, with the support provided by the tools of the Elvira code. The main variables were defined and virtual scenarios inferences were realised in order to carry out the analysis of the container terminals scenarios through probabilistic graphical models. Having performed the data analysis on the different terminals and on the considered variables (berth, area, TEU, crane number), the results show the possible relationships between them. Finally, the conclusions show the obtained values on each considered scenario.

Author Biographies

Tomás Rodríguez García, Polytechnic University of Madrid, SPAIN

Higher Technical School of Civil Engineering (ETSIC)

Department of Civil Engineering Construction, Infrastructure and Transport

Associate Professor

Nicoletta González Cancelas, Polytechnic University of Madrid, SPAIN

Higher Technical School of Civil Engineering (ETSICCP)

Department Civil Engineering: Transportation and Territory

PhD

Francisco Soler-Flores, Polytechnic University of Madrid, SPAIN

Higher Technical School of Civil Engineering (ETSICCP)

Department: Mathematics and Computer Science Applied to Civil Engineering and Naval

Associate Professor

References

Agerschou H. Facilities Requirements In Planning and Design of Ports and Marine Terminals. 2nd ed. London: Thomas Telford Ltd., 2004; p. 5-20.

Bishop CM. Pattern recognition and machine learning. New York: Springer-Verlag; 2006.

Bromley J, Jackson NA, Clymer OJ, Giacomello AM, Jensen FV. The use of hugin® to develop bayesian networks as an aid to integrated water resource planning. Environmental Modeling & Software. 2005;20(2):231-242.

Bureau of Transport and Regional Economics. Waterline. Issue no. 41. Australian Government, Department of Transport and Regional Services; 2006.

Cain J. Planning improvements in natural resource management. Guidelines for using bayesian networks to support the planning and management of development programmes in the water sector and beyond. Wallingford, Oxon: CEH Wallingford; 2001.

Camarero A, González MN, Pery P. Optimización y estudio de la capacidad de las terminales portuarias mediante modelos de simulación y explotación. Determinación de los niveles de servicio. UPM, UPV, Cenit, Valencia Port, Cedex, España. Código PT-2066-004-14IAPM; 2009.

Castillo E, Gutiérrez JM, Hadi AS. Expert systems and probabilistic network models. New York: Springer-Verlag; 1997.

Cios KJ, Kacprzyk J. Medical data mining and knowledge discovery. Heidelberg: Physica-Verlag; 2001.

Cios KJ, Pedrycz W, Swiniarski RW, Kurgan LA. Data mining: A knowledge discovery approach. New York: Springer; 2007.

Drewry, editor. World Container Terminals. Drewry Shipping Consultants; 1997.

Drewry, editor. Global Port Congestion: No Quick Fix. Drewry Shipping Consultants; 2005.

Dragovic B, Zrnic D, Radmilovic Z. Ports & Container Terminals Modeling. Research Monograph. Faculty of Transport and Traffic Engineering, University of Belgrade; 2006.

Duda RO, Hart PE, Stork DG. Pattern classification. New York Wiley; 2000.

Elvira Consortium. Elvira: An environment for creating and using probabilistic graphical models. In: Gámez JA, Salomón A, editors. Proceedings of the 1st European Workshop on Probabilistic Graphical Models (PGM’02). 2002; p. 222-230.

Fan HSL, Cao JM. Sea space capacity and operation strategy analysis system. Transportation Planning and Technology. 2000;24(1):49-63. DOI: 10.1080/03081060008717660.

Fourgeaud P. Measuring Port Performance. World Bank TWUTD, mimeo; 2000.

González, MN. Metodología para la determinación de parámetros de diseño de terminales portuarias de contenedores a partir de datos de tráfico marítimo [PhD thesis]. Madrid: Universidad Politécnica de Madrid; 2007.

González MN, Soler Flores F, Camarero Orive A. Modelo de eficiencia de las terminales de contenedores del sistema portuario español. Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA. Rect@. 2013;14:49-67.

Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: Data mining, inference, and prediction. New York: Springer-Verlag; 2009.

Maloni M, Jackson EC. North American Container Port Capacity. An Exploratory Analysis. Transportation Journal. 2005;44(2):16-36.

Michalski RS. A theory and methodology of inductive learning. Artificial Intelligence. 1983;20(2):111-161.

Nicolaou SN. Berth Planning by Evaluation of Congestion and Cost. Journal of the Waterways and Harbors Division. Proceedings of the American Society of Civil Engineers. 1967;93.

Nicolaou SN. Berth Planning by Evaluation of Congestion and Cost – Closure. Journal of the Waterways and Harbors Division. Proceedings of the American Society of Civil Engineers. 1969;95 (WW3):419-425.

Orallo JH, Quintana, MJR, Ramírez CF. Introducción a la minería de datos. Madrid: Editorial Pearson Educacion SA; 2004.

Pearl J. Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann; 1988.

Plumlee CH. Optimum Size Seaport. Journal of the Waterways and Harbors Division. Proceedings of the American Society of Civil Engineers. 1966;92:1-24.

Quijada-Alarcon J, González Cancelas MN, Camarero Orive A, Soler Flores F. Road network analysis using decision trees algorithm: A case of study of Panama. The 1st Virtual International Conference ARSA; 2012. Available from: http://www.arsa-conf.com/archive/?vid=1&aid=2&kid=60101-242

Rodríguez García T, González Cancelas MN, Soler Flores F. Forecast of container terminal capacity in a crisis scenario using Neural Network. Virtual Conference; 2013. Available from: http://scieconf.com/archive/?vid=1&aid=3&kid=90101-38&q=f1.

Rodríguez García T, González Cancelas MN, Soler Flores F. Setting the port planning parameters in container terminals through artificial neural networks. Global Virtual Conference; 2013. Available from: http://www.gv-conference.com/archive/?vid=1&aid=2&kid=30101-9.

Rodríguez García T, González Cancelas MN, Soler Flores F. Forecasting models in ports transport systems. 2nd Electronic international Interdisciplinary Conference; 2013. Available from: http://www.eiic.cz/archive/?vid=1&aid=3&kid=20201-29&q=f1.

Rodríguez García T, González Cancelas MN, Soler Flores F. The Artificial Neural Networks to obtain port planning parameters. XVIII Congreso Panamericano de Ingeniería de Tránsito, Transporte y Logística (PANAM 2014). Procedia – Social and Behavioral Sciences; 2014.

Rodríguez Pérez F. Dirección y explotación de puertos. Bilbao; 1977.

Schreuder M. Application of Approximate Performance Indicators for Master Planning of Large Ports. Port Technology International. 2005;26:19-22.

Soler R. Índices Portuarios Españoles. Revista de Obras Públicas. 1979;3166: 91-104.

Soler Flores F, González Cancelas MN, Camarero Orive A, Almazán Gárate JL, Palomino Monzón MC. Diseño de un modelo de planificación de zonas de actividades logísticas mediante el empleo de redes bayesianas. Revista Ingeniería Industrial. 2013;1:7-26.

Sun S, Zhang C, Yu G. A bayesian network approach to traffic flow forecasting. Intelligent Transportation Systems, IEEE Transactions. 2006;7(1):124-132.

Tebaldi C, West M. Bayesian inference on network traffic using link count data. Journal of the American Statistical Association. 1998;93(442):557-573.

Tongzon J, Heng W. Port privatization, efficiency and competitiveness: Some empirical evidence from container ports (terminals). Transportation Research Part A: Policy and Practice. 2005;39(5):405-424.

Tongzon JL. Determinants of port performance and efficiency. Transportation Research Part A: Policy and Practice. 1995;29(3):245-252.

UNCTAD, editor. Desarrollo de los Puertos. Mejoramiento de las Operaciones Portuarias e Instalaciones Conexas. Nueva York: Naciones Unidas; 1969.

UNCTAD, editor. Desarrollo Portuario. Manual de Planificación Para Países en Desarrollo. Nueva York: Naciones Unidas; 1984.

Vityaev E, Kovalerchuk B. Empirical theories discovery based on the measurement theory. Mind and Machine. 2004;14(4):551-573.

Witten IH, Frank E. Data mining: Practical machine learning tools and techniques. Massachusetts: Morgan Kaufmann Pub; 2005.

Wong RCW, Li J, Fu AWC, Wang K. (α,k)-anonymity: An enhanced k-anonymity model for privacy preserving data publishing. Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia, USA: Association for Computing Machinery; 2006.

Published
2015-10-28
How to Cite
1.
Rodríguez García T, González Cancelas N, Soler-Flores F. Setting the Port Planning Parameters In Container Terminals through Bayesian Networks. PROMET [Internet]. 2015Oct.28 [cited 2019Aug.20];27(5):395-03. Available from: http://traffic.fpz.hr/index.php/PROMTT/article/view/1689
Section
Articles