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AIRPORT SYSTEM CONTROL IN CONDITIONS OF 
DISCRETE RANDOM PROCESSES OF TRAFFIC FLOW 

SUMMARY 

The article presents a system approach to air traffic opera
tion and control. A mathematical model of the system has been 
developed, for the case when the input/output functions are dis
crete random processes. A solution for a special example of in
put functions has been calculated and analysed. 

1. INTRODUCTION 

Air traffic system is a very complex dynamic sys
tem. In creating a theoretical mathematical model, we 
would have to take into account an extremely large 
number of variables and their interrelationships. 
However, with methods of logical and methodological 
decomposition, a traffic system may be divided into a 
finite set of simpler subsystems, which are then stud
ied and analysed separately [4] . 

In this article we are interested in the airport sub
system within the framework of the air traffic system. 
We are going to deal with it as a system of aircraft, pas
senger, cargo, luggage and postal operations. All the 
necessary activities are carried out by airports, which 
are organised as business companies ([3], [4], [9]). Air
ports have become complex technological and organ
isational structures, which follow the laws of dynamic 
systems, and for this reason we have to adopt a scien
tific approach to managing them. 

2. A THEORETICAL MODEL OF THE 
AIRPORT SYSTEM CONTROL 

The components of air traffic (airports, airlines 
and passengers) are functionally connected via air
ports. These connections appear in pairs: airport-airli
nes, airport-passengers and airlines-passengers. Tech
nological-production processes in all traffic systems 
including airport systems are specific in that the pro
duction and consumption of traffic services are simul
taneous. One special characteristic of traffic systems is 
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that pairs of elements within the systems occur to
gether: technological operations - services and traffic 
flow - users. 

The operational technological-production level of 
an airport system consists of three subsystems which 
are typical of all production systems: the subsystem of 
demand, which is shown as the flow of passengers, lug
gage and cargo, the subsystem of production, which is 
shown as a technological process, and the subsystem 
of stock - facilities which is shown as infrastructure, 
terminals and technical resources. 

A mathematical model of control for this system 
will be structured around the theoretical model of 
control of linear stationary systems. For this model the 
regulation circuit is given in Fig. 1 ([6], [7]). 

demand 
passenger, 
cargo, luggage 

Figure 1 - Regulation circuit of airport system 

In developing the model we will restrict ourselves 
to dynamic linear system where the input is a random 
process with known statistical properties. The system 
provides the output which is, due to the condition of 
linearity, also a random process. These processes 
could be continuous or discrete. The model and its 
solving for continuous processes is obtained in [ 4] and 
[7]. So we will set up the mathematical model for dis
crete stochastic processes. 

The optimisation model of dynamic system regula
tion is determined by the system and by the optimality 
criterion. The system as regulation circuit generally 
consists of a regulator, the object of regulation, feed
back, input and output information [5] (See Fig. 2). 

We will restrict ourselves to dynamic linear dis
crete system where the input is a random process with 
known statistical properties. 
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Disturbance 

d(k) 

Reference Actuating Manipulated Controlled 
Input signal r Controller -1 Variable r Controlled l Output 

p ,(k) y p ,(k) -Z(k) 
1 Regulator 1 

v(k) 
· 1 System/Plant 1 

Z(k) 

Feedback Path 

Figure 2 -A regulation circuit 

Let us denote: 
Z- activated facilities (resources) at given mo

ment, 
u- the amount of services performed (produc

tion) at a given moment, 
d- the demand for services at a given moment, 
T- time elapsed between the moment the data 

are received and the carrying out of a service, 
Q - crierion function, complete costs, 

Kz - constant coefficient, dependent on activated 
resources, derived empirically, 

~- constant coefficient, dependent on performed 
services and derived empirically. 

In the situation of discrete functions it is: Z =Z(k ), 
u=u{k), d=d(k)for k E { 0,1,2, ... }. 

The system will be modelled with equations ([4), 
[5]): 
Z(k)-Z(k-1)=y{v(k)-d(k)], 1/J E R+ (1) 

v(k)=u(k-T), TEN (2) 
CXJ 

u(t)=- L G(K)Z(k- K) (3) 
K=O 

{Xk)=Kz E{ (z2 (k))} +Ku E{ (u 2 (k-1))} min (4) 

G(k) is the regulation function which, with opti
mum regulation, needs to be defined in such a way 
that the demand for minimum total costs will be met. 
We are looking for a system control with minimum op
eration costs Q(k). The total costs (4), whose mini
mum we are looking for, is expressed with mathemati
cal expectation (mean value) of the square of random 
variables Z(k) and u(k). Here Kz and Ku are constant 
factors which give greater or smaller weight to individ
ual costs. Both factors have been determined empiri
cally and are known. 

Equations (1 )-( 4) form a stationary stochastic lin
ear model of control where the minimum of criteria 
function is calculated on the basis of Wiener's filter. 
This means that we will obtain the searched-for solu
tion using Wiener-Hopf equation for these cases. 

Indicating z-transforms: 
Z{Z(k)}=Z(z), Z{v(k)}=v(z), 
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Z {d(k)}=d(z), Z {u(k)}=u(z) 

and applied to equations (1 )-(3): 

Z(z)= ;_: ( v(z)-d(z)) , 1/J E R+ 

v(z)=z- T u(z) 

u(z) =- G(z)Z(z) 

(5) 

(6) 

(7) 
The searched-for optimum control operator G(z) 

is obtained from optimal cascade compensation op
erator Wopt(z) with the formula: 

Wopt(z) 
Gopt(z)=1-Wopt(z)Gf(z) (8) 

Cascade compensation operator Wopt(z) is obtain
ed as a solution to Wiener-Hopf equation for discrete 
functions. 

Finally, the obtained functions are transformed 
into time zone with inverse z-transform [4]. 

3. AN EXAMPLE 

Let us take an example for discrete dynamic system 
with situation in which the function of demand has the 
autocorrelation in the form: 

Rdd(k)=!; 2 alkl, /;>0, O<a<1 (9) 

From Wiener-Hopf equation the following is ob
tained ([4), [5], [6]): 

z-1 [ ( )- T+l( )] Wopt(z) ( ) C1 z-a C2a z-1 
z z-z 1 

(10) 

where 
2 

cl 
1/J Kz zl 

(11) 
Ku (1-a)(1-zl) 

2 

c2 
1/J Kz zl 

(12) 
Ku(1-a)(1-azl) 
2 1/Jz Kz 1/J Kz+2Ku 

+2>2 (13) X 
Ku Ku 

x-~x 2 -4 
<1 (14) Z] = 

2 
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From (5), (7), (8) and (10) it is obvious that: 
a) the facilities involved comply with function (facili

ties that were operating): 

(
u1 U 2 ) z·d(z) 

Z(z)=ljJ - +---1 --
zT z- z1 z - 1 

where 

U1 = Ct- C2aT+L and, 

U2 = Cl (z1-a)-C2aT +l(z l - 1) 

b) the services performed comply with function 

u(z)=[ C1 (z-a}-C2aT+l(z-1)} d(z) 
z-z 1 

(15) 

(16) 

(17) 

With inverse z- transform we obtain these func
tions in the time area: 

Z opt(k) = z-l {Z(z)} = 

00 

=U1D(k- T)+u2 L zf D(k-T - K}-lXk) (18) 
K=l 

and 
00 

Llopt(k) = Z - 1{u(z)}= Uld(k)+U2 L zf d(k- K) = (19) 
K= l 

= Ut d(k)+U2[ ZJ d(k - 1)+zf d(k- 2)+z[ d(k- 3)+ .. . ] 

whereD(k) is the total demand in a given time interval 
with changeable upper boundary: 

JXk) = Z - 1{JXz)}= Z - 1 ( ~1 ·d(z)) = ~d(k-K) (20) 
z K=l 

= lfJ( d(k)+d(k-1 )+ ... +d(1)+d(O)) 

4. DISCUSSION 

These data and results include parameters T, a and 
A, which have influence on values of functions and on 
the results of control. Those parameters are involved 
in the constants U1, Uz, c, Cz and Z J> which are de
fined by ( 11 ), (12), (13) and ( 14). 
I. According to constants U1 and U2 there are three 

possibilities: 

l. (U1 = 0) A(U2 = 0) 

In this case the system is degenerated completely. 
From ( 18) and ( 19) it is 

Z opt(k_) =-fXk) 
Uopt(k) = 0 
The production of services equals zero which 

means the system doesn't work. The needs for capaci
ties are only registered and equal the common de
mand in the given time interval. The system of equa
tions (u1 =0)A(U2 =0) is possible only for a=1, but 
in (9) there is condition O<a <1, which means this 
situation is not possible. 
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2. (U1 =0)A(U2 #0) 

In this case there is a very unpleasant situation be
cause the optimal solution is 

k 

u0 pt(k) = U2 L zfd(k-K) 
K=l 

k 

Zopt(k)=U2 L zf D(k-A.-K}-lXk) 
K=l 

The supply of airport services satisfies only the de
mand from the past and never that from the present. It 
is the same with capacities. A situation like this is not 
optimal because there would be permanent delays in 
the system operation. From the equation 

Ut = Ct - C2aT+l = 0 

we ge t 
1-az1 

log----,--~ 

a(1-zl) 
T = ---'-----"'--':_ 

log a 

1-az1 
Because O<a < 1 it is: log ( ) > 0 and loga < 0, so 

a 1-z1 

T < 0. From the definition of delay (2) it is clear that 
T > 0. The condition (u1 =0)A(U2 #O)is impossible, 

too. 

3. (u1 #0) A(U2 =0) 

In this case the optimal solution is 

Uopt(k)= U1 d(k) 

Z opt(k)=Ul D(k-T)-JXk) 

The production of services satisfies only the pres
ent demand. It is possible to use the capacities with de
lay T only for the present demand. Also this control is 
not optimal because it doesn't satisfy all the needs of 
the system in whole time period of its o~eration. 

From U2 =Ct(zl-a~C2aT+l(zt-1J=Oit is 
(a-zl)(1-azl) 

log 2 
a(1-z1) 

T = ------'--------':._:__-
loga 

Because of the value of parameters a and z1 we 
would get T<O. The condition (u1 #0) A(U2 =0) is 
impossible, too. 

The system will be controlled optimally, when the 
constants U1 and Uz are not equal zero. This condition 
is true for O<a<l. 

II. According to parameters Ku and Kz there are two 
possibilities: 

l. Ku > Kz, 
2. Ku <Kz. 

Because (13) and (14) expression 
00 

L zf d(k-K)= zld(k- 1)+zf d(k-1)+z[ d(k-1)+ ... 
K=l 
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is convergent faster for Ku >Kz than for Ku <Kz. 
That means the production of services depends on the 
demand in the given moment more than on the past 
demand. lbis is why we will cover the demand with ex
tra capacities. 

In the second case (Kz <Ku) the storing and acti
vating of extra capacities is very expensive and we have 
to cover the demand with present capacities i.e. pres
ent production of services. 

5. CONCLUSION 

A theoretical mathematical model of system con
trol can be used also in a traffic system and in all their 
subsystems. Input-output signals are either continu
ous or discrete functions. For air traffic operation 
many conditions have to be fulfilled. During the con
trol process a great deal of information must be proc
essed, which can only be done if transparent and prop
erly developed information system is available. Dur
ing the operation of the airport an enormous amount 
of data is used. The solutions i.e. optimal control func
tions depend on many numerical parameters. All data 
and numerical analyses can only be processed into in
formation for control if high quality and sophisticated 
software and powerful hardware are available. 
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POVZETEK 

UPRAVL.JANJE SISTEMA ZRACNE LUKE PRI 
DISKRETNIH SLUCAJNIH PROCESIH 
PROMETNEGA TOKA 

V clanku je predstavljen sistemski pristop k upravljanju le
taliJca. Kreiran je matematicni model sistema za primer, koso 
vhodno/izhodne ftmkcije diskretni slucajni procesi. Izracuna 
na in analizirana je re.Sitev za pose ben primer vhodnih funkcij. 
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