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VALVE SPRING DESIGN- KINEMATICS ANALYSIS 

ANALIZA GIBANJA VENTILSKE OPRUGE 

Opruga ventila je jednim svojim krajem oslonjena o cvrstu 
podlogu, dokje drugi kraj izlozen periodic nom gibanju koje je 
odredeno profilom brijega bregastog vratila motora. Svaki 
pojedini harmonik podizaja brijega predstavlja uzbudu koja 
izaziva vibracije svih toe aka opruge. Opruga se pritom ponasa 
kao vibracijski models beskonacno mnogo stupnjeva slobode. 
U literaturi se tvrdi da opruga vibrira gotovo iskljuCivo prvim 
oblikom. U raduje razmatrana kinematika vibracija opruge, te 
je pokazano da ona ipak vibrira istovremeno u vise oblika. 
Potvrda za to oobivena je analizom fizikalne interpretacije 
matematickih rezultata i analizom publiciranih mjerenja. Ta­
koder je pokazano kako se na obliku spektra harmonika 
podizaja brijega mote uoCiti utjecaj visih harmonika na rezu­
ltirajuci oblik vibriranja opruge. 

1. INTRODUCTION 

The valve spring is retained at one end and controlled 
by a cam at the other end. A method of harmonic analy­
sis can be used to replace the lift function by series of si­
nus harmonics. Each harmonic is one disturbance func­
tion that induces vibrations of all particles of a spring. 
The spring possesses infinite number of degrees of free­
dom that is infinite number of resonant frequencies. The 
motion of particles of a spring is described by wave 
equation. 

In this paper author tries to explain some theoretical 
unclearness, found in a accessible literature, in connec­
tion with the response factor (HUSSMANN) and dy­
namic displacement. In opposite to frequent opinions 
(HUSSMANN, STRAUBEL), it will be shown that two 
or more modes may consist in a spring at the same time. 
Special attention has been paid to the physical interpre­
tation and analysis of mathematical results. 

2. LONGITUDINAL 
VIBRATION OF A BAR 

2.1. The Differential Equation Of Motion. 

When considering vibration of helical spring, it can 
be replaced by a bar with continuously distributed mass, 
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elasticity and dumping, where A is a cross sectional area 
of a bar, I is its length, p is density if material, E is 
Young's modulus of elasticity and c is a dumping coeffi­
cient. Free vibration of a spring corresponds to those of a 
bar whose both ends are fixed, while at forced vibration 
only one end is retained and the other end performs har­
monic motion. The displacement u(x,l) along the bar 
(Fig. 1) will be a function of both, the position x and the 
timet. 

I u ,•.',::'.',i.',.,i r::: :r:f-------...... -...------i: .... 
:====== A'~dm ====-= 

::: I ~ 'f' .:::::: 
-~ I ::-:-

Wo--~X"'-------..!-dx'='1~ E, p, c /i:: 

dFp~ ~Fe/ 
~ ~-~ 

~ u(x, t) 

Figure I Longitudinal vibration of a bar: 
Forces acting on an element dm. 

The elastic strain force dFez is: 

dFel =A· da, 

ou (x, t) 
ox 

(
OE 8E ) 

E· ~dx+~dt ox ot 
where: dcr x - differential of normal stress cr x in cross sectional 

area A if x increases for dx, ex - unit elongation. 

While considering the whole bar in the same time 
t = const., we obtain: 

&x o(ou) 
da = E · -dx = E ·- - dx 

x ox ox ox 

(Al) 
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The inertia force dFinis: 

ilu a2
u 

dF. = dm · - = A · p · -dx. 
In a? at2 

(A2) 

The dumping force dFprig is equal to the product: 

I 
dumping coefficient x velocity = c · (aulat) . If the 

dumping force Fpng is continuously distributed over 

the length of the bar: Fprig l / = (aulat) · e l l , dif­

ferential of force, that corresponds to the element dx, is: 

Fprig c au 
-- · dx = - · -dx I I at . (A3) 

Substituting (Al, A2 and A3) in the equation for 

equilibrium: dFin + dFprig = dFel, we obtain the dif­

ferential equation of motion: 

2 2 
a u au 2a u c 2 ar + 2bfu = a 8} , b = 2m , a 

E 
(A4) 

p 

This is a wave equation with a dumping term repre­
sented by 2b(au/8t), where a is the sound velocity in sol­
id structures, that is the velocity of disturbance moving 
in a spring material (KLOTTER, pg. 160). 

The motion described by the partial differential equa­
tion (A4) is a boundary value problem. Starting from 
initial conditions for displacement u and velocity autat at 

time t=O, the solution u(x,t), defined for 0 :-:::; x :-:::; I , has to 
satisfy the given boundary conditions at x = 0 and x = l. 
This boundary conditions shall be satisfied for an infinite 
number of eigen values, each corresponding to one of 
the solutions u(x,t). 

The same equation (A4) describes both free and 
forced vibration, varying only boundary conditions. At 
free vibration they are: u(O,t) = 0, u(l,t) = 0, and at forced 
vibration: u(O, t)=O, u(l, t)=R-sin(co t+8), where R is the 
amplitude of exciting harmonic, eo is its angular frequen­
cy and 8 its phase angle. 

Solvingfree vibration of the bar we obtain the eigen 
values, which are equal to resonant frequencies. The dis­
placement u will be found by solving forced vibration. 

2.2. Free Vibration. 

Equation (A4) can be solved by separation of vari­
ables. Therefore, the function u can be written as a prod­
uct : 

u (x, t) = X(x) · T(t) , (AS) 

where X is the function of the position x only, and T 
is the function of the time t only. From the expression for 

2 2 2 2 
u we calculate aulat, a ulat 'au l ax and substitut-
ing them in (A4) we get: 

T' T 2X'' 
y+2bT =a X, (A6) 

2 

The terms on the left are functions of time only, these 
on the right functions of positions only. So both sides 

must be equal to the same constant - v 
2 

. We obtain the 
homogeneous case of the system of two linear differen-

tial equations of the 2nd order, with constant coeffi.­
cients: 

T'+2bT+/T = 0 

2 
V 

X''+ 2 X = 0 
a 

(A7.1) 

(A7.2) 

The solutions of equations (A 7) can be obtained only 

for certain values of / . The function X is called eigen 

function, and v
2 

is eigen value of a boundary problem. 
Solution of equation (A7.2) should be searched for 

m the form: X = erx. We calculate: X' = rerx, 

2 rx 
X'' = r e , and by substituting it in the equation 

(A 7 .2) we obtain the characteristic equation: 

2 21 2 0 . r +v a = , 1ts roots are: r
1

,
2 ±i ·via . The 

. ~X ~X 
general solutwn: X = C 1 e + C

2
e , can be trans-

V V 
formed into: X= A 1cosax+A 2 sinax' by means of 

2 
Euler's formula and by substituting the solutions 
r 1 and r2 . 

Corresponding to the first boundary condition: 

X= A 2 sin~x u(O,t) = 0, it is: u =X · T = 0. 

This shall be satisfied if: X = 0 , is followed by: 

V 
A 1 = 0 , so the general solution is: X = A 2 sin ax. 

By applying the second boundary condition: 

V 
u (/, t) = 0 we get: sin- I = 0 , with the conclusion a 

that there has to exist the eigen value v or resonant fre ­
quency (frequency of normal mode of vibration): 

I v = A. · 1t · ~ ,, rad/s (A8) 

where: 

A.= I, 2, 3, ... -order of normal mode, 

a = ~ , m/s - sound velocity in a bar. 

, V 
From (A8) we obtam: -

a 

pression for eigenfunction X: 

X= A2 sin(t.. ·7t · ]) . 

1 
A. · 1t · - so the final ex­

/ ' 

(A9) 
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Solution of equation (A7.1) should be also searched 

for in the form: T = ert. The roots of the characteristic 

equation: 

2 2 
r +2br+v = 0, 

.~ . 2 2 
are: r

1
,
2 

= -b±I,.jv--b-, wh1le v -b >0. The 

r 1 t r2 t 
general solution: T = D 1 e + D 2 e , can be trans· 

formed to: 

-bt( ( ~) T = e D 3 cos ,.jv - b t + 

+ D
4
sin(J/- b

2t)). (AlO) 

The displacement u can be obtained by substituting 
the expression (A9) for X and expression (AlO) for T 
into (AS): 

u =X·T= e-b{K
1
cos(J/-b2J+ 

+K2sin(J/ -b
2t)) ·sin( A.· n · ~). (All) 

The resonant angular frequency of dumped vibra­
tion is, extracting from this equation: 

(Al2) 

Constants K 1 and K 2 can be calculated by applying 

the initial kinematics conditions: u (x, 0) = f(x) , 

zi (x, 0) = g (x) . 

For the solution of the differential equation (A 7) we 
assumed: 1. that vibration of the bar could be treated in· 
dependently for each of the normal modes and its eigen 
value, and 2. if the bar was vibrating at one of its normal 
modes, all its points were vibrating with the same simple 

harmonic motion: u = X · sin (eo t) . 

2.3. Forced Vibration. 

We shall solve the equation (A4) by using the corn· 
plex method. The forced vibration is the sum of free vi­
bration and excitation. In a dumped system, however, the 
free vibration is dumped out rapidly and only steady­
state oscillation remains, with an excitation frequency eo. 
The complex solution is: 

au . i(rot + li) . 3 
- =X· 100 · e = ICOU at 
a2

u =X· .2 2 i(rot + li) 
- I CO ·e 
a? 

2 
-CO U. 

By substituting this into u (A4), we get 
4

: 

x·-(- :: +i. 2b : 2)x = X"-lx = o, 
5 

where : 

(Al4) 

b CO 
a+ iB, a""-, B""-. (Al5) a a 

2 2 
The characteristic equation: r - y = 0, has its 

complex roots: r !, 2 = ±y . The general solution is: 

C 
"(X -"(X • , 

X = 1 e + C2 e . The first boundary condltwn: 

u (0, t) = X· T = 0 produces: X (0) = 0 , followed 

by: c2 = -C I . Thus the general solution is: 

C "(X c - "(X c X= 1e - 1e = 2 1sh(yx). (Al6) 

In the second boundary condition: u (l, t) = 

=(R·sin(cot+o)), the term: sin(cot+o) is the 

function of time t only. So, we can say that R is a func· 

tion of position x only: X (l) = R. It must be equal to 

R 
(Al6) and then we get: C 1 = 2 sh (y/) . Substituting C1 

in (Al6) and then substituting X in (Al3) we obtain the 

complex dynamic displacement u: u (x, t) = X· T = 

= R. sh (yx). ei(rot + l5) = R. v*. ei(rot +l5) where 
sh (yl) u ' 

V= is the complex response factor. By applying the ex-

ponential formula of the complex number 
6 

, general tri · 

gonometric and hyperbolic formulas 
7

, we get: 

v* = sh (yx) = 
u sh (yl) 

2 . 2 A 
sh (ax) +Sill (1-'x) . /lfl = V . / 

2 . 2 A u 
sh (a/) +Sill (I-'/) 

(Al7) 

u(x,t) =X(x) ·T(t) =X·ei(rot+l5). 
We obtain the dynamic displacement u as the imagi· 

(Al3) nary part of the complex displacement: 

Now we obtain: 

a2u 
=X''. /(rot+l5), 

8x
2 
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u (x, t) = R · Vu · sin (eo t + 8 + cp) . (Al8) 

where Vu is the response factor and cp is the phase angle 
between the excitation and the dynamic displacement u. 

3 
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Table 1 Analogy of vibration of a bar and a helical spring 

Prismatic Bar 

·}~jf..-------'~------t~•:}~ 
- 0 

:.: .•.•. :.•}-------,-------{::::: 
:·:·:· 

:{ A ___,.: t •;: 

iJi:j<;>-: --=X ___ ~ m, E ,
1 

p, c Ill 

u(x, t) 

E = f!_ 
& 

(J (J 

t;L au 
T ax 

2 E 
a 

p 

a = !r 
2 

a 

Helical spring 

r/JD ~~~~~~~~~ 
\ rfJ d, m, p, G. c, k, z 

F 
(J A' I F I 1Gd

4 

E t;L ;r · t;~ - · k = 
2D

5
nz E A' 

T 
2 

Gd
4 

A' = D n k = 
4 ' 8D

3
z 

E , m nz ~1C p; , p V = Dl . p , m = Dnz . 4 . p 

a = 1C~ z · ~ = I· £ 
V = 

b 

S = _c_ ~' ck ·c = 2Jk; 
ckrit 2..;Krn n 

A, m 
2 

-cross sectional area; a, m/s- sound velocity; b, 1/s- dumping; c, kg/s - dumping coefficient; E, Pa - modulus of elasticity; 
F , N- force ; G, Pa- modulus of stiffness; k, Nlm- spring rate; m, kg- active mass; z -number of active coils; p, kg / m

3 
-density 

of material; er , Pa- normal stress; v / v b , rad/s -natural angular frequency ( v 1 - the lowest) of damped/undamped system; s-frac­
tion of critical dumping; A', E, V, p' -symbols corresponding to helical spring treated as a bar with diameter D and length l . 

They are equal to: 

V u 

2 . 2 A 
sh (ax) + sm (1-'x) 

2 2 ' 
sh (a/) +sin ( j3/) 

(Al9) 

cp 
tan ( l3x) tan (13/) 

arc tan tarth ( ax) - arc tan tanh (a/) (A20) 

3. SPRING VffiRATION 

If we define all the different terms, the formulas for a 
prismatic bar can also be applied for a helical spring. In­
stead of the distance x we shall use the relative distance 
x/l, to exclude the influence of the length l of the spring. 

3.1. Dynamic Displacement uw 

At the moving end of a spring the disturbance func­

tion is represented by the harmonic of ll th order: 

u!-l(x = l) =RI-!· sin(lJ.roBVt+8J.!), where 81l is the 

phase angle between the harmonic and the cam rotation 

angle cp8 y By substituting: rot = !J.cpBV into expression 

(Al8), using \jl = -cp, we obtain the dynamic displace­

ment ul-! (Fig. 2) of the ll th order harmonic of the cam 

4 

lift function, at the camshaft speed n B V , at distance x , as 

the function of the cam rotation angle cp8 v 8 

I u = R · V · sin ( !J.cp + 8 - \jf ) I m 1-! 1-! U,J.! BV 1-! U,J.! ' 
(A21) 

where: RJ.L, m- amplitude of the llth harmonic of the cam lift; 

th 
V ~J.L - response factor of the ll harmonic; 

<pBv , rad -cam rotation angle; 

81l, rad - phase angle of the ll th harmonic, 

\j/U.J.l, rad - phase angle between the excitation 

harmonic and the dynamic displacement u. 

,u-ti harrnonik 
pomaka ventila 

~harmonic 
of a cam lift 

r/Jd 

Figure 2 The considered point is at the 
distance x from fixed end of the spring, 

the dynamic displacement is ll. 
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3.2. Response factor V U,!-L and phase angle \lfu,w 

The response factor V~I-L of the harmonic of the ).l th 

order (Fig. 3.) at the camshaft speed n B V, at distance x, 

corresponding to (A 19), and in the form suitable for the 
10 

computer 

vu, 1-L = sign( sin(~~( 1 -7))) 

sh
2

( a/- 7) + sin2(~l- 7) 
~ sh

2
(a/) +sin

2
(0/) 

. X 
1, or if: n8 v = 0, then: tf: 7 = (A22) 

I 2( X) . 2( X) sh al · 7 + sm ~~ · 7 
V = U,IJ. ~ 2 . 2 ~~ sh (a/) +sm ( ) 

where: x, m- the distance of considered point from fixed end 
of a spring; l, m- length of a spring. 

The terms a and ~ are: 

al:::: ~ · l = b · !!:.. = b · §_k 
a v 1 ~k 

b . nD
2 
z . fiP = C, 

d ~G (A23) 

b=..:_=t;,-~=t;,· !E. 
2m L ~m 

(A24) 

where: a, m/s - sound velocity (velocity of disturbing wave 
moving) in a spring treated as a prismatic bar; b, s -1 -
dumping; c, kg/s - dumping coefficient; d, D, m - wire 
diameter, mean coil diameter; G, Pa - modulus of stiff­
ness; k, Nlm - spring rate; l, m - length of a built in 
spring (valve at rest); m, kg- active mass of a spring; z 
- number of active coils; v1, rad/s - lowest natural an­
gular frequency of a spring; p, kg/m3 - density of spring 

material: l;- fraction of critical dumping. 

(J)I-L l 
~'::::la· 1 = ).lffi sv ·a 

= J.lffisv· :1 = J.lffisv· n~2z. J@ (A25) 

where: col-i, rad/s- angular frequency of harmonic of the 11th 

order of the cam lift function; 11 - order of harmonic; 

co BV , rad/s - angt:lar frequency of camshaft; n8 v, s·1-

camshaft speed (frequency); ro 8 v = 2nn8 v· 

The response factor V , as defined in the expres-
u,IJ. 

sion (A22), is a function of: dumping b, the lowest angu-
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Jar natural frequency v, the order J.l of the harmonic, the 
camshaft speed, as well as the position x of observed 
point of a spring: 

V =V (a(b,v 1 ),~(J.l,ro8 V'v 1 ),:1). U,IJ. U,IJ. 

The phase angle I.Jlu,~J. between the excitation ).l th har­

monic and the dynamic displacement u, in the form suit-

able for the computer 
9

, is: 

if mu," < 0 then I w m I "' ,... "'u, 1-L --.-u, 1-L ' 

elseif <i>u,l-1>0 then 1'-Vu,~J. = 'Tr.-<pu,~J-10 (A26) 

where <i>u,f! is obtained from (A20): 

<i>u, 1-L = 

tan(~/ 0 7) tan(l3/) 
arc tan ( x) -arc tan tanh (a/) 

tanh al· 7 

(A27) 

Fiat 128 A 

1 
0 

-1 
nav, s 

150 28. harmonik I 28
1
" harmonic 

b =50s., 

Figure 3 Response factor v., ,.. of 
harmonic of 1-1th order. 

3.3. Resonance. 

Accordingly to the expression (A22) the response 

factor V U.I-L reaches its maximum if sin ( ~ l) = 0 0 From 

there we get the resonant condition: 

C"-=1,2,3, .. 0) (A28) 

According to (A15) is: 13 =rol-L/a, resulting with: 

13 rez = ro f.l, rez/ a o However, the angular frequency ro 1-L 

of J.l th harmonic (that is the angular frequency of the 
amplitude vector RI-L) is ).l-times bigger than the cam an-

gular frequency roB\-! so it will be the same at the reso-

5 
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nant frequency: eo = !l ·coB V . By substituting 
~,rez ,rez 

this into expression (A28) we get the resonant condition: 

(eo la) -I= /...n, and the resulting resonant angu­
)l, rez 

th 
lar frequency of the !l harmonic IS: 

eo = A.n · a/ I. If we substitute the equation for a, 
)l, rez 

the resonant angular frequency of a cam is: 

[;;J= /...: . ~ = A.: . ~ = 
= ~ · ..!!__ · (G =I A.v 

1 I rad I s 
!l D 2z ~2P !l ' 

(A29) 

where v1 is the lowest angular frequency of a spring (un-

10 
dumped ): 

(A30) 

The resonant angular frequencies of higher order are: 

vA. = /... v 1 , /... = 1, 2, 3, ... -order of normal mode 

ofvibration. (A31) 

The lowest resonant frequency j
1 

of a vibrating 

spring, and the higher order frequencies fA, are: 

(A32) 

The maximum absolute value 
11 

of the response fac­
tor Vu,~ is a constant for all harmonics !l and for all or­

ders of normal modes of vibration A., it is approximately: 

vl 

IV I --u, )l, rez max - bn (A33) 

For example, if/... = 1(3) the maximums are at: xI 

l ~ 112 (1/6, 3/6, 5/6). 
If there is no dumping (b=O), the response factor Vu,~ 

(A22), and the dynamic displacement u~ (A21), tend to 

infinity. 

The resonant phase angle \If u, rez of the dynamic dis­

placement u is equal for all excitation harmonics !l and it 
can be obtained by expression (A26): 

if <p u, rez < 0 then \If u, rez = -<p u, rez ' 

else if <p > 0 then \If = n - <p . u, rez u, rez u, rez 

The value <pu, rez can be get by substituting the reso­

nant condition Prezl = A.n into (A27), that is: 

tan(t...n · ~) 
<pu, rez = arc tan . 

tanh( a/·~) 
(A34) 

6 

For example, at 1st mode of vibration (/...=1, coBv, rez 

accordingly expression (A35)), using small dumping b, 
the phase angle \If is approximately equal n/2 over the 
whole length of a spring, except for starting value zero at 
the moving end of a spring. 

3.4. The Interpretation of v. 

Presuming that we deal with a cam profile de­
signed to produce a disturbance single sinus wave 
during each revolution of the cam rotation. The an­
gular frequency of the wave is equal to the angular 
frequency of a cam: ro 1 = ro BV Assuming the fre­

quency of the cam to be equal to the lowest natural 
angular frequency: ro BV = v1. The spring then per-

forms the resonant vibration of the 1st normal mode 
(A.= 1). At twice the cam frequency, the spring vi­
bration would occur at double frequency coBv = v2 
and with the 2nd normal mode (A.= 2). 

In general, if a condition of resonance is satisfied, the 
angular frequency of a cam is: 

/... 
eo = 2nn = - · v BV,rez BV,rez !l 1' (A35) 

while the angular frequency of the disturbance har­
monic is: ro ~ = ~ ro 1 = ro BV. rez , the response factor 
Vu1-1 reaches its absolute maximum, and the order of 
the normal mode of vibration is A.. 

0 

',I i 1 I 
I: 

9/10 ' I \I\' \ 

8/10 

7/10 

6/10 

5/10 

4/10 • 
,! = 1 "' u: 

3/10 , ~- . ~ .• ·.-
2/10 ~ :..___ ~.- ~~~- - -~ 
1/10 ' j ~ 

J _ _y-+ _y____i_='l'- ~-_Y:--,,-_-___ _,1 c: 

0 4 10 20 

Redni broj harmonika f.1 
Order of harmonic 

30 40 

Figure 4 The resonant camshaft speed depending upon the 
order of the cam lift harmonic for 

different orders of modes of vibration A.. 

At resonant frequency of a cam n8 v, rez (Fig. 4) 

the frequency of the ~th harmonic is equal to any of 
the natural frequency of a spring: 

/... /... VI 
fBv,rez = nBV,rez = ~·fA. = ~ · 2n · (A36) 
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3 

10 
Fiat 128 A, ispu~ni ventil, zazor 0.50 mm 

-I 16 exhaust valve, clearance 0.50 mm 

E 
2.5 . R,,(A.=2) 11 22 E 01 

E R " (A.= I ) E 

2 o:' 0.001 

I . ~ 111111.11 ~ 1111111.1 IIIIIIIIIJ Ill 1.1 Ill b llltlllll.J :::. 

a::: 0 00001 

1.5 I 10 20 30 40 50 60 
J1 

:::. Amplitude pomnozene sa 10 Amplitude pomnozene sa 100 
a::: ..... 
ro QJ 

Amplitudes multiplied by 10 -~~r Amplitud~~ multiplied by 100-~ 

~~ n llD 
I "0"0 

I ~ .-2 0.5 

r I a. a. 
E E • On [LL <{<{ 0 ::::: ~ [ ::J oJl'! D.. = I 

... "' ~ ~ 0 ... "' N <0 0 ... "' N <0 0 

+ + N N N '"' '"' .... .... .... "' "' <0 

N ... + + + + + + + + + + + + + 
<0 "' ~ ~ ;! ~ ~ 0 N ... <0 "' 0 

N N N N N '"' 
Redni broj harmonika I Order of harmonic f.l 

Figure 5 The line spectrum of the Fourier series of the cam is a useful tool to estimate 
which of pairs of (J..lth and 2 J..lth) harmonics have approximately equal amplitudes. 

3.5. Displacement. 

Total sum of displacements u of series consisting of 
J..l harmonics is: 

u (x, t) = 2>~ (x, t) 

~ 

(A37) 

How many terms should a series of harmonics have if 
calculating the displacement? Examining the example of 
analysis of a cam profile of the car engine Fiat 128 A 
(see the details at the end of the paper) . 

According to the graph (Fig. 5) the amplitudes of gtb 

and 16th harmonic are almost equal as well as those of 

the 11th and 2200 harmonics. The camshaft speed 
12 

of 

n8 v = 37,4 s-1 is a resonant speed of the 11th, 2200, 33rd, 

... harmonics. As shown in Fig. 6, for rapid decay of the 
response factor Vu,~ it is enough that the camshaft speed 

differs just slightly from the resonant speed. So the con­
tribution of the nonresonant harmonics is irrelevant. This 
shows that the total sum of dynamic displacements of a 
series of seven resonant harmonics (Fig. 7), is almost 
identical to the sum of displacements of only the first 

two resonant harmonics 
13 

. 

It is obvious then, that the series of harmonics should 

have enough terms to include the 1st and the 200 normal 

mode of vibration ( J..l th harmonic by A.=l and 2 J..l th har­
monic by A.=2) in the considered range of the camshaft 
speed. HAFNER, from KHD, calculated the displace­
ment u using the series of 32 harmonics. For a quick 
analysis it will be enough to observe the resonant fre­
quencies (equations A29 and A36) in a range up to the 
highest engine speed and to include in the calculation 

th th . 
only the J..l and the 2 J..l harmomcs. 
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But, if the frequency of the 
th 

J..l harmonic: 

co ~ = J.l · co 8 V, by the 1st mode, coincides with any of 

the resonant frequencies vA., and if its amplitude is 

much larger than the 2 J.l th amplitude, then the motion 

will be almost completely determined by only the 1st 

mode (Fig. 8). 

Amplitude U f1 of the dynamic displacement u, at the 

position x and at the camshaft speed n8 .,; can be obtained 

from (A21) by substituting sin ( J.l<Psv + 8 -\If ) = 1: 
~ u,~ 

1u = R . v 1 
~ ~ u, ~ 

(A38) 

According to (A22) at the fixed end of a spring is 
X= 0: VU,fL = 0, followed by : u~ = 0, 

while at the moving end it is 
X= l: Vu,~= 1, followed by: u~ = R~ . 

20 

10 . 

0 ; 
-1 = 1 2 

·10 . 
281r1 hannonic 

28 ham10nik , X 1/ = 3/4 ' 
-20 . 

0 30 60 90 120 

Brzina vrtnje breg. vratila I Camshaft speed n 8 v , s·' 
Figure 6 The response factor V0 , 11 decreases 

rapidly if the camshaft leaves its resonant 
speed values (this graph is the cross sectional 

area of surface V0 , 
11 

from Fig. 3). 

150 

Consequently, the amplitude of the displacement at 
the end of a spring, that is controlled by the cam, is equal 
to the amplitude of the excitation's harmonic. 

7 
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Figure 7 The spring vibration, at resonant 
frequency, in several normal modes. 

The 1st and the 2nd modes are dominating, 
because the amplitudes of its harmonics are 

by far the biggest and almost equal (see Fig. 5). 
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-0 2 

0 02 04 06 0 8 X I 

Figure 8 The total displacement of series of 7 
harmonics. The motion is almost completely 
determined by the 11th harmonic which is 

in a resonance (with 1st mode). 

The total displacement H of the observed point of 
a spring, produced by static compression due to the cam 

lift, and by vibration due to the ).l th harmonic, at the 
camshaft speed n8 v , measured from the fixed end of a 
spring (valve at rest) is: 

H = 1-x+(h;v-zv) · ~+ui-L = 

=t-(1-~)+(h;v-zJ-~+uJ.L (A39) 

where: l, m- the length of built-in spring (valve at rest), 
h*8 v (<p8 y), m- the cam lift, measured on the valve ax­
is, as a function of the cam angle <p8 1-1 

zv , m - tappet clearance measured on the valve axis. 

4. THE INFLUENCE OF DUMPING 
AND ENDCOILS 

The calculation of dynamic displacement u, is not 
possible without knowing the value of dumping. The 

data from the literature: According to HUSSMANN
14 

the dumping is: from b ~ 7 7 12 ((, ~ 0,0085 + 0,024), up 

8 

45 

30 • 

15 • 

0 
0 45 

( 11 hannonik, A= I)+ ( 22 hamwnik . .l = 2 ), 

J.iat 128 A • II H' 3 7 4 s ., , b = I 0 s _, 

DuiJ•na ugradene opruge 36 mm 
Length of bU1It-1n spnng 

90 135 180 225 270 315 

Kut zakreta bregastog vrallla I Cam angle (<' av, •sv 

Figure 9 The spring vibrating by 1st and by 2°d 
mode at the same time. The total displacement 
shown here, due to the harmonics 11 and 22, 

is almost equal to that of seven resonant 
harmonics (11, 22, •.. , 77) from Fig. 6. 

360 

- 1 
to 20 s ((, = 0,061). HUNDAL calculated with the val-

ue (, = 0,001 (b = 0,82 s -
1 

). By the slightly modified 
theory HAFNER used the constant ratio of dumping and 
camshaft speed, pointing out the necessity of experi­
ments to find it. 

When considering the measuring of dumping HUS­
SMANN (p. 34, 35) has mentioned two possibilities: de-

termining of logarithmic decrement
15 

tJ. and 2. measur­
ing of the resonant amplitude of displacement, that is the 
determining the response factor V by the already u, f!, rez 
known sinus wave excitation with the amplitude Rw and 

the calculation of dumping b from the expression: 

vl 

U J.L, rez, max =RI-! ·I Vu, f!, rezl max ~RI-!· bn · (A4 0) 

HUNDAL's (reference 7 ., p. 6, 7) calculation of the 
fraction of critical dumping(, was also based on experi­
ments, but he considers several cycles in a row. For the 
single degree of freedom system he calculated the loga­
rithmic decrement from the formula: 

1 No 
tJ. = -·ln-

2nn N n 
(A41) 

where: N 0 - the amplitude of the first cycle, Nn- the ampli­

th 
tude of the n cycle following it, 2n/v, s - the cycle 
period. 

Another circumstance has also significant influence 
on the results of the calculation. Valve spring endcoils 
are squared and ground flat. The intercoil gap at the 
spring endcoils is gradually reduced to zero , resulting in 
a loss of active coils and active mass. The significance of 
this change is reported by ROSKILLY and FERAN. 

5. CONCLUSION 

The end of the spring (x=[), which is controlled by 
the cam, performs the motion that can be replaced by the 

Traffic, Vol. 8, 1996, No. 1-2, 1-10 
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series of sinus harmonics by method of harmonic analy­
sis. Therefore, the motion of the endpoint of the spring is 
equal to the total sum of all harmonics. If the spring vi-

st 
brated only by the I mode (HUSSMANN, STRAU-
BEL), then somewhere near that end an area, where the 
power of higher order harmonics would disappear, 
would have to exist. 

Probably it does not often happen that at resonant 
th th 

frequencies the amplitudes of the 11 and 211 harmon-
ic are approximately equal. But only in such case it is 

relatively simple to notice that it vibrates by the 1st and 

the 2nd mode consisting in the spring concurrently. 
HUSSMANN's experiments, where the simultaneous vi-

. . st nd 
brat! on of a spnng by the 1 and 2 mode was record-
ed, were analysed. It was found out, that these cases 
were ofthe same type like described here. 

It can be asserted that, at the resonant frequency, the 
spring vibrates simultaneously by all modes and due to 
all excitation harmonics. As the amplitudes decrease 

with the order of harmonics, in most of cases the 1st 

mode of vibration dominates and followed by the 1st 

and the 2nd mode simultaneously. When analysing vi­
bration, the line spectrum of amplitude series (Fig. 5) 

should be used to estimate which of the pairs of (11th and 

2 11th) harmonics, with the resonant frequencies (A36) 
in the engine speed range, have approximately equal am­
plitudes. The resonant vibrations due to these harmonics 

will be dominated by the 1st and the 2nd mode simulta­
neously. All other vibrations will almost completely fol-

low the I st mode of motion. 

6.EXAMPLE 

Given: Four cycle combustion engine Fiat 128 A, ex­
ternal valve spring: the main coil diameter D = ~ 27,4; 
the wire diameter d = ~ 3,8; the free length of a spring 54 
mm; the built-in length l = 36 mm; the number of active 

coils z = 4,5; the spring material: steel; p = 7850 kg/m3; 

G = 8,3x1o10 Pa; dumping b = 20 s-1; the amplitude of 

9th harmonic R 9 = 0,088 mm; the maximum of valve lift 

( h*8 v- Zv) = 8,75 mm. 

The amplitude of displacement of the vibrating 
spring has to be calculated. The resonance excitation is 

the 9th harmonic that has a very large amplitude (see Fig. 
5). 

Results: 

The lowest natural frequency of a spring (A30): 
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3,8. 10-3 

(27 ,4. 10-3) 
2

. 4,5 . 

8,3. 10
10 

2. 7850 

rad 
2586-. 

s 

The resonance camshaft speed for the 9th harmonic 
(A36): 

n = BV, rez 
A.. vl = 1 . 2586 = 45 7 s-1 
2rr11 2rr·9 ' 

Maximum of the response factor (A33): 

VI 2586 
I
V I ::::! - = - = 41 2 u, f.t, rez max bn 20 · rr ' · 

The resonance amplitude of displacement (9th harm.) 
(A40): 

U9,max = R91Vu,f.t.,rezlmax = 0,088. 41,2 = 3,6 mm. 

The 1st normal mode of vibration (A.= 1) appears at 

the camshaft speed n8 v = 45,7 s-1 and at the relative dis-

tance x/[=0.5 (the middle coil); the 2nd mode (A.=2) ap­

pears at n8 v = 91,5 s-1 (5488 min-1) and at the distance 

xfl=113; ... (The crankshaft speed at the maximum of 

power is 100 s-1 or 6000 min-1). The resonant amplitude 
U9,mv. = 3,6 mm is the same at all normal modes of vi­

bration. 

The results of approximate formulas for a and 13 , 
and the influence of dumping on the natural frequency 

- I 
v1 of a spring, at the camshaft speed nBV = 45,7 s 

and with dumping b = 7 s-1: 

a= 0,23620026 13 = 87,26678 exact formula (A15a), 

0,23620034 87,26646 appr.formula (A15), 

3,4 X 10-5 %, 3,7 X 104 % the difference. 

v 1 = 2586,18 rad Is without dumping (A30), 

v 1,b =2586,16rad/s withdumping(Al2), 

the difference = 7,7 x 104 %. 

If the dumping is b = 20 s-1 the differences of a, l3 
and vI, b are equal: 3,0x 10-3 % of the exact value. 

By means of approximate formulas it is very simple 
to express the correlation (A23) between the dumping b 
and the fraction of critical dumping (,. However, this 
does not influence the results of the calculations. 

SUMMARY 

The paper considers the surge of a spring, retained at one 
end and controlled by a cam at the other end. The periodic lift 
function of the cam was approximately replaced by the Fourier 
poly nom. The forced displacement amplitudes were determined 
for each harmonic of this poly nom. The theory of forced longi-

9 
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tudinal vibrations of a bar with continuously distributed mass, 
elasticity and dumping was applied to simulate the motion of 
spring coils. It was found out that two or more modes may con­
sist concurrently in the spring. This was obtained by analyzing 
mathematical formulas and by comparing computed and pub­
lished measured results. The line spectrum of the Fourier series 

was introduced as a useful tool for estimating the influence of 
the high order harmonics on the spring surge. 

NOTES: 

1. Relative velocity of element dm and its neighboring ele­
ment. 

2. Euler's formula for complex numbers: 

ea +i P = ea· e;p = ea· (cosp + isinp) ; ea = lea+zPI. 
3. The rotation of complex number for an angle of n/2 is 

equal to its multiplication by imaginary unit i: 

au 
Ot. eo ·X· cos (cot+ 8) = eo ·X· sin (cot+ 8 + n / 2) 

= i · eo ·X· sin (eo t + 8) = i · eo · u 

4. The variables are separate again: X is the function of x only. 

5. Exact formulas for a. and p (the excitation frequency is 

eo~: 

CO:. J~ . ( R¥J-1 J ' 

p =CO:· J~·[Jl + (~j2 + 1) (A15a). 

If the dumping b is as small as it is for springs, it can be ne­
glected as it is done in formulas (A15). See the example at 
the end of the paper. 

6. sh (yx) = sh (a.x + i · Px) = sh (a.x) ·cos (px) + 

B 
~ iarctg.A 

+ i·ch(o.x) ·sin(px) = A + i · B = .JA-+B-·e 

. 2 2 2 2 
7. sm a. + cos a. = 1 , eh a. - sh a. = 

8. All the significant terms are defmed by equations with 
frames. 

9. If: tanx < 0, then computer gives the result: x < 0, but never 
x > n/2. To control the sign of the displacement u, the func­
tion signum was used in the expression for V~;z. (A22), in­
stead of the phase angle <i>u.;z. . 

10. The influence of dumping on resonant frequency could be 
neglected, see example at the end. 

11 . The response factor Vu , ;z., rez at resonant camshaft speed 

can be obtained by substituting the expression (A28) in 
equation (A22). As the dumping b is very small, it can be 

bn 
written: a. l "' 0, followed by: sh (a. I) "'a. I = v , 

sh 
2

( a./· ::1) "'0 , and fmally: V "' bv · sin( A.n · ::1) . u, JJ., rez 1t 

We get the extremes if: sin( A.n · ]') = 1, and that is at the 

. X 
distance x: 7 

2K - l ---n- K = 1, 2, 3, ... ,A.. 

10 

12. It is from expression (A36): 

A VI 1 2586 
nBV,rez = ~·27t = 11.21[ 

2 2586 
22. 21t 

3 2586 - 1 
33. 21t = ... = 37,4 s 

13. As shown in the Fig. 5, the amplitudes R;z. of the higher or­

der harmonics are even smaller. In general, the amplitudes 

of the f.!. th harmonics (A.=l) are much greater than those of 

the 2 f.!. th harmonics (1..=2), which are again much greater 

th . ' than those of the 3 f.!. harrnomcs ("'=3), and so on. So the 
contribution of the normal modes of high order (A.) is main­
ly not as big as observed in an unusual case like in Fig. 5. 

14. HUSSMANN made his experiments using valve springs 
from aircraft engines. 

15. The logarithmic decrement t';. is the natural logarithm of the 
ratio of the amplitudes N 1 and N2 of two successive cycles 
of dumped free vibration: 

NI 
t';. = ln­

N2 
(single degree-of-freedom system) 

= C,vT = ~ 
Jl -(,2' 

where: v, rad/s- the natural angular frequency of vibration; 
vT, rad -the cycle period (v T = 2n); T, s- the cycle period 
of dumped vibration. 
The logarithmic decrement shows the decay of amplitudes 
of dumped vibration. Without dumping, there would be no 
decay. If t. = 0 then: In (N1 / N 2 ) = 0-=> N 1 / N2 = I . 

REFERENCES: 

[l] HUSSMANN, A.: Schwingungen in schraubenformigen 
Ventilfedern. Dissertation, TH Berlin, 1938 . 

[2] STRAUBEL, M.: Beitrag zur Erjassung und Beeinjlus­
sung des Schwingungsverhalten van Nockengetrieben. Dis­
sertation, TH Miinchen, 1964. 

[3] KLOTTER, K.: Technische Schwingungslehre, Erster 
Band: Einfache Schwinger, Teil A: Lineare Schwingungen. 
Dritte Auflage, Springer-Verlag Berlin Heidelberg New 
York 1981, ISBN 3-540-08673-0. 

[4] BRONSTEJN, I. N., SEMENDJAJEV, K. A.: 
Matematic"ki prirucnik za inzenjere i studente. Tehnicka 
knjiga Zagreb, 1964. 

[5] HAFNER, K. E.: Investigating the Dynamic Behaviour of 
Valve Mechanisms with Engineering Vibration Methods, 
"lOth International Congress Combustion Engines". New 
York, 1973, str. 313-337. 

[6] ROSKILLY, M., FERAN, W. H.: Valve Gear Design 
Analysis. XXI Fisita Congress, Belgrade 1986, Paper 
865027. 

[7] Application of Computers in Valve Gear Design. SAE Inc. 
New York 1963, Library of Congress Catalog Card Num­
ber: 63-23158. 

Traffic, Vol. 8, 1996, No. 1-2, 1-10 


